

Emergence of **Bias** in DNN Predictions & Its Impact on **Trainability**

E. Francazi

Outline

- 1. Initial Guessing Bias
 - Theory: When and why does initial bias appear?
 - Application: How can we control initial bias?

- II. Relevance for Learning
 - Implications: How does initial bias influence trainability?

Bias In Supervised Learning

Bias: Model **predictions imbalanced** toward one of the classes

Predictive Behaviour Of Untrained Model

Neutrality

fractions of guesses (per class)

Deep Prejudice

fractions of guesses (per class)

Predictive Behaviour Of Untrained Model

From Single Instance To Distribution

Initial Guessing Bias (IGB)

Untrained model on cats and dogs. Pass the whole (**balanced**) dataset through it. Is the model **neutral** at initialization?

Initial Guessing Bias (IGB)

Untrained model on cats and dogs. Pass the whole (**balanced**) dataset through it. Is the model **neutral** at initialization?

EPFL eawas aquatic research 8000

Initial Guessing Bias (IGB)

Untrained model on cats and dogs. Pass the whole (**balanced**) dataset through it. Is the model **neutral** at initialization?

The answer depends on the model.

EPFL eawag aquatic research 8000

IGB: Setting & Methods

- Data: Dataset χ of random uncorrelated data (D datapoints)
- Model: Untrained with fixed weights ${\cal W}$
- Process:
 - Initialize DNN
 - Pass the whole dataset through the model (w/o changing weights)
 - Study p.d.f. of the outputs for the fixed set of weights $f_{O_c}^{(\chi)}(o)$
 - Study frequency of guesses

$$\lim_{D \to \infty} g_0(\mathcal{W}) = \mathbb{P}\left(O_0 > O_1 \mid \mathcal{W}\right)$$

Procedure

Distribution of outputs: $f_{O_c}^{(\chi)}(o) \xrightarrow{|\mathcal{W}| \to \infty} \mathcal{N}(o; \mu_c, \operatorname{Var}_{\chi}(O))$

Distribution of centers: $f_{\mu_c}(m) \xrightarrow{|\mathcal{W}| \to \infty} \mathcal{N}(m; 0, \operatorname{Var}_{\mathcal{W}}(\mu))$

Procedure

Distribution of outputs: $f_{O_c}^{(\chi)}(o) \xrightarrow{|\mathcal{W}| \to \infty} \mathcal{N}(o; \mu_c, \operatorname{Var}_{\chi}(O))$

Distribution of centers: $f_{\mu_c}(m) \xrightarrow{|\mathcal{W}| \to \infty} \mathcal{N}(m; 0, \operatorname{Var}_{\mathcal{W}}(\mu))$

Quantify the level of IGB:

$$\gamma = \frac{\operatorname{Var}_{\mathcal{W}}(\mu)}{\operatorname{Var}_{\chi}(O)}$$

U N I B A S E L

Procedure

Distribution of outputs: $f_{O_c}^{(\chi)}(o) \xrightarrow{|\mathcal{W}| \to \infty} \mathcal{N}(o; \mu_c, \operatorname{Var}_{\chi}(O))$

Distribution of centers: $f_{\mu_c}(m) \xrightarrow{|\mathcal{W}| \to \infty} \mathcal{N}(m; 0, \mathrm{Var}_{\mathcal{W}}(\mu))$

Quantify the level of IGB:

$$\gamma = \frac{\text{Var}_{\mathcal{W}}(\mu)}{\text{Var}_{\mathcal{V}}(O)}$$

eawas

Procedure

Distribution of outputs: $f_{O_c}^{(\chi)}(o) \xrightarrow{|\mathcal{W}| \to \infty} \mathcal{N}(o; \mu_c, \operatorname{Var}_{\chi}(O))$

Distribution of centers: $f_{\mu_c}(m) \xrightarrow{|\mathcal{W}| \to \infty} \mathcal{N}(m; 0, \operatorname{Var}_{\mathcal{W}}(\mu))$

Quantify the level of IGB:

$$\gamma = \frac{\text{Var}_{\mathcal{W}}(\mu)}{\text{Var}_{\chi}(O)}$$

- ReLU causes IGB, tanh does not
 - generic rule: activation has no IGB
 iff average over data of its output =0

When Does IGB Appear?

PFL eawas aquatic research 8000

- ReLU causes IGB, tanh does not
 - generic rule: activation has no IGB
 iff average over data of its output =0

• slightly modifying an activation function (e.g. by a shift) we can eliminate/trigger IGB

When Does IGB Appear?

PFL aquatic rese

- generic rule: activation has no IGB iff average over data of its output =0
- Max pooling causes and exacerbates IGB

Depth increases IGB

Real Settings

We Place Ourselves In A Setting Where The Effect Of IGB Is Minimal

Empirical On Real Data: Even Stronger IGB

IGB Appears Broad Range Of Architectures...

...Including
Pre-Trained Models

Grouping initializations by predictive behavior (neutral vs. prejudiced) reveals distinct training dynamics (left).

Impact On Dynamics: Preliminary

Grouping initializations by predictive behavior (neutral vs. prejudiced) reveals distinct training dynamics (left).

The average behavior across random initializations reflects a mixture of both regimes (right).

NEUTRAL INITIAL STATE

PREJUDICED INITIAL STATE

Insight Behind IGB

NEUTRAL INITIAL STATE

PREJUDICED INITIAL STATE

NEUTRAL INITIAL STATE

PREJUDICED INITIAL STATE

IGB And Normalization

IGB And Normalization

IGB And Normalization

Mean Field (MF) Approach

• IGB:

- Fix a random initialization
- Forward the entire dataset through it
- Key quantity G_0 : averaged over inputs, not weights

Mean Field (MF) Approach

• IGB:

- Fix a random initialization
- Forward the entire dataset through it
- Key quantity G_0 : averaged over inputs, not weights

• MF:

- Fix a pair of inputs
- Analyze how their correlation (MF key quantity) evolves across layers
- Correlation is computed over the ensemble of random initializations

Phase Diagrams

Propagation of sample "a" through an MLP

$$Y_i^{(l)}(a) = \sum_{j=1}^{N_l} W_{ij}^{(l)} \phi\left(Y_i^{(l-1)}(a)\right) + B_i^{(l)}$$

Propagation of sample "a" through an MLP

$$Y_i^{(l)}(a) = \sum_{j=1}^{N_l} W_{ij}^{(l)} \phi\left(Y_i^{(l-1)}(a)\right) + B_i^{(l)}$$

initialization:

DNN parameters
$$W_{ij}^{(l)} \sim \mathcal{N}\left(0, \frac{\sigma_w^2}{N_l}\right)$$
 initialization:

$$B_i^{(l)} \sim \mathcal{N}\left(0, \sigma_b^2\right)$$

Propagation of sample "a" through an MLP

$$Y_i^{(l)}(a) = \sum_{j=1}^{N_l} W_{ij}^{(l)} \phi\left(Y_i^{(l-1)}(a)\right) + B_i^{(l)}$$

$$\text{Correlation:} \quad c_{ab}^{(l)} = \frac{\mathbb{E}_{\mathcal{W}}\left(Y_i^{(l)}(a)Y_i^{(l)}(b)\right)}{\sqrt{\mathbb{E}_{\mathcal{W}}\left(\left(Y_i^{(l)}(a)\right)^2\right)\mathbb{E}_{\mathcal{W}}\left(\left(Y_i^{(l)}(b)\right)^2\right)}}$$

DNN parameters $W_{ij}^{(l)} \sim \mathcal{N}\left(0, \frac{\sigma_w^2}{N_l}\right)$ initialization: $B_i^{(l)} \sim \mathcal{N}\left(0, \sigma_b^2\right)$

Phase Diagrams

Propagation of sample "a" through an MLP

$$Y_i^{(l)}(a) = \sum_{j=1}^{N_l} W_{ij}^{(l)} \phi\left(Y_i^{(l-1)}(a)\right) + B_i^{(l)}$$

initialization:

DNN parameters
$$W_{ij}^{(l)} \sim \mathcal{N}\left(0, \frac{\sigma_w^2}{N_l}\right)$$
 initialization:
$$B_i^{(l)} \sim \mathcal{N}\left(0, \sigma_b^2\right)$$

$$\text{Correlation:} \quad c_{ab}^{(l)} = \frac{\mathbb{E}_{\mathcal{W}}\left(Y_i^{(l)}(a)Y_i^{(l)}(b)\right)}{\sqrt{\mathbb{E}_{\mathcal{W}}\left(\left(Y_i^{(l)}(a)\right)^2\right)\mathbb{E}_{\mathcal{W}}\left(\left(Y_i^{(l)}(b)\right)^2\right)}}$$

Control parameters: (σ_w^2, σ_b^2)

Order parameter: $\lim_{l\to\infty} c_{ab}^{(l)} = c$

Phase Diagrams

Propagation of sample "a" through an MLP

$$Y_i^{(l)}(a) = \sum_{j=1}^{N_l} W_{ij}^{(l)} \phi\left(Y_i^{(l-1)}(a)\right) + B_i^{(l)}$$

DNN parameters initialization:

$$W_{ij}^{(l)} \sim \mathcal{N}\left(0, \frac{\sigma_w^2}{N_l}\right)$$
 $B_i^{(l)} \sim \mathcal{N}\left(0, \sigma_b^2\right)$

Control parameters: (σ_w^2, σ_b^2)

Order parameter: $\lim_{l\to\infty} c_{ab}^{(l)} = c$

Ordered phase: c = 1 is stable

Chaotic phase: c=1 is unstable; converges to c<1

Gradient Behavior Across Phases

The two phases correspond to distinct gradient behaviors:

Ordered phase: Vanishing gradients backward decay leads to persistence of the initial state.

Chaotic phase: Exploding gradients backward amplification causes **instability**.

Edge of Chaos: Stable gradients enables **effective training**.

Gradient Behavior Across Phases

The two phases correspond to distinct gradient behaviors:

Ordered phase: Vanishing gradients backward decay leads to persistence of the initial state.

Chaotic phase: Exploding gradients backward amplification causes **instability**.

Edge of Chaos: Stable gradients enables effective training.

Gradient Behavior Across Phases

The two phases correspond to distinct gradient behaviors:

Ordered phase: Vanishing gradients backward decay leads to persistence of the initial state.

Chaotic phase: Exploding gradients backward amplification causes instability.

Edge of Chaos: Stable gradients enables effective training.

IGB (Initial Guessing Bias)

Captures how architecture design shapes initial prediction:

→ Neutral vs. Prejudiced behavior

Measured by γ :

• $\gamma \gg 1$: deep prejudice

• $\gamma \ll 1$: neutrality

MF (Mean Field Theory)

Captures how hyperparameter choices shape trainability:

→ Ordered vs. Chaotic phases

Described by correlation fixed point c:

- c=1: ordered phase / edge of chaos
- c < 1: chaotic phase

Connecting IGB And MF Frameworks

Link between key quantities:

$$c = \frac{\gamma}{1 + \gamma}$$

Connecting IGB And MF Frameworks

Link between key quantities:

$$c = \frac{\gamma}{1 + \gamma}$$

Reveals interplay between design and hyperparameters

Connecting IGB And MF Frameworks

UNI BASEL

Link between key quantities:

$$c = \frac{\gamma}{1 + \gamma}$$

Reveals interplay between design and hyperparameters

Connects initial bias (IGB) with trainability regimes (MF)

Initial Prejudice And Trainability

$$c = \frac{\gamma}{1 + \gamma}$$

Edge of chaos
$$(c=1) \Rightarrow \gamma = \infty$$

Trainability peaks not at neutrality, but at deep prejudice.

eawas aquatic research 8 000

Class Imbalance

arXiv:2207.00391 - ICML 2023

Initial Guessing Bias

arXiv:2306.00809 - ICML 2024

Class Imbalance

arXiv:2207.00391 - ICML 2023

Initial Guessing Bias

arXiv:2306.00809 - ICML 2024

Class Imbalance

arXiv:2207.00391 - ICML 2023

Initial Guessing Bias

arXiv:2306.00809 - ICML 2024

Summary & Open Questions

How a network is built determines how it starts to guess and how it learns.

Future Directions:

- Dynamics Theory
- Interplay between dataset and model effects
- Interplay between IGB and Class Imbalance

Main References:

- Initial Guessing Bias— arXiv:2306.00809 (ICML 2024)
- Bias and Normalization arXiv:2505.11312 (under review)
- Bias and Trainability arXiv:2505.12096 (under review)

Summary & Open Questions

How a network is built determines how it starts to guess and how it learns.

Future Directions:

- Dynamics Theory
- Interplay between dataset and model effects
- Interplay between IGB and Class Imbalance

Main References:

- Initial Guessing Bias— arXiv:2306.00809 (ICML 2024)
- Bias and Normalization arXiv:2505.11312 (under review)
- Bias and Trainability arXiv:2505.12096 (under review)

Thanks!