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Recap
The Paretian World
Our world is dominated by extreme events
that are not described by gaussians.
Power Law Probability Distributions
Power Law probability distributions well
describe extreme events.
Zipf’s Law and Heaps’ Law
These two statistical regularities are different
manifestations of power laws and are
observed in most complex systems.
Modelling the Cryptocurrency Market
We can model innovation in the crypto market
using the adjacent possible idea.
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Networks Basics



What is a Network?

A Network or Graph G(V, E) is a set of vertices
or nodes V and and edges or links E

nodes represent entities in the system
(eg. people on a social network)
edges represent connections among the
nodes (eg. friendship in a social network)

We denote by
N the number of nodes 
E the number of links 

Vertex
or Node

Edge

or Link



Network Types
There are three main types of graphs

Undirected
Links are bidirectional

E.g. Facebook

Directed
Links are directional

E.g. Twitter

Weighted
Links are weighted
E.g. Road Network



Examples of Networks
Graphs are everywhere, many systems can be described using this formalism

Undirected
Friendship Networks

Directed
Citation Networks

Weighted
Molecules



The Adjacency Matrix
A network is mathematically represented by
its adjacency matrix A

it’s an NxN matrix 
the element Aᵢⱼ of the matrix is different
from zero if there is a link going from i to j

Aᵢⱼ=1 in unweighted graphs
Aᵢⱼ=wᵢⱼ in weighted graphs

if the graphs is undirected the adjacency
matrix is simmetric Aᵢⱼ=Aⱼᵢ
elements on the diagonal (self-loops) are
typically null Aᵢᵢ=0



Distance on a Network
A path on a network is a sequence of links
connecting a series of nodes

the length of a path is the number of links it
contains
the distance d(i,j) between two nodes i, j
defined as the length of the shortest path
connecting them

We can find the number of paths between two
nodes using the adjacency matrix

Aᵢⱼ gives the number of length 1 paths from i to j
(A²)ᵢⱼ gives the number of length 2 paths from i
to j
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Diameter of a Network
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D=4As we already explained a network is different from a
typical metrical space like a lattice. However also in
this case we can define the dimension or diameter of
a network

we take all possible paths between any pair of
nodes in the network
the diameter is defined as the largest of this path

Another useful measure is the average path length L



Degree Distribution
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We define the degree of a node as the
number of links this node has. In the case
of directed network node have 2 degrees

in-degree (number of incoming links) 
out-degree (number of outgoing links)

The degree kᵢ of node i can be computed
using the adjacency matrix as

Finally we denote by P(k) the degree
(probability) distribution, that gives the
probability of observing a giving degree. 



Clustering Coefficient
The clustering coefficient measures the
likelihood that the friends of a node are
also friends with each other

Local Clustering Coefficient: For a
single node, it is the ratio of the number
of actual connections between its
neighbors to the number of possible
connections between those neighbors.

Global Clustering Coefficient: it is the
average of the local clustering
coefficients of all nodes in the network. Lower Clustering



Centrality Measures
Centrality measures help identify the most
important nodes within a network, based on
various criteria.

Degree Centrality. Nodes with higher degree
centrality are more connected and can
quickly interact with many others.
Betweenness Centrality. Measures the
extent to which a node lies on the shortest
paths between other nodes.
Closeness Centrality. Measures how close a
node is to all other nodes in the network.

Each centrality measure captures a different
property, there is no right centrality!

High degree
centrality

High
Betweenness



The PageRank
PageRank is an algorithm used to measure the
importance of nodes within a network, originally
developed by Google to rank web pages in search
results. 

Basic Idea: Nodes with more incoming links
(especially from important nodes) have higher
PageRank values.
Recursive Nature: PageRank of a node is
influenced by the PageRank of nodes linking to it.

The PageRank is computed exploiting an iterative
algorithm

High
PageRank

Low
PageRank



Real World Networks



Networks are Everywhere!
Networks are very versatile and many
systems can be described using this
mathematical formalism. Some
examples include

internet 
online social networks
powerline networks
airline networks
food webs 

The idea is that whenever there are
“things” interacting or “talking” pairwise
we can always describe the system as
a network. 



Examples from the Social Domain
Many social systems spontaneously form networks

Project Manhattan
Collaboration Network

House of Commons MP
Twitter Network

Board of Directors
Network



Milgram’s Experiment
In 1967 Milgram measured the average  path
length in social networks

Participants: Randomly selected
individuals in Omaha, Nebraska
Task: Send a package to a stockbroker in
Boston 
Method: Each participant mailed a
packet to a friend they thought was
socially closer to the target. The process
was repeated until the packet reached
the stockbroker or the chain ended.

On average, 6 steps are needed to reach the
target.



The Small World Property
Milgram’s experiment shows that despite networks can
be huge, often the path connecting any two elements in
the network can be surprisingly short. This phenomenon
is often summarized by the popular notion of "six
degrees of separation". 

This property is mathematically expressed in terms of
the average path length L and it is called small world
property

Note that this is not true for lattices, for instance in D=2



High Clustering
Many real world networks are characterized by two apparently opposite properties:

high clustering C (nodes tend to form triangles)
small world (the average path length L is small)

These two properties are apparently in conflict since 
random networks have small L but also small C (no local structure)
lattices have high C, but also high L (too much local structure)



Scale-free Networks
Many real world networks are characterized by a power law distribution of degrees. We
call such graphs scale-free networks. In a scale-free network there are many nodes with

few connections, but also few nodes with an enormous number of links.



Research Questions

We saw that real world networks are characterized by 3 main properties, two
of them often being observed together. We want to understand what are the
factors and the mechanisms that are making these features emerge. In
particular:

how can we have both high clustering and the small world property?
which are the generative mechanisms producing these features?
how can we get a scale-free network from a simple model?
can we get realistic networks only using local mechanisms?



Network Formation
Models



The Watts-Strogatz Model
The Watts-Strogatz Model is one of
the most simple models

start with a ring with
connections only to near nodes
(on both sides)
rewire each link with
probability p

For p=0 we have a regular ring
network (similar to a lattice), while
for p=1 we have a random network.
What happens in between?



Properties of the Model
The Watts-Strogatz Model interpolates
between a regular graph and a random
graph. For intermediate values of p we
observe:

high clustering (inherited from the
initial regular graph)
low average path length (deriving
from the rewiring)

In practice the few random connection
we are adding make it much easier to
move around the network.



Triadic Closure Mechanism
The Watts-Strogatz Model reproduces real networks
properties, however it is not very realistic:

in real life we don’t know much about the full
network, we tend to link more with close people (i.e.
friends of friends)

We can achieve similar networks without relying on the
random rewiring. Instead we can perform a rewiring
based on triadic closure

the idea is that nodes having a “common friend” are
more likely to link 
we always start with a regular ring
we add new links with a probability that depends on
the number of shared friends



Propensity to Triadic Closure
The model works as it follows:

Start with a ring of n nodes
For each pair of nodes (in random
order):

Calculate number of shared friends
mᵢ,ⱼ
Calculate propensity to connect Rᵢ,ⱼ
based on mᵢ,ⱼ
Connect them with probability Rᵢ,ⱼ

p gives the probability to connect
even in absence of mutual friends
α sets the relevance of the common
friend mechanism



Properties of 
the Model
Similarly to the Watts-Strogatz Model, we
observe a sweet spot (in α) for which the
model produces networks with both low
path length and high clustering

this is much more realistic than the
Watts-Strogatz model
the rewiring process is based on local
characteristics of the network
the process resembles what we humans
tend to do in real life



The Barabasi-Albert Model

π=2/4=0.5

π=1/4=0.25 π=1/4=0.25

The other property of real networks we want to
explain is their power law degree distribution. The
Barabasi-Albert model is a simple network growth
process showing that scale-free networks can
emerge from a simple mechanism

we start with an initial network 
at each time step we add a new node
this new node links to m existing nodes
the linking probability πᵢ to link to node i is
proportional to the node’s degree

https://sarah37.github.io/barabasialbert/

https://sarah37.github.io/barabasialbert/


Scale-Free Degree Distribution
The Barabasi-Albert model generates
scale free networks

the power law exponent is
independent of 

the number of links m 
the initial network 

the model asymptotically
produces a degree distribution
with exponent -3

small modifications allow to get
any exponent >2



Rich-get-Richer Effect
In the Barabasi-Alber model, older nodes have an advantage over younger nodes. This is

called Rich-get-Richer effect (or cumulative advantage)



Necessary Conditions
What are the necessary ingredients
to get a scale-free networks? Are
both growth and (linear)
preferential attachment crucial?

without (linear) preferential
attachment we get random
networks (exponential degree
distribution)
without growth (no new nodes)
the distribution never reaches a
stationary state and peaks on a
specific value (depending on N)



The Vertex Copy Model
The Barabasi-Albert model is not very realistic:

in order to compute the linking probability we have
to know all degrees 
in most situation we can only observe a very limited
portion of a network

In the Vertex Copy model these limitations are
overcame by exploiting a more local mechanism

at each time step a new node is added
this node links to a random node (blue arrow)
it then copied all the connections of the node it has
linked to (red arrows)

In this way we only need to know the local structure
around a node.



Degree Distribution
The Vertex Copy model produces
directed networks. The relevant
property to look at is the in-degree
(incoming connections)

the out-degree distribution is peaked
the in-degree distribution is a power
law with exponent -2

This implies that it is possible to obtain
scale free networks even if only local
information is used. The edge copy
mechanism is creating a sort of proxy of
the linear preferential attachment.



Conclusions
Networks Basics
Many systems can be described in terms of networks. We introduced the main
properties of networks (degree, clustering, diameter, centrality measures).
Real World Networks
Real world networks are characterized by the small world property but also by a
high global clustering coefficient.
Network Formation Models
We saw that real networks’ properties can be obtained using simple and local
growth mechanisms.



Quiz

What are some networks that we use everyday? 
Do you have any real life example of the small world property? 
Is there any flaw in Milgram’s experiment?
Do you know any scale free network?
What are the implausible assumptions of the Watts-Strogatz model?
What about the Barabasi Albert model?
Which model better describes how an online social network work?


