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Reinforcement Learning Framework

The RL framework is structured around a set of key

elements: 

State: The representation of the environment at

any given time.

Action: A set of possible moves the agent can

make.

Reward: Immediate feedback given to the agent to

evaluate its last action.

Policy: A strategy that the agent follows to

determine its action at each state.

The goal of RL is to follow a policy or strategy that

maximizes the reward



Traditional Q-Learning has many limitations

It relies on a Q-table, which becomes

impractical in environments with vast

numbers of state-action pairs.

In high-dimensional state spaces it

requires exponential data to adequately

cover the state-action space.

Deep Q-Networks (DQN) utilize a neural

network to approximate the Q-value function

Deep Q-Learning Networks
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Generative Deep Learning



Generative Deep Learning

Generative deep learning focuses on creating models that can produce new, realistic data samples

similar to their training data.

Core objective: Learn to generate new examples that could plausibly come from the same

distribution

Applications: Text generation, image synthesis, music composition, code generation

Large Language Models are generative models specialized for text

Key insight: Instead of just recognizing patterns, models learn to create new patterns

Examples: GPT generates coherent text, DALL-E creates images, Codex writes code

Fundamentally, we train models to learn the probability distribution P(x) where x

represents the data (text, images ...)



Discriminative vs Generative
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Discriminative models assign labels to

data: they reconstruct the probability

P(y|x) of the label (y) given the data (x)

Generative models create new data:

they reconstruct the probability P(x)

of the data in our sample



Conditional Generative Models

A photo-realistic picture of a sailboat on a

calm lake at sunset  

The information about the label can

be included in generative models

getting the so called conditional

generative models:

they generate data given labels

they reconstruct the conditional

probability P(x|y)

The 3 classes of problems are related

by Bayes’ theorem 



Taxonomy of Generative Deep Learning

There is a jungle of generative deep learning models depending on if and how they reconstruct

the data probability P(x). We will focus on VAEs, GANs and Diffusion Models.



Strengths of Generative Deep Learning 

Generative deep learning is an incredibly powerful technique 

Discriminative deep has a crucial weakness, the need of labelled data

Generative deep learning only requires large amounts of unlabelled data

Generative deep learning models can thus be trained on more data and have a larger

number of parameters 

This allows generative deep learning models to better learn the hidden features and

regularities of data 

The regularities learnt by such models can then be used for enhancing the

performances of discriminative models



Variational Autoencoders



The Autoencoder The Autoencoder is one of the most important

MLP architectures for unsupervised learning. It is

composed of three sections:

Encoder Encodes the data into a latent

representation

Latent Space Space where the encoded data

live (z)

Decoder Convert back the data from the

latent space to the standard representation

The Autoencoder is trained in an unsupervised

way using a reconstruction loss

it is trained to reconstruct in output exactly

what it is given in input

the loss quantifies how different is the output

from the input



Dimensionality Reduction

The Autoencoder architecture has a bottleneck,

the latent space:

if the reconstruction loss is low, the

autoencoder can successfully reconstruct the

input

this means that the latent space contains

enough information to reconstruct the input

the latent space contains a low dimensional

representation of the input data

Therefore we can train an autoencoder and then

use it encoder to get a dimensionality reduction of

the data (similar to PCA or T-SNE)



Problems of Generating Data with AEs

One possible approach to data generation involve an AE:

we train the autoencoder as usual

we then generate new samples by using the decoder

section

we select a random point in the latent space

we input it in the decoder 

we collect the output

This is in theory a valid approach, but fails due to the

structure of the latent space

there is no order 

there are large empty regions

it is impossible to interpolate between training points



The Variational Autoencoder 

The Variational Autoencoder (VAE) adds a twist of stochasticity to the standard AE

same architecture, but now the encoder output consists of a mean vector and a variance vector 

the value of the latent variable z is computed sampling from a multivariate gaussian whose

parameters are defined by the encoder’s output 

the latent variable z in feed into the decoder, whose output is trained to be equal to the input



Probabilistic and Deterministic Decoder

Like the encoder, also the decoder can be either deterministic or

probabilistic 

a deterministic decoder works as in the standard AE, it simply

outputs a vector or an image depending on the tasks

in a probabilistic decoder the output consists of a mean and a

variance vector

each component of the output vector is obtained by random

sampling

the sampling is done using gaussians with mean values and

variances defined by the output of the decoder

a deterministic encoder is a probabilistic encoder with null

variance



Reparametrisation Trick

The introduction of stochasticity in the VAE architecture

poses some challenges:

there is no direct way to backpropagate through a

stochastic variable

in order to solve this issue we can exploit the

reparametrisation trick

we sample from a fixed standard gaussian (mean

0 and variance 1)

we multiply the result for the standard deviation

and we sum the mean value

in this way we can backpropagate since we can

compute the derivative



Bayesian Formulation

Autoencoders have a well grounded mathematical foundation

the assumption is that data x are generated starting from some hidden latent variable z

ex: for faces these could be gender, age, expression etc

the distribution of the latent variables P(z) are independent gaussians

there is no correlation between the features 

each feature will have a typical value with small fluctuations 

We can use Bayes theorem to write the probability of real data as

P(x|z) is the decoder 

P(z) is the normal sampling of the latent variable

P(z|x) is not directly available, but we train a neural network (the encoder) to approximate it as a

function Q(z|x)



The Bayesian formulation allows to define a loss function for training the VAE

we want to maximize the probability of the observed data point p(x), so we use the log-likelihood

as our loss 

however this loss is impossible to compute directly, so we have to look at a lower bound, the

ELBO (Evidence Lower Bound)

the first term is the expectation value of the probability of the generated data computed over

the latent variable (generated from the encoder)

the second term is the distance between the distribution of the encoder and the prior of the

latent variable P(z) that is by definition a gaussian distribution

Loss and ELBO



Latent Space and Regularization

This seems very complex, but the concept is very easy:

the first term quantifies how well we can reconstruct the probability of the real data. For a

deterministic decoder it is just the reconstruction error of the data 

the second term is a regularization that makes the latent space more regular



AE vs VAE Latent Space

The reconstruction term would like all points to be very far in the latent space to be easier to

distinguish. The regularization term would like to force the points in the latent space to follow a

gaussian, so to be very concentrated in the middle.



Generating New Data

Once we have trained a VAE using the ELBO we can use

the decoder part for generating new data 

we select a point in the latent space by sampling from

a gaussian

we process it using the decoder 

if the decoder is deterministic that is our novel

data point 

if it is probabilistic we use its output to sample

the new data

since now the latent space is much more regular the

neural network will be easy to interpolate



Examples of Generated Data

Labelled Faces in the Wild Dataset

CIFAR-10 Dataset

Human faces represent a standard benchmark for generative deep learning. We can very easily detect

AI generated faces, while we may struggle with objects or animals.



Vectors Arithmetic

The use of the KL divergence term in the loss not only

regularizes the latent space, but makes it also very special:

we are forcing the different directions of the latent space to

be orthogonal by using independent gaussians (the

covariance is null)

the result is something similar to a world embedding space,

with different directions encoding different concept

we can subtract two point obtaining the vector that

transform one into the other 

we can gradually transition from a data point to another by

moving along the line connecting them



Example: Arithmetic on Faces

D. Foster, Generative Deep Learning – Teaching Machines to Paint, Write, Compose and Play. O’Reilly Media, Inc., Jun. 2019.

In the example we show how it is possible to add

different features to images by summing an

appropriate latent vector

we start from an original image

we move along different directions

corresponding to different properties 

the resulting output is similar to the original

image, but modified including the new feature

we can modulate the vector to weaken or

strengthen the feature



Example: Face Morphing

D. Foster, Generative Deep Learning – Teaching Machines to Paint, Write, Compose and Play. O’Reilly Media, Inc., Jun. 2019.

Below we show an interpolation between pairs of images. This is obtained by moving along the line

that connect the two images in the latent space and generate a smooth transition between the two.



MusicVAE

https://magenta.tensorflow.org/music-vae

https://magenta.tensorflow.org/music-vae


Generative Adversarial Networks



Limits of VAEs

VAE are a very powerful tool

they are most of the time just better autoencoders

their latent space has all the good properties we

would like it to have

they are incredible in dimensionality reduction and

denoising 

However they have strong limits in data generations,

especially when it comes to images

the quality is not bad

however imaged are blurred and details are missing

this derives from the presence of the gaussian

regularization



Generative Adversarial Networks

Generative Adversarial Networks (GANs) are much more powerful when it comes to generate realistic

images. They are conceptually very similar and are composed of two models

a generator that is trained to generate artificial data

a discriminator that is trained to distinguish artificial data from real data

note that we do not need labelled data (we automatically know what is real and what is fake)



Training GANs

https://poloclub.g
ithub.io/ganlab/

A GAN is trained by alternating between the Generator and the Discriminator 

the generator is used to generate fake images, that are then classified (together with real images) by

the discriminator. The generator is then optimized by freezing the weights of the discriminator

also the discriminator is then updated using the same set of images and the process is iterated

https://poloclub.github.io/ganlab/
https://poloclub.github.io/ganlab/


The loss of a GAN is not as simple as for other model

the discriminator wants to maximize the ability to correctly classify the real and fake images

the generator wants to fool the discriminator on fake images, but doesn’t care about the real ones

Putting the two ingredient together we get the MinMax Game loss

It can be proven that the optimal value is achieved when the distribution produced by the generator

coincides with the distribution of real data. However, there is no guarantee that by iteratively updating

the two neural networks we reach this optimum.

MinMax Game



Generating is much more difficult than classifying 

at the beginning the discriminator will

perform much better then the generator

the generator loss is flat when the generator

performs poorly

the generator gradient vanishes and training

is impossible

To solve this we modify the generator loss 

original loss

modified (heuristic) loss

Gradient Vanishing Problem



Visualizing the Loss in Training

The loss of GANs is much more hard to interpret than the loss of other models. It will often

show erratic fluctuations and it is hard to understand whether or not the model is learning.



Vectors in GANs



Vectors in GANs



CycleGAN

By training two coupled GANs in the so called CycleGAN (2017) it is possible to perform domain

transformation. In other words this corresponds to a sort of image-to-image unsupervised translation

process, since we only need images from two domains, but no existing pairs.



StyleGAN

StyleGAN (Nvidia, 2019) is one of the most powerful GAN model based on convolutional layers. It

can generate faces and objects with different resolutions.



Progress of GANs

GANs have reached incredible level of detail and resolution. Nowadays identifying AI generated GAN

images of human faces is almost impossible, but there are some tricks. 



Diffusion Models



Challenges of GANs

GANs are very elegant and conceptually simple, but training them is a nightmare:

typically generating is much more hard than discriminating, balancing discriminator and

generator is a very hard task

GANs involve two models and training two coupled models at the same time is not simple.

The process is often unstable and convergence is never granted 

there is no universally accepted universal metric for evaluating GANs

the generator may produce limited varieties of outputs, ignoring parts of the data

distribution, still resulting is a good overall loss

These limitations are the main reasons why GANs are no more state of the art models, especially

for image generation. In this field, diffusion based models such as Stable Diffusion or

Midjourney, are now the new standard.



From Noise to Images

In both VAEs and GANs, the process of generating images begins

with random noise.

in VAEs the decoder generates images by sampling from the

latent distribution.

in GANs the generator creates images starting from random

noise

In both these models images are generated in one transformative step

from a noise distribution

images are very complex objects 

a single step may not be enough for generating complex

structures such as faces 

Autoregressive models and diffusion models use instead a multi-step

approach



Autoregressive Generative Models 

Autoregressive Generative Models generate images

step-by-step. Unlike VAEs and GANs, which

produce entire images in one step, these models

generate one part of the image at a time.

They begin with an empty image and

sequentially generates the remaining parts.

A neural network predicts the next part of the

image based on previously generated content.

They manage the complexity of generating

detailed structures by using a multi-step

approach.

This is similar to how generative LLMs work!



Limits of Autoregressive Generative Models 

Autoregressive models face significant challenges when generating high-resolution images:

When too many pixels are generated at once, the model tends to average over multiple possible

images, resulting in a blurred and indistinct output. 

To counteract the blurring, autoregressive models require generating images in many small steps.

This multi-step approach, while improving quality, significantly increases computational

complexity and processing time.



Diffusion Models

Diffusion models introduce a powerful approach to generating high-quality. Unlike autoregressive

models, which predict pixel-by-pixel, diffusion models work by gradually denoising an initially noisy

image.

Multi-Step Refinement: The process begins with pure noise, and through a series of steps, the

model refines this noise into a clear and detailed image.

Noise Structure: Noise has no inherent correlation or structure, so even when averaging over

multiple possible noises, the result remains a valid noise. This property prevents the blurring effect

seen in autoregressive models.

Bidirectional Process: Diffusion models consist of a forward process, where the image is

progressively noised, and a reverse process, where the noise is incrementally reduced.

In practice we train a neural network to denoise images by predicting what noise was added to them



Forward Process

The forward process in diffusion models involves progressively adding noise to an image over several

steps until it becomes pure noise. This gradual noising process serves to map the image to a noise

distribution.

less noise is added in the beginning, while more noise is added in the last steps (cosine schedule)

this process produces a series of noisy images, each with a different noise level, that can be used

for training the denoising network 

the process is completely unsupervised



Reverse Process

The reverse process in diffusion models focuses on denoising the image step-by-step, transforming the noise

back into a clear image

The core idea is to train a neural network to predict the noise added at each step in the forward process.

By accurately predicting this noise, the network can progressively reduce it.

A specific CNN architecture called UNet is commonly used for this task. UNet consists of an encoder-

decoder structure with skip connections

The UNet model is applied iteratively, each time reducing a small amount of noise, gradually

reconstructing the image from the noisy version.



Latent Diffusion Models

E
n

c
o

d
e
r

D
e
c
o

d
e
r

Latent diffusion models improve upon traditional diffusion models by operating in a lower-dimensional latent

space instead of the high-dimensional pixel space.

Directly working with pixel data involves very high dimensionality, making the process computationally

expensive and less efficient.

To address this, latent diffusion models first use an encoder to transform the high-dimensional image

data into a lower-dimensional latent space.

Efficient Denoising: In the latent space, the model performs the denoising process, which is

computationally more efficient and effective. 



GANs vs Diffusion Models

GANs often suffer from a phenomenon called mode collapse, where the generator produces a limited

variety of images. This results in many images looking very similar, as the generator fails to capture the

full diversity of the training data. Diffusion models, instead, do not show this problem.

GAN Diffusion Training Data



Conditional Generation

Conditional generation allows models to generate images based on specific text inputs

Explicit Conditioning: In this approach during training, the condition is directly fed into

the model alongside the noise input. This could be in the form of class labels, text

descriptions, or other types of auxiliary information. 

Classifier Guidance: This method involves using a pre-trained classifier to guide the

generation process. The classifier provides gradients that help adjust the generation towards

the desired condition. 

Classifier-Free Guidance: In this approach, the model is trained to generate images both

with and without conditions. During generation, a combination of the conditional and

unconditional outputs is used to guide the final image synthesis. 

https://poloclub.github.io/diffusion-explainer/

https://poloclub.github.io/diffusion-explainer/


Stable Diffusion

Stable Diffusion is a type of latent diffusion model that generates high-quality images efficiently.

Latent Space: Reduces complexity by operating in a lower-dimensional latent space.

Denoising UNet: Uses a UNet architecture to iteratively refine the image.

Attention: Incorporates attention for conditioning on inputs like text or semantic maps.



State of the Art Models

Street style photo of a young woman, red gucci jacket, blue gucci shirt, wide shot, natural lighting, soho, shot

on Agfa Vista 200, 4k 

Midjourney v5 Dall-E 3



State of the Art Models

Photography shot trough an outdoor window of a coffee shop with neon sign lighting, window glares and

reflections, depth of field, little girl with red hair sitting at a table, portrait, kodak portra 800, 105 mm f1. 8

Midjourney v5 Dall-E 3



Video Generation: Sora and Veo 3

https://openai.com/index/sora/
https://gemini.google/overview/video-generation/

https://openai.com/sora/
https://gemini.google/overview/video-generation/


Summary

Generative Deep Learning

While discriminative deep learning reconstructs the conditional probability of the label given the

data P(y|x), generative deep learning gives access to the distribution of data P(x)

Variational Autoencoders (VAEs)

VAEs are a modification of autoencoders that include a stochastic component. Their latent

space is regualarized and this allows to interpolate between training data, generating new samples

Generative Adversarial Networks (GANs)

GANs consists of two models, a generator and a discriminator, that are trained together. The

generator can then be used to produce artificial data. 

Diffusion Models

While GANs and VAEs generate images in a single step, diffusion models exploit multiple steps

of noise removal, providing better performances in image generation



Next Lectures and Events

Tomorrow Afternoon Coding Session

We will code a Variational Autoencoder to generate fashion-MNIST images and we will use a

local diffusion model

Next Week

On Wednesday 16/07 you will present your ideas on how to approach the final projects.

Each group will have 5 minutes to present + 5 minutes for discussion. 

On Thursday 17/07 Simone Petruzzi (Sapienza University, Roma) will give a talk titled

"Introduction to Mechanistic Interpretability of LLMs". This will be the last lecture of the

course and we will then move to the biergarten.


