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An apology first

This collection of slides is mostly composed by 
screenshots taken on various blog posts and papers 
which I found very useful to prepare this lecture 
(you can find all the reference links during the 
slides). 

I’m sorry but they were just too good !



Why interpretability ?



Why “mechanistic” interpretability

In 2020 a group of researchers from OpenAI leaded by 
Christopher Olah, introduced the idea of 
“reverse-engineering” the computational mechanisms 
(which they call circuits) and representations of a neural 
network. This became known as mechanistic 
interpretability and largely grow outside the mainstream 
literature (Anthropic, lesswrong, distill,...) as a reaction to 
xAI, which was mainly based on attribution maps.

https://scholar.google.com/citations?user=6dskOSUAAAAJ&hl=it&oi=ao
https://www.anthropic.com/
https://www.lesswrong.com/
https://distill.pub/2020/circuits/


First glance at circuits Zoom In: An Introduction to Circuits

https://distill.pub/2020/circuits/zoom-in/
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Features

● Features are used by NN as building blocks, aiming to 
capture concepts underlying the data

● MI aims to uncover the actual representation learned by 
complex models even if these diverge from human 
concepts

Mechanistic Interpretability for AI safety

https://arxiv.org/html/2404.14082v1


Nature of features
● Within a neural network representation h \in R^n, the n 

basis directions are called neurons

● For a neuron to be meaningful, the basis directions must 
functionally differ from other directions, in the 
representation, forming a privileged basis



Monosemantic and polysemantic neurons

● A neuron corresponding to a single semantic concept is 
called monosemantic

● In models like transformers, neurons are often observed 
to be polysemantic (associated with multiple unrelated 
concepts)



Superposition

● NN may simulate computation with more neurons than 
they posses by allocating each feature to a linear 
combination of neurons, creating an overcomplete linear 
basis in the representation space.

● Features are encoded almost in orthogonal directions 
(they don’t interfere each other)



Superposition



If not neurons, what are features then?

● Prevalence of linear layers in modern NN architectures.

● Empirical evidence largely supports the linear representation 
hypothesis in many contexts (dictionary learning, activation 
steering, refusal, linear probing, representation engineering)

● Building on this linear representation hypothesis, recent 
works investigated the structural organization of these linear 
features within the representation space (Park et al (2023), 
Park et al. (2024))

https://www.anthropic.com/news/towards-monosemanticity-decomposing-language-models-with-dictionary-learning
https://openreview.net/forum?id=MRu3nZhoZP
https://openreview.net/forum?id=MRu3nZhoZP
https://arxiv.org/abs/2406.11717
https://arxiv.org/abs/2102.12452
https://arxiv.org/abs/2310.01405
https://arxiv.org/abs/2311.03658
https://arxiv.org/abs/2406.01506


Circuits as computational primitives



Mathematical framework
A core idea was a simple reformulation of the transformer 
model, showing that all operations can be understood as 
summing values over the original tokens.
1. Residual stream: the embedding of the token. Each 

head in the transformer “reads” and “writes” over this 
stream to perform computations.

2. Because of linearity, virtual weights can be created to 
represent connections between far-away layers.

3. Manually reading these weights allows the discovery of 
interesting circuits, such as induction heads.

A Mathematical Framework for 
Transformer Circuits

https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
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Induction heads

For simple models, circuits end up being trivial, replicating 
either bigram statistics or copying mechanism.

The most interesting finding was the formalization of 
induction heads in larger models, simple circuits that 
perform a mapping:

[x] [y] … [x] -> [y]

i.e., looking for previous iterations of the current token and 
copying the corresponding next-token in output.



Induction heads



Induction heads

Successive work by the same team showed that induction 
heads might be fundamental for in-context learning, i.e., 
the capability of LLMs to solve tasks by generalizing from 
prompt examples.
Importantly, these ideas can be tested (among others) by 
simple ablations where the circuits are disabled at 
inference time to record the change in behaviour.



Core methods

Basically two types of tools:

1. Observation: 
a. Probes
b. Logit lens
c. Sparse autoencoders

 2.   Intervention:
a. Activation patching
b. Attribution patching



Probes

Probing involves training a classifier using the 
activations of a model and observe the performance of 
this classifier to deduce insights about model’s behavior 
and internal representations.

Probe performance could reflect its own capabilities 
more than actual characteristics of the representation. 
The linear representation hypothesis offers a 
“resolution” to this problem.



gemma-2-9b-it (probe accuracy)



Llama-3.1-8B-instruct (probe accuracy)



Logit lens

The core idea behind this method is to apply the model’s 
output layer (unembedding matrix) to the hidden states at 
each layer of the Transformer

This Allow us to catch how model’s internal  representations 
change as the input progresses through the network

https://alessiodevoto.github.io/LogitLens/

https://alessiodevoto.github.io/LogitLens/


Logit lens
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Sparse autoencoder
We stated that neurons are hopelessly polysemantic 
(“superposition hypothesis”), so there’s the need for bigger 
and sparser building blocks in order to interpret features.
A sparse autoencoder model, learns a sparse 
decomposition of the activation



Sparse autoencoder

Sparse autoencoders can be trained in 
an unsupervised way from a collection 
of activations of the model.



Sparse autoencoder


