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Recap
Opinion Dynamics 
Study of how opinions are formed and evolve in
a group of individuals
Voter Model
Model for binary (or discrete) opinions. Has a
strong tendency toward consensus.
Bounded Confidence
Model with continuous opinions. Agents do not
interact with very different peers.
Recommendation Algorithms
Opinion dynamics can be used to better
understand the downsides of recommendation
algorithms.
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The Paretian World



The Gaussian World
We are accustomed to think in
term of gaussians and average
values:

height 
weight 
speed 
performances

In the Gaussian world there are
no surprises:

a small sample is enough for
knowing everything 
the future is hardly surprising



The Paretian World
However many relevant
phenomena are characterized
by extreme events (Pareto
distribution):

financial crises
wars 
pandemics
natural disasters

The Paretian world is full of
surprises and strange properties:

a large sample is not enough
for knowing everything 
the future is surprising



Benford’s Law
Consider the first digit of the Swiss stock market, one would expect all the digits
be be equally common, but the 1 is much more common than the 9. This is the

same if we change currency in which we express the prices. The same
phenomenon is observed in many other datasets.



The 80-20 Rule or Pareto Principle
states that around 80% of the
resources are concentrated in 20%
of the actors in the system:

richest 20% people control
around 80% of the total wealth 
around 20% of patience incur
80% of total healthcare
expenses
in computing fixing 20% top
reported bugs eliminates 80%
of errors and crashes

80-20 Rule



Black Swans The Pareto world is characterized by
extreme events called Blacks Swans. A Black
Swan event:

is unpredictable and unexpected
has very relevant consequences, either
positive or negative
is often explained a posteriori 

Examples of Black Swans are 
WWI (caused way more casualties than
previous wars)
11/9 Terrorist attacks (caused way more
casualties than previous attacks)
Lionel Messi (scored way more goals in
LaLiga than previous record holder)



Understanding Power Laws is crucial since they are the standard in the
Paretian World

Gaussian distributions can not be applied to the Paretian World
Power Laws help us understand why extreme events occur 
They help us dealing with phenomena that are too large for our
minds to fully capture
They help us not underestimating small but non negligible
probabilities

Using Gaussians instead of Power Laws may is very risky 
2008 Financial Crisis
Covid-19 Pandemics
Ukraine War

Why ar﻿e Power Laws Important?



Power Law Probability
Distributions



Pareto or Power Law Distributions
Let us consider a series of events with sizes S₁, S₂ ... etc. 
We say that these event follow a Pareto or Power Law distribution if the
probability P(S) of observing an event with size S is of the form

In this expression
c is a normalization constant to ensure the probability to sum to one
α is the power law exponent or scaling exponent

The power law shows a much slower decay with respect to a Gaussian



Visualizing Power Laws
Given a set of sizes we can determine their distribution performing an

histogram. If the data follow a power law distribution the histogram will look
like a straight line using a double logarithmic scale. In order to obtain better

plots it is important to use logarithmic binning.

Normal Binning Logarithmic Binning



Linear Binning

Two histograms of the same distribution. The second one has log-
transformed x and y axes and the same bins. Bins are all of the same width in

linear scale, but appear different in log scale



Logarithmic Binning

Same log-log histogram but with logarithmic binning: the width of a bin is a
multiple of the one on the left. Bin heights are divided by their width. Bins now

look all the same in log scale.



Power Laws in Natural Systems

Power Law probability
distributions are
observed in countless
natural systems:

earthquakes
(Gutenberg–Richter
law)
species abundance
pandemics
solar flares

https://en.wikipedia.org/wiki/Gutenberg%E2%80%93Richter_law
https://en.wikipedia.org/wiki/Gutenberg%E2%80%93Richter_law


Power Laws in Social Systems

Also social systems
are dominated by
power laws:

stocks returns
wars and terrorist
attacks
people popularity
in social systems
wealth distribution



Scale-free Property
A Power Law probability distribution is of
the form

As a consequence if we multiply all sizes
by a constant factor K, the shape of the
distribution does not change

For this reason we say that power laws
are scale free. They have not a typical
scale like a Gaussian.



Truncated Power Laws
Most real life systems have intrinsic lower and upper limits:

a pandemic can’t kill less than one person and more than the world
population
a building can’t be less tall than a couple of meters 
an animal specie can’t have less than an individual

For this reason all power law distributions have a lower cutoff sₘᵢₙ and may also
have an upper cutoff sₘₐₓ. The expression for the probability becomes 



Diverging Moments
For α<2 the mean value of a power law is infinite, while for α<3 the variance is

infinite. We can see this by computing the mean value as function of the
sample size and gradually increasing the upper cutoff sₘₐₓ. For α=1.5 the

average keep growing every time we increase sₘₐₓ.



Additive Growth
In additive growth processes the size of an object
grows by the addition of single units to it. The object
may also decrease in size, but just of a single unit.

We can describe the process by a simple
stochastic equation (random walk)

Here
S(t) is the size at time t
η is a numerica constant
rₜ is a random variable 

In our case rₜ=±1 with prob 0.5

https://en.wiktionary.org/wiki/%CE%B7


Multiplicative Growth
In multiplicative growth processes the size of an
object grows (or decrease) in relative terms
(percentage). It can either double or halve its size.

We can describe the process by a simple
stochastic equation (logarithmic random walk)

If we take the logarithm of both sizes we get a
standard random walk for the variable y=log(S)



Growth Processes Distribution
While the additive growth process produces a Gaussian distribution of sizes, the

multiplicative growth process generates a log-normal distribution. It is not a
power law, but it is much more tailed than a Gaussian.

Gaussian (Normal) Lognormal



From Lognormals to Power Laws

Even if the multiplicative growth produces lognormals, it is sufficient to
slightly modify it to get power law distributions

adding heterogeneous ages
we start with just one element in the system
we add new elements following a poisson process

adding a reflecting barrier 
we make elements never get smaller than a given minimal size
(lower cutoff of the process)

Both these modifications result in an asymptotic power law
distribution of elements sizes.



Fragmentation Processes
Multiplicative growth can also describe fragmentation processes. In this case

there is no growth, but fragmentation, but the idea is similar. At each time step
the size of the object is multiplied by a random number (smaller than one).



Zipf’s Law and Heaps’
Law



Zipf’s Law
Power law distributions often manifest
under different forms. Zipf’s law is one of
the most know of these

we denote by S(k) the size of the k-th
largest element
S(1) is the size of the largest element
k is called the rank

The systems shows Zipf’s law if it holds

Some people call Zipf’s law only the
special case ɣ=1 and generalized Zipf’s
law the other exponents.



Examples of Zipf’s Law
Language

The system is a long book
The size S of a world is its
frequency in the book
S(1) is the frequency of the most
common word

Ex: English
“The” S(1)=6.5%1.
“Of” S(2)=2.8% 2.
“To” S(2)=2.4% 3.

Cities

The system is country
The size S of a city is its
population
S(1) is the population of the
largest city

Ex: Italy
“Roma” S(1)=2.6M1.
“Milano” S(2)=1.2M2.
“Napoli” S(2)=0.9M3.



The Rank-Size Plot
Zipf’s law is typically visualized
using the rank size plot:

first order the sizes from
the largest to the smallest
then plot the ordered sizes
vs their rank in the
sequence

Using a log-log scale the
rank-size plot is a straight line
if the system shows Zipf’s law.



Given a power law distribution with exponent α, then elements extracted from
this distribution follow Zipf’s law with exponent ɣ and it holds

Zipf‘s Law and Power Law Distributions



Zipf-Mandelbrot Law
Many systems show deviations from Zipf’s law
at low ranks. Largest objects are smaller than
they should be. This is described by Zipf-
Mandelbrot law

Q is the deviation parameter, the larger is Q the
large the deviations. Zipf-Mandelbrot law is
related to truncated power laws



Heaps’ Law
and Novelties

Most systems are non-stationary and
grow over time. Heaps’ Law describes how
the number of distinct elements in a
system grows as function of the system
size t

Here
t is the total system size

total urban population of a country
total number of words in a book

N(t) is the number of distinct element
number of cities in a country
number of distinct words in a book

Note that the growth can be at most linear.



Examples of Heaps‘ Law
Heaps’ Law is as ubiquitous as power law distributions and Zipf’s Law.

System size t
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Heaps‘ and
Zipf‘s Exponents Heaps’ and Zipf’s law are related.

In particular any system that
shows Zipf’s law stably over time
will also present Heaps’ law. 

The exponents of the two laws are
related by a simple equation

Note, however, that in finite
systems there are deviations from
this exact relation. 



Modelling the
Cryptocurrency Market



Cryptocurrencies

If you don't believe it or don't get it, I don't
have the time to try to convince you,

sorry. — Satoshi Nakamoto

The crypto market has experienced a huge
growth since the introduction of Bitcoin in 2008

more than 1 trillion euros of market cap
more than 20000 different cryptocurrencies
Institutional investors

Cryptocurrencies are no more just a curiosity



Power Laws in the Crypto Market
The crypto market shows both Heaps’ and Zipf’s law

Zipf’s Law: sizes are the market caps of cryptocurrencies.  ɣ=1.71
Heaps’ Law: relates the number of crypto to the total market cap. β=0.58



Forking a Crypto
The cryptocurrency ecosystem is
innovation driven. Technologies
introduced in a project are reused and
improved in new cryptocurrencies

Blockchain forking (Ethereum
Classic)
Software forking (Litecoin)
DeFi platforms (Ethereum)

Every time a new crypto is created, it
triggers the potential birth of novel

different cryptos.



Adjacent 
Possible

Already
Existing

Adjacent
Possible

By adjacent possible we mean all those
things that are not yet existing, but that
are just a step away from being realized

a novel technology combining two
existing technologies
a land not yet urbanized but close to
infrastructures

The idea is that whenever something
moves from the Adjacent Possible into
existence, the Adjacent Possible enlarges,
since the new “invention” facilitates the
occurrence of further novelties.



A Model for Cryptocurrencies
We combine a rich get richer mechanism with a triggering effect 

A unit of money is invested in a crypto selected with a probability
proportional to its market cap (a)
Whenever a crypto gets its first investment, ΔN new cryptocurrencies enter
the system (b)



The model is equivalente to the UMT and Heaps' and Zipf's exponent depend
on the adjacent possible size ΔN

The regime of the market is determined by the adjacent possible size
if ΔN<2 (each crypto generates less than two forks on average) then the
number of cryptos grows sub-linearly 
if ΔN>2 (each crypto generates more than two forks on average) then the
number of cryptos grows linearly

Analytical Results



Fitting the Model
Fitting the model to the data we can determine how many

cryptocurrencies are triggered. Since β=0.58 we get ΔN=1.58.



Forking Tree 
The Forking Tree of Bitcoin contains
all cryptocurrencies that originated
from Bitcoin and its derivative

the root of the tree is Bitcoin
each node of the three is a
cryptocurrency
each crypto il linked to all the
cryptos that where forked from it
(either code or blockchain) 



Testing the Model
We can test the model by measuring the size of the adjacent possible

we look at all coins ever listed on coinmarketcap.com 
these are the cryptos that got adopted and thus realized 
all the cryptos never listed represent the never realized adjacent
possible

we use the Bitcoin forking tree to measure the number of
cryptocurrencies that they originated 
this allows to measure the adjacent possible ΔN

From  the data we obtain ΔN=1.57, a value almost equal to the prediction
of our model ΔN=1.58.



Conclusions
The Paretian World
We generally think in terms of Gaussian distributions, but the world is
dominated by events that are poorly describe by the average.
Power Law Probability Distributions
Power law probability distributions are characterized by a much slower decay
with respect a Gaussian and they describe extreme events (wars, pandemics...)
Zipf’s Law and Heaps’ Law
Often power law distributions manifest in different shapes, Heaps’ and Zipf’s law
are among the most know statistical regularities deriving from power laws.
Modelling the Cryptocurrency Market
The crypto market shows both Heaps’ and Zipf’s law and can be modeled using
and adjacent possible based mechanism. Empirical data support this idea.



Quiz
What is an example of non-power law distributed data?
What is an example of power law distributed data?
Do you think a pandemic is a rare event? What about a war or an
earthquake?
Do you think that WWII was a Black Swan?
What is the rank 1 word for German?
What are some systems driven by the adjacent possible
mechanism?
What are the consequence of ZIpf’s law for the crypto market?
What are the limit of the model?


