Mechanistic
Interpretability:
an overview.

Presenter. Simone Petruzzi

About me

e Bachelor’s Degree in Engineering in Computer Science (2021),
Sapienza University of Rome

e Master’s Degree in Engineering in Computer Science (2024),
Sapienza University of Rome

e PhD in Data Science (2024-2027)

Sapienza University of Rome

An apology first

This collection of slides is mostly composed by
screenshots taken on various blog posts and papers
which | found very useful to prepare this lecture

(you can find all the reference links during the
slides).

I'm sorry but they were just too good !

Why interpretability ?

[t]:{},e=0bject |

. e . (r) } er (fUr‘(“thr\(:‘k‘
WM in e0bject. de ,Cp{,,*y(ein

Mult 8, u=uisy

,1‘va1ue:1,enumerable
NProperty("default")u. default:y

unction(’{ﬂ— e}) setTin I (ﬂln‘tjo'()1{n
on " "‘"'(.thv-(leG Math.r)),document.
*“D;if(le] | 9" = e){var n=t.getAttribu '(‘href)

nDurationf

Why “mechanistic” interpretability

In 2020 a group of researchers from OpenAl leaded by
Christopher Olah, introduced the idea of
“reverse-engineering” the computational mechanisms
(which they call circuits) and representations of a neural
network. This became known as mechanistic
interpretability and largely grow outside the mainstream
literature (Anthropic, lesswrong, distill,...) as a reaction to
XAl, which was mainly based on attribution maps.

https://scholar.google.com/citations?user=6dskOSUAAAAJ&hl=it&oi=ao
https://www.anthropic.com/
https://www.lesswrong.com/
https://distill.pub/2020/circuits/

Fi rst g Ia nce at Ci rcu its Zoom In: An Introduction to Circuits

® positive (excitation)
@ negative (inhibition)

Windows (4b:237)
excite the car detector
at the top and inhibit
at the bottom.

Car Body (4b:491)
excites the car
detector, especially at
the bottom.

Wheels (4b:373) excite

the car detector at the A car detector (4c:447)
bottom and inhibit at is assembled from
the top. earlier units.

https://distill.pub/2020/circuits/zoom-in/

Fi rst g Ia nce at Ci rcu its Zoom In: An Introduction to Circuits

THREE SPECULATIVE CLAIMS ABOUT NEURAL NETWORKS

Claim 1: Features

Features are the fundamental unit of neural networks.

They correspond to directions. ' These features can be rigorously
studied and understood.

Claim 2: Circuits
Features are connected by weights, forming circuits.
These circuits can also be rigorously studied and understood.

Claim 3: Universality

Analogous features and circuits form across models and tasks.

Left: An activation atlas [13] visualizing part of the space neural network features can
represent.

https://distill.pub/2020/circuits/zoom-in/

Feat u res Mechanistic Interpretability for Al safety

Definition 1: Feature

Features are the fundamental units of neural network representations that cannot be further decom-
posed into simpler independent factors.

e Features are used by NN as building blocks, aiming to
capture concepts underlying the data

e Ml aimsto uncover the actual representation learned by
complex models even if these diverge from human

concepts

https://arxiv.org/html/2404.14082v1

Nature of features

e Within a neural network representation h \in RAn, the n
basis directions are called neurons

e [or a neuron to be meaningful, the basis directions must
functionally differ from other directions, in the
representation, forming a privileged basis

Privileged Privileged Non-Privileged Non-privileged
% """ " % S % N % >
monosemantic neurons: (" @ @ polysemantic neurons: @ ® @ @ ¢

Monosemantic and polysemantic neurons

e A neuron corresponding to a single semantic concept is
called monosemantic

e |In models like transformers, neurons are often observed

to be polysemantic (associated with multiple unrelated
concepts)

Superposition

Neural networks represent more features than they have neurons by encoding features in overlapping
combinations of neurons.

e NN may simulate computation with more neurons than
they posses by allocating each feature to a linear
combination of neurons, creating an overcomplete linear
basis in the representation space.

e F[eatures are encoded almost in orthogonal directions
(they don't interfere each other)

Superposition

Neural networks represent more features than they have neurons by encoding features in overlapping
combinations of neurons.

Observed model Hypothetical disentangled model

If not neurons, what are features then?

Features are directions in activation space, i.e., linear combinations of neurons.

e Prevalence of linear layers in modern NN architectures.

e Empirical evidence largely supports the linear representation
hypothesis in many contexts (dictionary learning, activation
steering, refusal, linear probing, representation engineering)

e Building on this linear representation hypothesis, recent
works investigated the structural organization of these linear
features within the representation space (Park et al (2023),

Park et al. ‘2024“

https://www.anthropic.com/news/towards-monosemanticity-decomposing-language-models-with-dictionary-learning
https://openreview.net/forum?id=MRu3nZhoZP
https://openreview.net/forum?id=MRu3nZhoZP
https://arxiv.org/abs/2406.11717
https://arxiv.org/abs/2102.12452
https://arxiv.org/abs/2310.01405
https://arxiv.org/abs/2311.03658
https://arxiv.org/abs/2406.01506

Circuits as computational primitives

Definition 3: Circuit

Circuits are sub-graphs of the network, consisting of features and the weights connecting them.

Observed Hypothetical
models trained disentangled
on similar task models
and data Features

a)

Neurons

A Mathematical Framework for

Mathematical framework Transformer Circuits

A core idea was a simple reformulation of the transformer
model, showing that all operations can be understood as
summing values over the original tokens.

1. Residual stream: the embedding of the token. Each
head in the transformer “reads” and “writes” over this
stream to perform computations.

2. Because of linearity, virtual weights can be created to
represent connections between far-away layers.

3. Manually reading these weights allows the discovery of
interesting circuits, such as induction heads.

https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html

Mathematical framework

logits

T

unembed

A T_q

#é Zit2

MLP ™M
t
([[@z
ho||hi|]|..
S S S
$Z0
embed
t

A Mathematical Framework for
Transformer Circuits

The final logits are produced by applying the unembedding.

T(t) — WU$_1

An MLP layer, m, is run and added to the residual stream. O”?
residual

B = Sy ~+ Tal@y) block

Each attention head, h, is run and added to the residual stream.

Lit1 — &y -+ ZhEH~h(wi)

Token embedding.
Lo — WEt

https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html

A Mathematical Framework for

Mathematical framework Transformer Circuits

residual stream residual stream
The residual Layers can interact by
stream is high writing to and reading Layers can delete
dimensional, from the same or information from
and can be overlapping the residual
divided into

subspaces. If they stream by reading
in a subspace and

write to and read from
then writing the

disjoint subspaces, ,
they won't interact. negative verison.
Typically the spaces

only partially overlap.

subspace

different

/
subspaces. \

| AR

token A token B
residual stream residual stream

>

Attention heads copy information from the residual stream of
one token to the residual stream of another. They typically write
to a different subspace than they read from.

o

https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html

Induction heads

For simple models, circuits end up being trivial, replicating
either bigram statistics or copying mechanism.

The most interesting finding was the formalization of
induction heads in larger models, simple circuits that
perform a mapping:

X Iyl [X]-> 1yl

l.e., looking for previous iterations of the current token and
copying the corresponding next-token in output.

Induction heads

Mr and Mrs Dursley, of .. such nonsense. Mr Dursley was the Figsentioxen

Mr and Mrs Dursley, of ... such nonsense. Mr Dursley was the B Attention

Mr and Mrs Dursley, of ... such nonsense. Mr Dursley was the B Logit Effect

Mr and Mrs Dlilley, of ... such nonsense. Mr Dililley was the

Mr and Mrs Dursi, of .. such nonsense. Mr D%‘ was the

Mr and Mrs Dursley, of ... such nonsense. Mr Dursley was the

Mr and Mrs Dursley, of ... such nonsense. Mr Dursley was the

the Potters. Mrs ... the Potters arrived ... the Potters had ... keeping the Potters away; they
the Potters. Mrs ... the Potters arrived ... the Potters had .. keeping the Potilil§ away; they
the Potters. Mrs ... the Potters arrived ... the Potters had .. keeping the Potters away; they
the Potters. Mrs ... the Potters arrived ... the Potters had .. keeping the Potters away; they
the Potters. Mrs ... the Potters arrived ... the Potters had .. keeping the Potters away; they

Induction heads

Successive work by the same team showed that induction
heads might be fundamental for in-context learning, i.c.,

the capability of LLMs to solve tasks by generalizing from
prompt examples.

Importantly, these ideas can be tested (among others) by
simple ablations where the circuits are disabled at
inference time to record the change in behaviour.

Core methods

Basically two types of tools:

1. Observation:
a. Probes
b. Logitlens
c. Sparse autoencoders

2. Intervention:

a. Activation patching
b. Attribution patching

Probes

Probing involves training a classifier using the
activations of a model and observe the performance of
this classifier to deduce insights about model’'s behavior
and internal representations.

Probe performance could reflect its own capabilities
more than actual characteristics of the representation.
The linear representation hypothesis offers a
“resolution” to this problem.

gemma-2-9b-it (probe accuracy)

test_accuracy
gemma-2-9b-it_attention gemma-2-9b-it_mlp

0.85
0.8
0.75

0.7

Step

Llama-3.1-8B-instruct (probe accuracy)

test_accuracy
= Llama-3.1-8B-Instruct_hidden = Llama-3.1-8B-Instruct_attention = Llama-3.1-8B-Instruct_mlp

0.8

0.7

Step

30

<

° https://alessiodevoto.qgithub.io/lL ogitLens/
Logit lens

The core idea behind this method is to apply the model’s

output layer (unembedding matrix) to the hidden states at
each layer of the Transformer

This Allow us to catch how model’s internal representations
change as the input progresses through the network

https://alessiodevoto.github.io/LogitLens/

Logit lens

example = "The quick brown fox jumps over the lazy"

inputs = tokenizer(example, return tensors="pt").to(device)

['<bos>', 'The', ' quick', ' brown', TOX jumps', over', ' the', ' lazy']

with torch.no grad():

outputs = model(**inputs, output hidden states=True)

Logit lens

for i, hidden state in enumerate(hidden states):
apply the language model head to the hidden states
logits = model.lm head(hidden state)

decode the logits to get the predicted token ids

predicted token ids = logits.argmax(-1)
convert the token ids to tokens
predicted tokens tokenizer.convert ids to tokens(predicted token ids[0]

predicted tokens cleanup tokens(predicted tokens)

append the predicted tokens to the list for later
logitlens.append(predicted tokens)

print(f"Layer {i}: {predicted tokens}"

Logit lens

p-4 (¢ ory brown fox jumps over the lazy dog
IS c first brown C jumps over the lazy dog
Q ¢C first brown s es over the lazy dog
© import first brown fox es over the lazy dog
© import ory brown fox es into lazy entire poor
= ality ory brown ph es into obstacles entire poor

iveness oret brown fox es into obstacles entire poor

Model Layers
12

=) iveness orem ness obstacles entire poor
© iveness e ind entire

© realise i kill

- realise i worked entire

o~ import i time

o

<bos> The quick brown fox jumps over the lazy
Innit Takanc

Sparse autoencoder

We stated that neurons are hopelessly polysemantic
(“superposition hypothesis’), so there's the need for bigger
and sparser building blocks in order to interpret features.
A sparse autoencoder model, learns a sparse
decomposition of the activation

L(zx) = |l — SAE(z)]; + A lla(=)ll,
N— — \S—— p—

Lreconstruction L sparsity

Sparse autoencoder

logits
unembed Our goal is to decompose the MLP activations
with a sparse, overcomplete autoencoder.
v
-
?
MLP (RelLU)
h }'2 Sparse autoencoders can be trained In
an unsupervised way from a collection
e of activations of the model.
tokens

Sparse autoencoder

Original Model Activations SAE ﬁivations
_ l Matrix
Matrix Multiply
Multiply Decoder Matrix

Encoder Matrix

Reconstructed Activations

