
Mechanistic
Interpretability:

an overview.

Presenter: Simone Petruzzi

About me

● Master’s Degree in Engineering in Computer Science (2024),

● Bachelor’s Degree in Engineering in Computer Science (2021),
Sapienza University of Rome

Sapienza University of Rome

● PhD in Data Science (2024-2027)
Sapienza University of Rome

An apology first

This collection of slides is mostly composed by
screenshots taken on various blog posts and papers
which I found very useful to prepare this lecture
(you can find all the reference links during the
slides).

I’m sorry but they were just too good !

Why interpretability ?

Why “mechanistic” interpretability

In 2020 a group of researchers from OpenAI leaded by
Christopher Olah, introduced the idea of
“reverse-engineering” the computational mechanisms
(which they call circuits) and representations of a neural
network. This became known as mechanistic
interpretability and largely grow outside the mainstream
literature (Anthropic, lesswrong, distill,...) as a reaction to
xAI, which was mainly based on attribution maps.

https://scholar.google.com/citations?user=6dskOSUAAAAJ&hl=it&oi=ao
https://www.anthropic.com/
https://www.lesswrong.com/
https://distill.pub/2020/circuits/

First glance at circuits Zoom In: An Introduction to Circuits

https://distill.pub/2020/circuits/zoom-in/

First glance at circuits Zoom In: An Introduction to Circuits

https://distill.pub/2020/circuits/zoom-in/

Features

● Features are used by NN as building blocks, aiming to
capture concepts underlying the data

● MI aims to uncover the actual representation learned by
complex models even if these diverge from human
concepts

Mechanistic Interpretability for AI safety

https://arxiv.org/html/2404.14082v1

Nature of features
● Within a neural network representation h \in R^n, the n

basis directions are called neurons

● For a neuron to be meaningful, the basis directions must
functionally differ from other directions, in the
representation, forming a privileged basis

Monosemantic and polysemantic neurons

● A neuron corresponding to a single semantic concept is
called monosemantic

● In models like transformers, neurons are often observed
to be polysemantic (associated with multiple unrelated
concepts)

Superposition

● NN may simulate computation with more neurons than
they posses by allocating each feature to a linear
combination of neurons, creating an overcomplete linear
basis in the representation space.

● Features are encoded almost in orthogonal directions
(they don’t interfere each other)

Superposition

If not neurons, what are features then?

● Prevalence of linear layers in modern NN architectures.

● Empirical evidence largely supports the linear representation
hypothesis in many contexts (dictionary learning, activation
steering, refusal, linear probing, representation engineering)

● Building on this linear representation hypothesis, recent
works investigated the structural organization of these linear
features within the representation space (Park et al (2023),
Park et al. (2024))

https://www.anthropic.com/news/towards-monosemanticity-decomposing-language-models-with-dictionary-learning
https://openreview.net/forum?id=MRu3nZhoZP
https://openreview.net/forum?id=MRu3nZhoZP
https://arxiv.org/abs/2406.11717
https://arxiv.org/abs/2102.12452
https://arxiv.org/abs/2310.01405
https://arxiv.org/abs/2311.03658
https://arxiv.org/abs/2406.01506

Circuits as computational primitives

Mathematical framework
A core idea was a simple reformulation of the transformer
model, showing that all operations can be understood as
summing values over the original tokens.
1. Residual stream: the embedding of the token. Each

head in the transformer “reads” and “writes” over this
stream to perform computations.

2. Because of linearity, virtual weights can be created to
represent connections between far-away layers.

3. Manually reading these weights allows the discovery of
interesting circuits, such as induction heads.

A Mathematical Framework for
Transformer Circuits

https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html

Mathematical framework A Mathematical Framework for
Transformer Circuits

https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html

Mathematical framework A Mathematical Framework for
Transformer Circuits

https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html

Induction heads

For simple models, circuits end up being trivial, replicating
either bigram statistics or copying mechanism.

The most interesting finding was the formalization of
induction heads in larger models, simple circuits that
perform a mapping:

[x] [y] … [x] -> [y]

i.e., looking for previous iterations of the current token and
copying the corresponding next-token in output.

Induction heads

Induction heads

Successive work by the same team showed that induction
heads might be fundamental for in-context learning, i.e.,
the capability of LLMs to solve tasks by generalizing from
prompt examples.
Importantly, these ideas can be tested (among others) by
simple ablations where the circuits are disabled at
inference time to record the change in behaviour.

Core methods

Basically two types of tools:

1. Observation:
a. Probes
b. Logit lens
c. Sparse autoencoders

 2. Intervention:
a. Activation patching
b. Attribution patching

Probes

Probing involves training a classifier using the
activations of a model and observe the performance of
this classifier to deduce insights about model’s behavior
and internal representations.

Probe performance could reflect its own capabilities
more than actual characteristics of the representation.
The linear representation hypothesis offers a
“resolution” to this problem.

gemma-2-9b-it (probe accuracy)

Llama-3.1-8B-instruct (probe accuracy)

Logit lens

The core idea behind this method is to apply the model’s
output layer (unembedding matrix) to the hidden states at
each layer of the Transformer

This Allow us to catch how model’s internal representations
change as the input progresses through the network

https://alessiodevoto.github.io/LogitLens/

https://alessiodevoto.github.io/LogitLens/

Logit lens

Logit lens

Logit lens

Sparse autoencoder
We stated that neurons are hopelessly polysemantic
(“superposition hypothesis”), so there’s the need for bigger
and sparser building blocks in order to interpret features.
A sparse autoencoder model, learns a sparse
decomposition of the activation

Sparse autoencoder

Sparse autoencoders can be trained in
an unsupervised way from a collection
of activations of the model.

Sparse autoencoder

