
Course Evaluation

Please scan the QR code and fill the form!

11 | Reinforcement Learning

Giordano De Marzo

https://giordano-demarzo.github.io/

Deep Learning for the Social Sciences

Fine Tuning LLMs

Fine tuning LLMs involves adjusting a pre-trained

model on a smaller, task-specific dataset to improve

performance on that task.

Fine tuning customizes a pre-trained model to

better handle specific tasks.

It requires substantial computational resources,

expect around 16Gb of memory for 1B

parameters

Parameter-Efficient Fine Tuning instead

updates only a small subset of the model’s

parameters while keeping the majority frozen.

LoRA Fine Tuning

LoRA (Low-Rank Adaptation) fine tuning is a

parameter-efficient fine-tuning method

Instead of fine-tuning the entire weight matrix W,

LoRA adds low-rank matrices A and B that when

multiplied have the same dimension of W.

The new model is then defined by the matrix

W’=W+AxB

By only fine-tuning the small matrices A and B,

LoRA drastically reduces requirements

LoRA fine tuning can be easily integrated into

existing models without requiring substantial

modifications.

Outline

1.A New Learning Paradigm

2.Reinforcement Learning

3.Q-Learning and Policy Gradient

4.Applications

A New Learning Paradigm

Supervised vs Unsupervised Learning

Up to now we mostly consider supervised deep

learning models:

MLP for classification and regression

CNN for classification

GNN for classification

We only considered one architecture that performs

unsupervised learning, the Autoencoder.

We also saw how LLMs can be trained in a self-

supervised way without requiring labelled datasets

Limits of (Un)Supervised Learning

When we introduced Generative Deep Learning we discussed some of the limits of

traditional learning paradigms

supervised learning need a lot of labelled data

with unsupervised learning we can’t train the model to perform a specific task

both frameworks are based on offline training, they struggle with new data or

scenarios

supervised learning rely on humans, how can we train a model better than

humans?

All these problems are solved by Reinforcement Learning (RL). It combines the

benefits of the two approaches.

Reinforcement Learning

Reinforcement Learning (RL) is in-between

supervised and unsupervised learning:

The agent begins with little to no knowledge of

the environment

Agents learn to make decisions by interacting

with a dynamic environment

The goal is learning a strategy to perform

actions that result in the highest long-term

rewards

Humans only need to set the environment and

the rewards, then the agent learns autonomously

Strengths of Reinforcement Learning

Beyond Supervision

RL learns optimal behaviors through trial and error directly from raw experience without

needing pre-labeled data. This capability is critical in environments where prior knowledge is

limited or the solution space is complex.

Decision Making

RL excels in scenarios requiring a series of decisions, where each choice impacts future

outcomes, making it ideal for strategic planning and operations management.

Adaptability

An RL agent can adapt to changes in an unpredictable environment in real-time, continually

updating its strategy based on new experiences. This adaptability is essential for applications

such as dynamic pricing or autonomous driving.

Reinforcement Learning

Reinforcement Learning Framework

The RL framework is structured around a set of key

elements:

State: The representation of the environment at

any given time.

Action: A set of possible moves the agent can

make.

Reward: Immediate feedback given to the agent to

evaluate its last action.

Policy: A strategy that the agent follows to

determine its action at each state.

The goal of RL is to follow a policy or strategy that

maximizes the reward

Environment and Actions

Environment:

The setting or context within which the agent operates.

It can be physical (like a robot navigating a room) or virtual

(like a video game or simulation).

Characteristically dynamic, potentially complex, and initially

unknown to the agent.

Actions:

Actions represent the choices available to the agent at each

state.

The set of all possible actions available in a given

environment constitutes the action space, which can be

discrete or continuous

UP

DOWN

LEFT RIGHT

Whenever the agent performs something good, we should give it a reward rₜ
Rewards are signals sent from the environment to the agent

They indicate the effectiveness of the action relative to achieving the goal.

To prioritize immediate rewards over distant ones and to handle the uncertainty of future

rewards, RL uses a concept known as discounting.

The value of future rewards is multiplied by a discount factor γ. This teaches the agent to

prefer receiving rewards sooner rather than later, which is crucial in environments with

changing conditions

The total discounted reward starting from time t is then defined as

Reward and Discounted Reward

Policy Based Methods:

The find the optimal policy, which defines the agent’s way of behaving at a given time. A policy

maps states to actions the agent should take, either deterministically or stochastically.

Value Function Methods:

They derive a function that gives the expected future rewards from each state. It is used to guide

policy decisions and helps assess the potential of different states under a particular policy.

Model Based Methods:

They allow the the agent to get an understanding of the environment. In model-based RL, the

agent uses the model to predict how the environment will respond to its actions.

Types of Reinforcement Learning

Example: Maze

Rewards: -1 per time-step

Actions: up, down, left, right

States: Agent’s location in the maze

Example: Policy

Example: Value Function

Example: Model

Taxonomy of Reinforcement Learning

We will focus on Deep Q-Learning Networks (DQNs) and on Policy Gradient.

Deep Q-Learning and

Policy Gradient

Q-Learning

Q-Learning is an off-policy reinforcement learning

algorithm that seeks to find the best action to take

given the current state.

The algorithm uses a Q-function to evaluate the

quality of a particular action taken from a

particular state.

The goal is to learn the Q-function and then to

use it to get the maximal possible discounted

reward.

The agent observes the outcomes of actions

taken, and iteratively updates the Q-values based

on the rewards

The Q-value function Q(s,a) quantifies the expected total payoff

starting from state s, taking an action a, and thereafter following an

optimal policy, as given by the Q-value function itself.

The Q-value function is defined as:

It allows the agent to evaluate the expected utility of its actions at

each state without knowing the full dynamics of the environment.

As the agent explores its environment, the Q-value function is

continually updated to better approximate the true expected

returns.

Q-Value Function

The Bellman equation allows to define the optimal Q-value function Q*(s, a) as:

In practice Q*(s, a) is approximated using the Q-learning algorithm, which iteratively updates the Q-

values based on experience:

Here’s how it works:

1.Initialization: Q-values are typically set to zero for all state-action pairs.

2.Experience: For each action taken, observe the immediate reward r and the next state s′.

3.Update: Adjust the Q-value of the state-action pair based on Bellman equation

4.Repeat: Iterate until the Q-values converge.

Bellman’s Formula

Exploration vs Exploitation

Balancing exploration and exploitation is a central point in RL

Exploration is crucial in early learning stages or if conditions

change over time. It prevents the algorithm from getting stuck

in local optima.

Exploitation is important for utilizing the learned behaviors to

achieve the best results.

A common approach to this problem is the ϵ-greedy algorithm

ϵ set the likelihood of taking a random action (exploration)

versus the best-known action (exploitation).

ϵ decreases gradually as learning progresses, allowing more

exploration initially and more exploitation later.

Traditional Q-Learning has many limitations

It relies on a Q-table, which becomes

impractical in environments with vast

numbers of state-action pairs.

In high-dimensional state spaces it

requires exponential data to adequately

cover the state-action space.

Deep Q-Networks (DQN) utilize a neural

network to approximate the Q-value function

Deep Q-Learning Networks

DQN Loss Function and Training

The loss function for DQN is typically framed as the Mean Squared Error (MSE) between the

predicted Q-values and the target Q-values computed using the Bellman equation:

Training data in DQN is generated through the agent's interactions with the environment

At each timestep, the agent observes the current state s, selects and executes an action a,

and observes the outcome, which includes the next state s′ and reward r.

All this information is stored in memory and they are later used to update the weights of

the neural network with the standard optimization procedure.

The updated neural network is the used to gather new data and the process is iterated.

DQNs Training Tricks

Training DQNs is not trivial and several tricks have been devised to make the process more stable

Experience Replay:

instead of learning directly from consecutive experiences, the algorithm randomly samples

a small batch of experiences from the buffer.

this random sampling helps to break the correlation and allows the network to learn from a

more diverse set of experiences, thus stabilizing the update steps.

Target Network:

the Target Network is a less frequently updated neural network that is added to the

algorithm

the Target Network is used to estimate the target Q-values

this addresses the "moving target" problem, where continuous updates can make the

training process unstable and inefficient.

Policy Gradient methods directly optimize the policy function π. They work by adjusting the

policy parameters θ directly in response to an estimator of the long-term reward.

It is effective in high-dimensional or continuous action spaces.

It can learn stochastic policies, allowing for more exploration.

The policy function is approximated by a neural network and the objective is to maximize the

expected reward J(θ)

Policy gradient updates parameters via a standard gradient ascent:

Policy Gradient

REINFORCE, is a simple policy gradient method. Policy parameters are updated as

Training is done as detailed below

The agent observes the current state s, selects an action a based on its current policy, and

observes the outcome, which includes the reward r and the next state s′.

This sequence of states, actions, and rewards is collected until the episode ends. The returns

Rt for each timestep are calculated post-episode.

These returns are used to update the policy parameters θ via gradient ascent

The updated policy is then employed to gather new data in subsequent episodes, repeating

the process.

REINFORCE Algorithm

The Actor-Critic framework combines the

benefits of both policy-based and value-based

approaches in reinforcement learning.

This method uses two models: the Actor,

which proposes actions given the current

state, and the Critic, which evaluates these

actions by estimating the value function.

By providing constant feedback after every

action, the Critic helps the Actor adjust its

policy in a more timely and informed

manner.

The Actor-Critic Framework

Applications of

Reinforcement Learning

DQNs Beating Atari Games

The first big breakthrough in RL has been a famous paper by Google Deep Mind using

DQNs and CNNs to play Atari games with RL (2013)

https://www.nature.com/articles/nature14236

DQN Playing Atari

Other Games

AlphaGo and AlphaZero

In 2016 Deep Mind makes another breakthrough with

AlphaGo, beating the go world champion

AlphaGo was initially trained on professional

human games to learn winning patterns and then

improved through self-play, refining its policy and

value networks.

AlphaZero enhances this approach by using purely

self-play reinforcement learning without any

human data, starting from random play. It learns

optimal strategies in games like Go, chess, and

Shogi by playing millions of games against itself.

Self-Driving Cars?

Reinforcement Learning with Human Feedback

While traditional language models excel at predicting text, they often fail to produce appropriate

responses

Traditional training: Models learn to predict next tokens from massive internet text corpora

Core limitation: High perplexity ≠ helpful responses to human queries

Alignment gap: Models generate fluent but often irrelevant, verbose, or harmful content

RLHF solution: Uses reinforcement learning with human feedback to optimize for human-

preferred responses

This approach transforms capable but misaligned language models into helpful and

aligned AI assistants.

The RLHF Process

RLHF consists of a three-stage pipeline that progressively aligns model behavior

Fine-tune base LLM on high-

quality human demonstrations

to create initial helpful behavior

Optimize the language

model against the reward

model

Collect human preference comparisons

(A vs B) and train a neural network to

predict human preferences

Summary

A New Learning Paradigm

Reinforcement learning solves the problems of supervised and unsupervised learning, combining

their benefits.

Reinforcement Learning

In reinforcement learning agents learn by interacting with an environment and performing

actions. They learn optimal strategies by maximizing the reward they receive.

Deep Q-Learning and Policy Gradient

DQNs are neural networks that learn the Q-value function, providing the agent an optimal

policy. Policy gradient instead directly optimize the policy.

Applications of Reinforcement Learning

Reinforcement learning has found applications especially in games such as chess or go. At

present days the most relevant application is probably in LLMs.

Next Lectures and Events

Tomorrow Afternoon CDM Colloquium (03/07 - Room D301 13:30-14:30)

Susumu Shikano will present “Click for Clarity: Examining the effect of optional information

on prediction accuracy in Swiss referenda”.

Tomorrow Afternoon Guest Researcher Seminar

E. Francazi (EPFL) will present is work "Emergence of bias in deep neural networks

predictions". This will replace the coding session.

Next Week

We will talk again about generative deep learning, with a focus on image generation. We will

code a variational autoencoder for generating fashion-MNIST images.

