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Chaos and
Randomness



Deterministic
Chaos

Chaotic is not random!
We model the evolution of a population
of animals or bacteria with the Logistic
Map:

x(t)=ratio of existing population to the
maximum possible population

      x(t+1)=r·x(t)·[1-x(t)]
0<r<4 is the parameter of the model

Two effects:
reproduction when the population
size is small the population grows
starvation when the population size
is large the population decreases

This model is completely deterministic!Ecological suicide in
microbes

https://www.researchgate.net/publication/324544628_Ecological_suicide_in_microbes?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/publication/324544628_Ecological_suicide_in_microbes?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ


Example of Evolution

x(0)=0.2

r=2



Example of Evolution

x(0)=0.2
x(1)=r·x(0)·[1-x(0)]=2·0.2·[1-0.2]
x(1)=0.32

r=2



Example of Evolution

x(1)=0.32
x(2)=r·x(1)·[1-x(1)]=2·0.32·[1-0.32]
x(2)=0.43

r=2



Example of Evolution

x(2)=0.43
x(3)=r·x(2)·[1-x(2)]=2·0.43·[1-0.43]
x(3)=0.49

r=2



Example of Evolution

x(3)=0.49
x(4)=r·x(3)·[1-x(3)]=2·0.49·[1-0.49]
x(4)=0.50

r=2



Example of Evolution
r=2



Non-Chaotic Trajectories

r=3.12     
x1=0.216     
x2=0.312

The behavior is regular
Two moderately far initial points results in very similar trajectories



Chaotic Trajectories

r=3.732     
x1=0.216     
x2=0.212

The behavior is apparently randomic
Two very close initial points results in completely different trajectories

https://www.complexity-explorables.org/flongs/logistic/

https://www.complexity-explorables.org/flongs/logistic/


Another way to
Visualize Maps

x(t)
x(

t+
1)

x(t
+1)

=x
(t)

x(t+1)=r·x(t)·[1-x(t)]

We can better understand maps by
plotting x(t+1) as function of x(t)

the x axis gives x(t)
the y axis gives x(t+1)
the straight line is x(t+1)=x(t)
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Periodic and Chaotic Trajectories
Fixed point
(Period = 1)

Limit Cicle
(Period = 2)

Chaos 
(Period = ∞)

https://www.complexity-explorables.org/flongs/logistic/

https://www.complexity-explorables.org/flongs/logistic/


Collective Behavior
and Complex Systems



More is Different! "The ability to reduce everything to
simple fundamental laws does not
imply the ability to start from those
laws and reconstruct the universe.
[...] Psychology is not applied
biology, nor is biology applied
chemistry. [...] At each level of
complexity entirely new properties
appear." - Philip Anderson

More is different: broken symmetry
and the nature of the hierarchical
structure of science. Philip Anderson,
Science (1972)

https://cse-robotics.engr.tamu.edu/dshell/cs689/papers/anderson72more_is_different.pdf
https://cse-robotics.engr.tamu.edu/dshell/cs689/papers/anderson72more_is_different.pdf
https://cse-robotics.engr.tamu.edu/dshell/cs689/papers/anderson72more_is_different.pdf
https://cse-robotics.engr.tamu.edu/dshell/cs689/papers/anderson72more_is_different.pdf


Complicated or Complex?
Complicated System
Example: a mechanical watch

pieces have specific functions and well-
defined relationships
 carefully engineered or designed
it is easy to infer global behavior and
understand outcomes of modifications

Complex System
Example: a human cell

pieces have unknown functions and
relationships
Self-organized, no external project
it is hard to infer global behavior and
understand outcomes of modifications



Jurassic Park, Chaos and Complexity
Jurassic Park is not a book about

dinosaurs, it is a book about chaos and
complex systems!

“Chaos theory throws it right out the
window. It says that you can never predict
certain phenomena at all. You can never
predict the weather more than a few days
away. All the money that has been spent
on long-range forecasting-about half a
billion dollars in the last few decades-is
money wasted. It's a fool's errand. It's as
pointless as trying to turn lead into gold.”
- Dr Ian Malcolm, Jurassic Park



Collective Behavior 
Once Again
Complex Systems are characterized by
emergent collective behaviors.

Nature is full of collective behavior
examples:

flocks of bird
schools of fish
ants and bees 

Collective behavior can emerge even
in very simple animals!



Diversity-Induced Collective Behavior

Interaction-induced collective behavior 
The macro behavior depends on the interaction between individuals:

Schelling's model: low tolerance triggers moves that lead to segregation
Alxelrod's model: cultural exchange leads to larger cultures or supports
coexistence of few cultures

Diversity-induced collective behavior
The macro behavior emerges from differences between individuals. Same
interaction pattern can lead to very different outcomes



Granovetter's
Threshold Model



The Riot Toy Example
A group of individuals is part of a
demonstration:

Individuals have a threshold of how many
others have to be rioting to join the riot
If enough people are in the riot,
individuals with lower threshold join too

This is an example of binary opinions
Proto-opinion: just participate / not
participate
Other examples with binary decisions
depending on size: Diffusion of
innovations, rumors, strikes, voting... 



An Example of Spreading



Rational Agents in
Collective Actions

We assume agents to be rational,
so the decision to join the
collective action depends on:

Risk or cost of participating.
Risk of being jailed in riot
Wage loss in strike
Cost of technology adoption

The benefit (potential or sure)
of the action taking place.

Political change after
demonstration
Political party winning an
election
Profit out of adopting
innovation

Cost
Benefit



Net Benefit and
Thresholds

Net benefit = benefit - costs
Threshold to join: Net benefit
must be positive (>0)
benefits increase and costs
decrease with more people in
the action 

group effect on social
network
less possibility to be
arrested in riot
economy of scale following
technology adoption

weaker assumption: there is
only one crossing of zero in the
function of net benefit vs people
in action

Fraction of people in riot

N
et

 b
en

ef
it

0.0 1.00.38



Questions on Spreading and Diversity

We want to understand the role of Diversity in inducing the spreading of
ideas or behaviors 

How does the distribution of preferences (thresholds) in a population
affect its collective behavior?
Knowing the preferences does not directly tell you how the
population will behave, you need to analyze how the population
behaves
Aim: understanding groups beyond the representative "mean"
member



Granovetter‘s
Model

Granovetter’s model schematizes the
process of joining a riot

there are n distinct agents
each agent is characterized by a
threshold θᵢ
an agent join the riot if and only if
there is a number of agents larger
or equal to its threshold in the riot
we denote by M(t) the number of
rioters at time t (and by x(t) the
percentage)
at the time step t+1 all agents with
θᵢ≤M(t) join the riot
the simulation stops if all people are
in the riot M(t)=n or a stationary
state M(t+1)=M(t) is reached

θ₁=3 θ₂=0 θ₃=1 θ₄=1 θ₅=5

θ₁=3 θ₂=0 θ₃=1 θ₄=1 θ₅=5

θ₁=3 θ₂=0 θ₃=1 θ₄=1 θ₅=5

t=0

t=1

t=2



One Example with Spreading
θ₁=0 θ₂=1 θ₃=2 θ₄=3 θₙ₋₁=n-2

t=0

θₙ=n-1

......
θ₁=0 θ₂=1 θ₃=2 θ₄=3 θₙ₋₁=n-2

t=1

θₙ=n-1

......
θ₁=0 θ₂=1 θ₃=2 θ₄=3 θₙ₋₁=n-2

t=2

θₙ=n-1

......

θ₁=0 θ₂=1 θ₃=2 θ₄=3 θₙ₋₁=n-2

t=n

θₙ=n-1

......

......

n Agents
Uniform sequence of
thresholds with integer
values [0, n-1]
First agent activates, then
second, and so on
One agent joins per iteration
and all agents are active in
the end



One Example without Spreading
θ₁=0 θ₂=2 θ₃=2 θ₄=3 θₙ₋₁=n-2

t=0

θₙ=n-1

......
θ₁=0 θ₂=2 θ₃=2 θ₄=3 θₙ₋₁=n-2

t=1

θₙ=n-1

......
θ₁=0 θ₂=2 θ₃=2 θ₄=3 θₙ₋₁=n-2

t=2

θₙ=n-1

......

θ₁=0 θ₂=2 θ₃=2 θ₄=3 θₙ₋₁=n-2

t=n

θₙ=n-1

......

......

Same example as before
but agent with threshold 1
now has threshold 2
First agent activates and
simulation ends
Radically different outcome
for minimal change in
thresholds!
Deducing preference
distributions from collective
outcomes is risky



Gaussian AgentsIn a real group of people there will be
an average behavior with some
fluctuations (very violent or very
pacific people) 

Thresholds follow normal
distribution with mean μ and
standard deviation σ
we denote by xₑ the equilibrium
percentage of active agents
Number of agent is N=100
Mean value is constant μ=25
Sharp increase in xₑ at a critical σ
value: discontinuous or first order
phase transition
Diversity-induced collective
behavior
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xₑ

100

0

50

12.2

standard deviation
of thresholds σ



Analysis of
Granovetter's

Threshold Model



Granovetter‘s
Model as a Map
Granovetter’s threshold model is
just a map!

x(t) is the fraction of rioters at
time t
x(t+1) only depend on the
thresholds (fixed) and x(t)
the process is deterministic
we have to understand the
function that makes x(t)
evolve into x(t+1)

The evolution of the number of
rioters is

M(t+1)=N[θ≤M(t)]
where N[θ≤M(t)] is the number of
agents with threshold less than M(t).
We divide both size by the number of
agents n

x(t+1)=N[θ≤M(t)]/n≈P[θ≤M(t)]
P[θ≤M(t)] is the cumulative
probability of the thresholds. For
simplifying things we normalize the
thresholds Θ=θ/n and we obtain

x(t+1)≈P[Θ≤x(t)]



The cumulative probability P(x)
is the probability to extract a
number smaller than a given
value x. If p(x) is the probability
to extract a number x then

for discrete variables

for continuous variables

The figure shows the
cumulative of a gaussian

Cumulative 
Probability 



Equilibrium with μ=0.25 σ=0.10

the map has 3 equilibrium
points

x~0 stable
x~0.14 unstable
x=1 stable

since x(0)=0 the stable point
x=1 is never reached
around 0% of the agents
involved in the riot



Equilibrium with μ=0.25 σ=0.12

the map has 3 equilibrium
points

x~0.04 stable
x~0.14 unstable
x=1 stable

since x(0)=0 the stable point
x=1 is never reached
around 4% of the agents
involved in the riot



Equilibrium with μ=0.25 σ=0.13

the map now has only 1
equilibrium point

x=1 stable
starting from x(0)=0 the
system reaches the only
stable equilibrium point
100% of the agents involved in
the riot



Equilibrium with μ=0.25 σ=0.60

the map now has only 1
equilibrium point

x=0.83 stable
starting from x(0)=0 the
system reaches the only
stable equilibrium point
83% of the agents involved in
the riot
there is a decrease for large
variance



Take Home Messages
Modelling action as rational choice
Thresholds as points where benefits outweigh costs or risks
Diversity matters
Two populations with the same average threshold have very different behaviors even
if mean thresholds are the same
Tipping point or phase transition
Behavior changes dramatically at a narrow range of standard deviation of
thresholds
Size effects 
Small changes in threshold sequences can be important. When the population is
small, you have a probability of very different outcomes. Inferring the preferences
from the outcome is very hard and/or misleading



Bonus:
Can a Minority Win?



What is a Minority?

Minority groups are categories of people
differentiated from the social majority 

Often based on
ethnicity
religion
sexual orientation
gender

Not necessarily numerical
They face inequalities and discrimination
Play a critical role in social movements and
in initiating changes in societal norms



Salary Gap



Never Stop at the First Graph!



A stubborn minority is a minority that will never change
its habits, no matter what:

Jewish and Kosher food
Sexual habits 
Religion

When the majority has no interest in the specific matter,
a change in the social norms may occur.
The idea is that it is easier to have all Kosher beverages
than having to produce and distribute two different
products.

Stubborn
Minorities

The Most Intolerant Wins: The
Dictatorship of the Small Minority

Nassim Nicholas Taleb

https://medium.com/incerto/the-most-intolerant-wins-the-dictatorship-of-the-small-minority-3f1f83ce4e15
https://medium.com/incerto/the-most-intolerant-wins-the-dictatorship-of-the-small-minority-3f1f83ce4e15


Critical Mass
Theory
Apparently stable societal norms can
be effectively overturned by the efforts
of small but committed minorities. This
leads to the Critical Mass Theory

when a committed minority reaches
a critical group size the social
system crosses a tipping point
Once the tipping point is reached,
the actions of a minority group
trigger a cascade of behavior
change 



Modeling the Tipping Point

Agent Space Dynamics

A
A
B
C
A

M
em

ory M

Agents store the last M
names (or strategies)

they heard

Agents interact on a
fully connected

network (mean field)

A
A
B
C
A

A
B
B
A
C
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A
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The speaker communicates the
most common word in its

memory. The speaker records it.

We consider a model similar to the Naming Game



Committed Agents

A
A
B
A
A

A
B
B
A
B
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A
A
B
A
A

B

B
B
A
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H
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re
r A

We want to study if a committed minority can change social norms
we set the initial state with all memories full of the name A (consensus)
we introduce stubborn or committed agents
committed agents always communicate name B, independently how their
memory

d age



Simulation Results
The model show a tipping point for a fraction of committed agent around

20/30%. The exact tipping point depends on the memory length.



Testing the
Model

194 Participants divided into 10 independent
online groups
Procedure:
Participants randomly paired in rounds
within their groups to name a pictured
object 
The objective was to coordinate on the
same name with their partner

Successful coordination -> financial
reward
Failure -> financial penalty.

Goal and Incentives:
The aim was not to achieve a global
consensus but to coordinate successfully in
each pairwise interaction.

Over time a common name emerges!



Adding a Committed Minority

After establishing a convention among all participants, a small
number of confederates, termed as "committed minority," is
introduced into each group:

Their role was to challenge and attempt to change the established
naming convention by consistently using a novel alternative
(stubborn)
The size of the committed minority varied across the 10 groups,
designed to study the dynamics of how a critical mass can
influence social norms.
Minority sizes ranged from 15% to 35% of each group's population.



Results
When the committed minority overcomes a threshold, there is a shift of the

social norm



Tipping Point

The plot shows the aggregated
results from the 10 groups:

tipping point at 25%
sharp (first order) transition
a committed minority can
overturn a social norm
results similar to model



Take Home Messages
Committed Minority
A minority that will never conform to the social norm independently of the social
pressure of the majority
Social Tipping Points
A committed minority can  overturn a societal norm producing an abrupt transition
in the system. This occur in correspondence to a critical mass.
Modeling Tipping Points
We can include stubborn or committed agents in a simple agent based model.
Results show a norm transition when the minority size is around 25%.
Experimental Results
The Agent Based Model is replicated using human participant on an online platform.
Similar norm transitions are observed when the committed minority size is 25%.



Conclusions
Chaos and Randomness 
Chaos exists in deterministic systems, while randomness in nondeterministic ones.
Diversity Induced Collective Behavior 
Complex Systems show collective behavior that originates from the presence of
differences among the individuals.
Granovetter's Threshold Model
A model to describe the activation of individuals based on thresholds. Individual
differences have very relevant outcomes.
Analysis of Granovetter's Threshold Model
The model can be described as a map that shows a first order transition (tipping point)
when the variance of the thresholds distribution is increased.
Can a Minority Win?
A stubborn minority can generate an abrupt societal norm change when a critical mass
is reached. Model and experiment support this theory.



Quiz
Which of these is complex and which is complicated?

An airplane
The Internet
The Web
A deep neural network

Do you know any example of spreading?
For a given σ, does μ change the outcome in Granovetter's model?
Do you think there are minorities in Konstanz? Are they discriminated? 
Which are some examples of stubborn minorities?
Do you know any example of tipping point in society?
Which are the limits and strengths of the tipping point model?



Play Yourself to Understand!

Logistic Map
https://www.complexity-explorables.org/flongs/logistic/

https://www.complexity-explorables.org/flongs/logistic/

