# 02 | Introduction to Neural Networks Giordano De Marzo https://giordano-demarzo.github.io/

## **Deep Learning for Social Sciences**

|  | k |  |
|--|---|--|
|  |   |  |

## Outline

Basic Concepts and Notation
 The Perceptron
 Limits of the Perceptron
 Shallow Neural Networks

|  | <u> </u> |  |
|--|----------|--|
|  |          |  |

# Basic Concepts and Notation

### Universität Konstanz

|  | M |
|--|---|
|  |   |

ما على

HALLELL

# Learning from Data

Machine learning represents a paradigm shift in how computers solve problems. **Traditional programming:** Humans write explicit rules for the computer to follow Machine learning: Computers discover patterns and rules from examples in data

This data-driven approach can be categorized into two main types:

- Unsupervised learning: Finding patterns in unlabeled data
- **Supervised learning:** Learning from labeled examples to make predictions

Supervised learning further divides into:

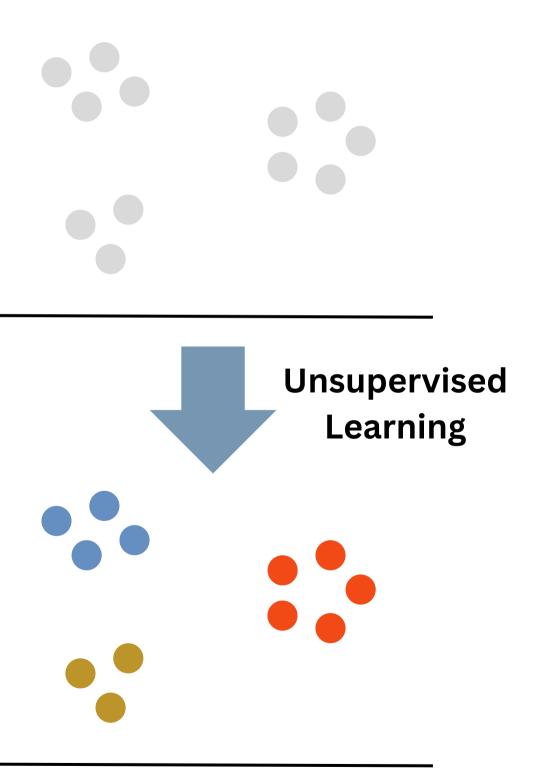
- **Classification:** Predicting categories (spam/not spam, dog/cat)
- **Regression:** Predicting numerical values (price, temperature)

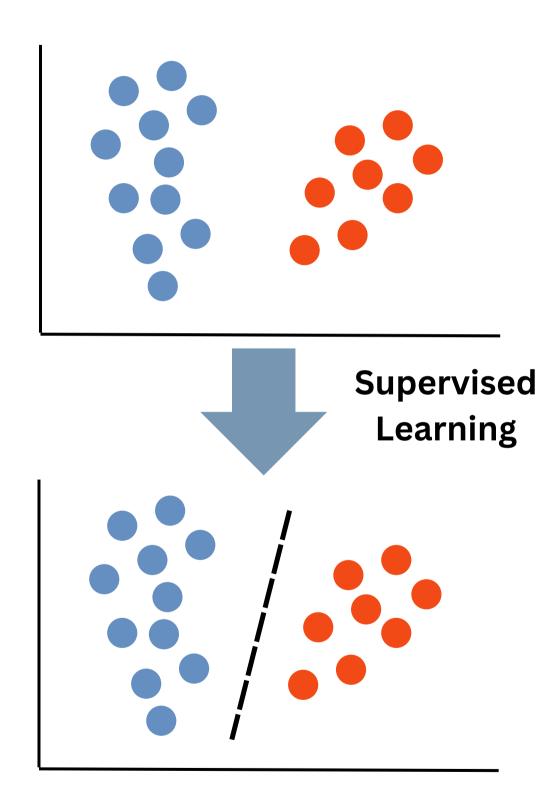
## Iniversität onstant

# Unsupervised Learning

Unsupervised learning algorithm find structure in data without explicit guidance

- No "correct answers" or labels are provided in training
- The algorithm must discover meaningful patterns
- Unlabeled data is typically more abundant Several distinct tasks fall under the unsupervised learning umbrella.
  - Clustering algorithms
  - Dimensionality reduction techniques
  - Anomaly detection methods





# Supervised Learning

- The fundamental idea is to learn from
  - input-output pairs
  - result from each input
- Creating these teaching examples typically requires human effort The essential goal is to generalize beyond the training examples.





- Supervised learning relies on examples where
- the correct answer is already known.

- These paired examples serve as a teacher,
  - showing the model what output should

# **Regression and Classification**

Supervised learning problems generally fall into two categories **Regression** tasks

- The output is a continuous numerical value representing a quantity or magnitude. • Common applications include predicting house prices based on features, forecasting temperatures, or estimating a person's age from a photograph. **Classification tasks** 
  - The goal is to assign inputs to distinct categories. The output is either a discrete class label or a probability distribution across possible classes.
  - Examples include filtering spam emails, diagnosing diseases from symptoms, or recognizing handwritten digits.

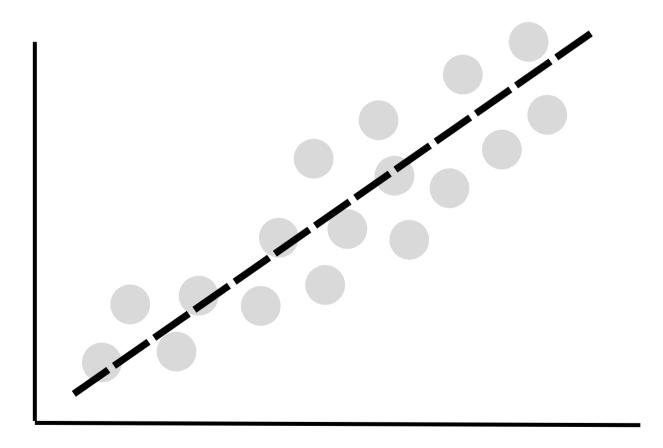


|  | <u> </u> |  |
|--|----------|--|
|  |          |  |

# **Regression and Classification**

Supervised learning problems generally fall into two categories

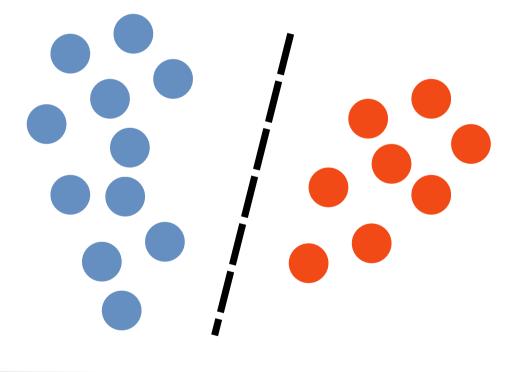
Regression





|                 |     | M         |
|-----------------|-----|-----------|
|                 | -44 | $\square$ |
|                 |     | ЩЛ        |
| $\Delta \Delta$ |     |           |

## Classification



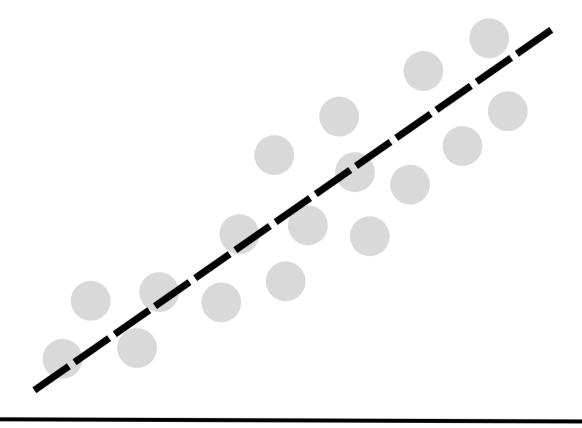
# Example: Linear Regression

Linear regression is the most simple example of supervised learning

- The model is simply: y = wx + b
  - y is the output (prediction)
  - x is the input feature
  - $\circ$  w is the weight, and b is the bias.
- We provide training examples as pairs of (x, y) values, such as (house size, house price).
- The model learns to predict y from x by adjusting its parameters (w and b).
- After training, we can predict y values for new x inputs the model hasn't seen before.

## Universität Konstanz

## Regression



## Mean Absolute Error



## Loss Function

- They are a clear optimization target.
- We aim to find the combination of model parameters that minimizes the chosen loss function. • Different problems call for different types of loss
- functions.
  - Error (MAE) are typical choices for regression
  - Mean Squared Error (MSE) or Mean Absolute • Cross Entropy Loss is the typical choice for
    - classification





- The Loss Function provides a quantitative measure of
- how well model predictions align with actual targets.

## Notation

I will try to be consistent with the notation in the slides

- x will always be the input
- y the output
- bold letters denote vectors
  - $\circ$  for instance x is an input with multiple dimensions
- bold capital letters denote matrices
  - for instance W can be the weight matrix of a Neural Network
  - $\circ$  Wx is the product between the matrix W and the vector x
- the parameters of the models are denoted by Greek letters or with a W
- the loss function is denoted with an L
  - $\circ$  it is a function of the model parameters L[W]

## Iniversitä (onstan:

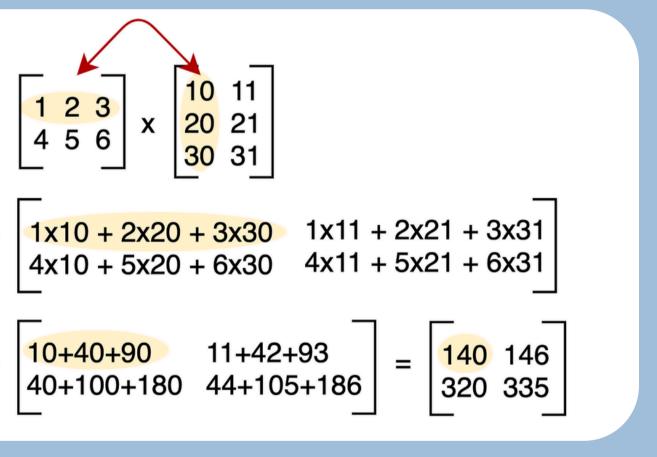
|  | <u> </u> |  |
|--|----------|--|
|  |          |  |

## Math Recap Matrix Multiplication

Matrix Multiplication consists in row by column multiplications:

- the elements (i, j) of the product matrix is obtained starting from the row i of the first matrix and the column j of the second matrix
- in general matrix multiplication is non commutative A x B ≠ B x A
- the number of columns of the first matrix must be equal to the number of rows of the second matrix





# The Perceptron

5

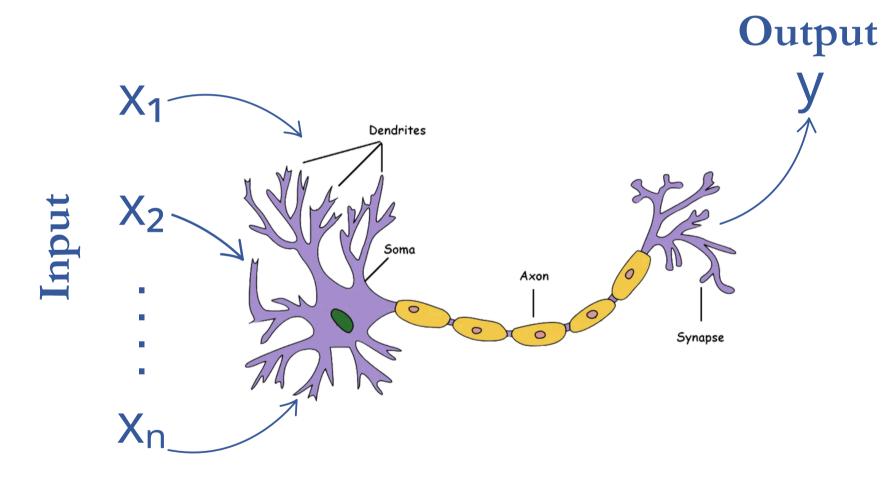
### Universität Konstanz

|  | <u> </u> | M |
|--|----------|---|
|  |          |   |



الداريني ا

# **Biological Neurons**



- Input: Neurons receive signals from other neurons through dendrites.
- **Processing:** Incoming signals are
  - combined and processed in the cell
  - body.
- signal is strong enough, it triggers firing. • Output: When activated, the neuron sends a signal through its axon.
- Activation Function: If the processed

## Universität Konstanz

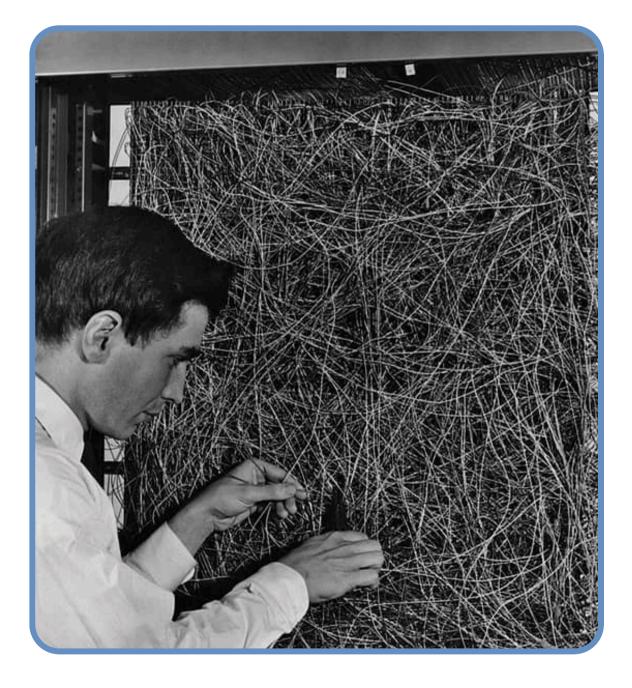


Neural networks draw inspiration from the brain's biological structure.

# The First Neural Network

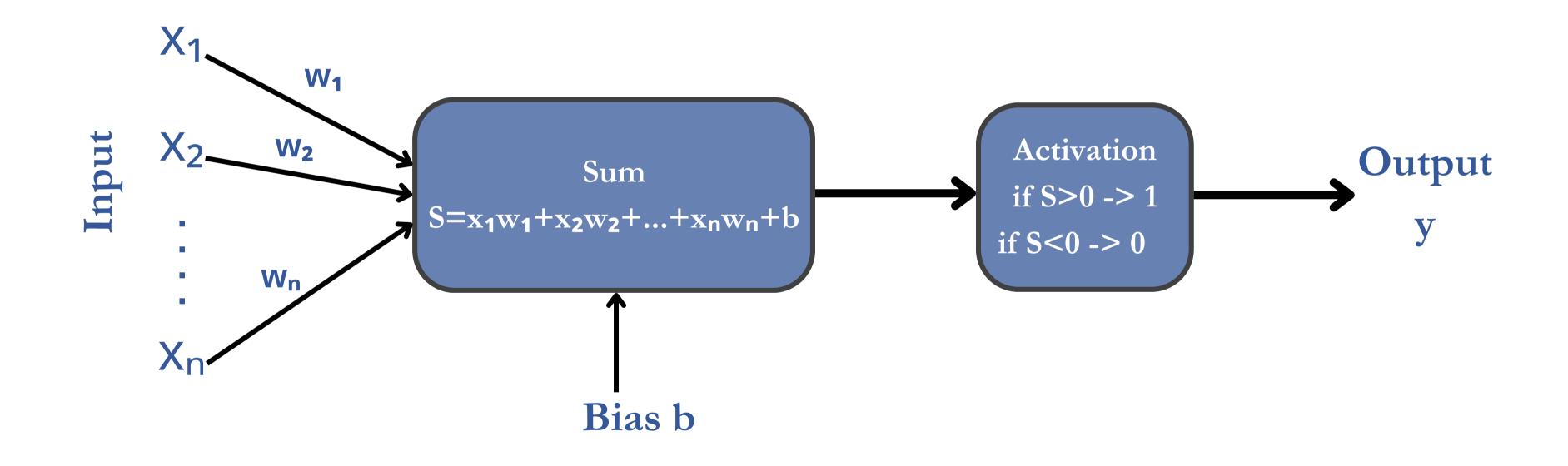
The Perceptron was the first artificial neural network model.

- Created in the 1950s by Frank Rosenblatt, a pioneer in artificial intelligence
- Simulates how neurons in the human brain process information
- The Perceptron follows a simple operational principle:
  - It receives multiple inputs, each with an associated weight
  - These inputs are combined and produce an output if they exceed a threshold



## Structure of the Perceptron

The Perceptron combines weighted inputs and activation:



|  | <u> </u> |  |
|--|----------|--|
|  |          |  |

# Mathematical Notation

Mathematically we can represent the perceptron using a vector product y=a[wx+b]

Here

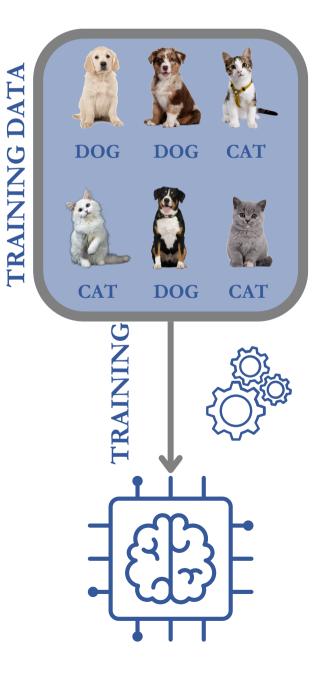
- $\mathbf{w} = (w_1, w_2, ..., w_n)$  is the vector containing the n weights
- $\mathbf{x} = (x_1, x_2, ..., x_n)$  is the vector containing the n-dimensional input
- a is the activation function. In our case
  - $\circ$  a(x)=1 if x>0
  - $\circ$  a(x)=0 if x<0
- b is the bias

With **wx** we denote the scalar product of the two vectors  $wx = x_1w_1 + x_2w_2 + ... + x_nw_n$ 

# **Supervised Classification**

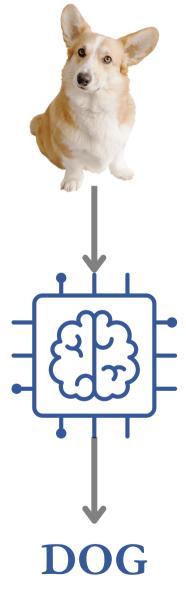
The computer learns from classified examples to predict categories for new data.

## **LEARNING**



The model analyzes pre-classified examples and learns how to distinguish between categories









# **CLASSIFICATION**

The model applies what it learned to categorizes new, previously unseen data

# **Classifying Dogs and Cats**

Let's consider a simplified version of the classification problem

- Dogs and cats can be characterized by various features
- We focus on just two: weight and length When can plot different animals on a graph using weight and length
  - Each animal is represented by a point

The Perceptron's job is to determine which group (dog or cat) a new animal belongs to

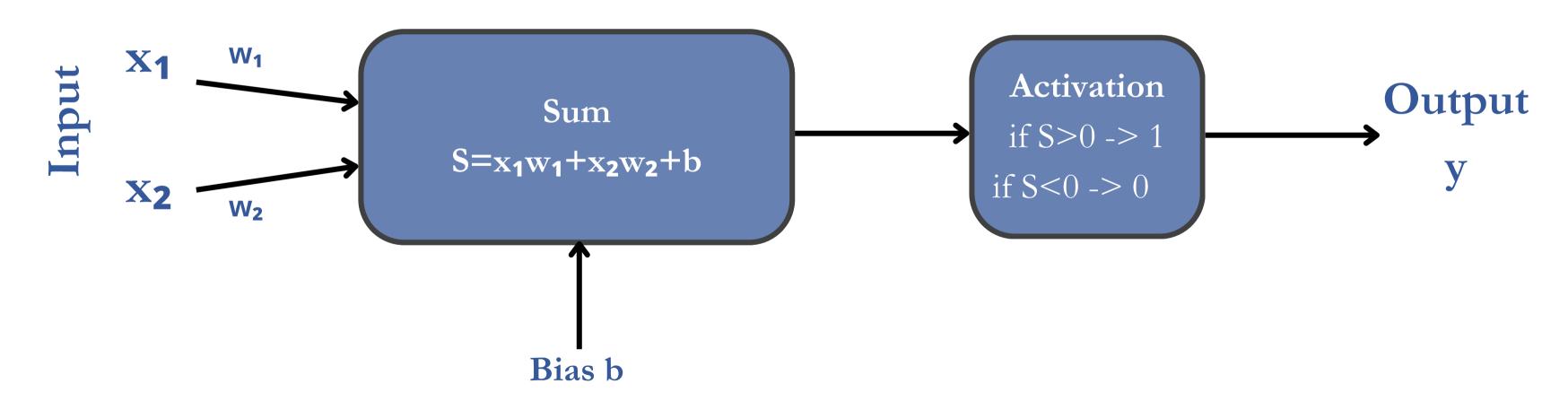




# **Perceptron with 2 Inputs**

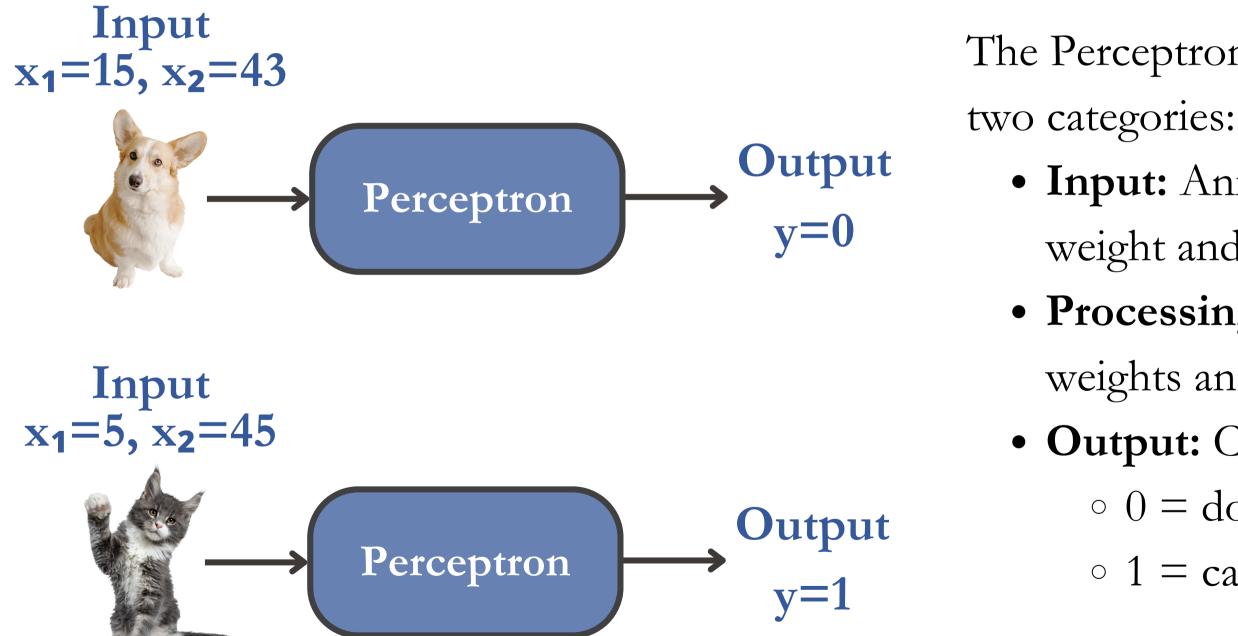
In this simple case we have just 2 inputs  $\mathbf{x} = (x_1, x_2)$  and 3 parameters

- $x_1$  is the weight of the animal,  $x_2$  is length
- w<sub>1</sub> and w<sub>2</sub> are the weights
- the bias is denoted by b



|  | M |
|--|---|
|  |   |

## Automatic Classification



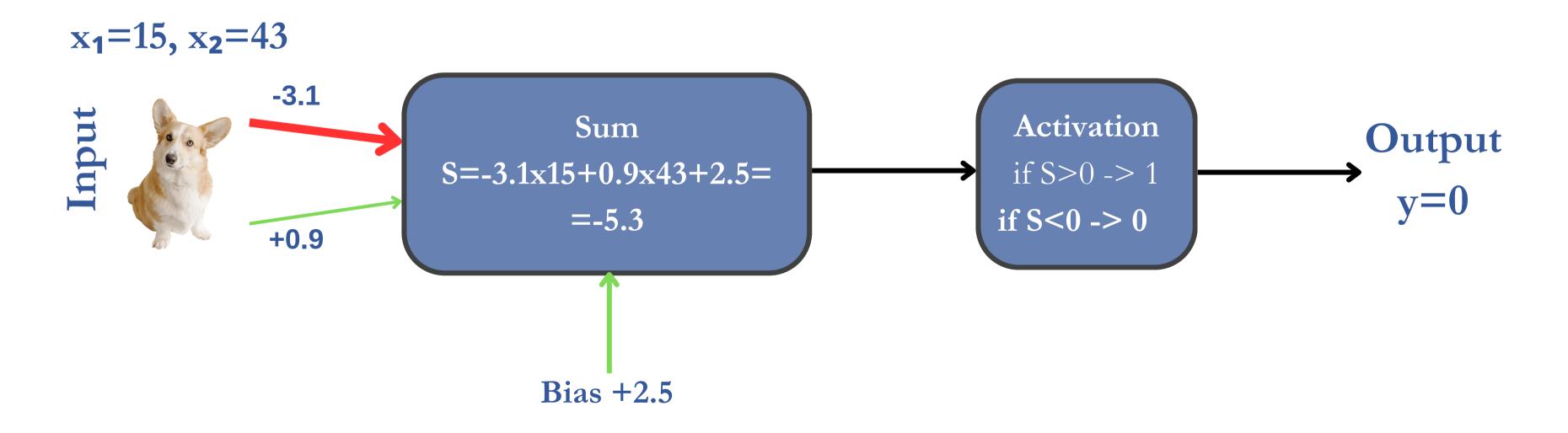


- The Perceptron distinguishes between
  - Input: Animal characteristics (e.g., weight and length)
  - **Processing:** The Perceptron applies
    - weights and calculates the output
  - Output: Classification result
    - $\circ 0 = dog$
    - $\circ 1 = cat$

# Perceptron with 2 Inputs

Let's see a practical example plugging some numbers in the perceptron

- we use as parameters  $w_1 = -3.1$ ,  $w_2 = 0.9$  and b = 2.5
- the input is  $\mathbf{x} = (15, 43)$



## Limits of the Perceptron ¥

|  | * |  |
|--|---|--|
|  |   |  |

# Understanding the Perceptron

The Perceptron creates a linear decision boundary to separate categories.

**Cat:**  $w_1x_1 + w_2x_2 + b > 0$ 

**Dog**:  $w_1x_1 + w_2x_2 + b < 0$ 

The decision boundary itself is defined by:

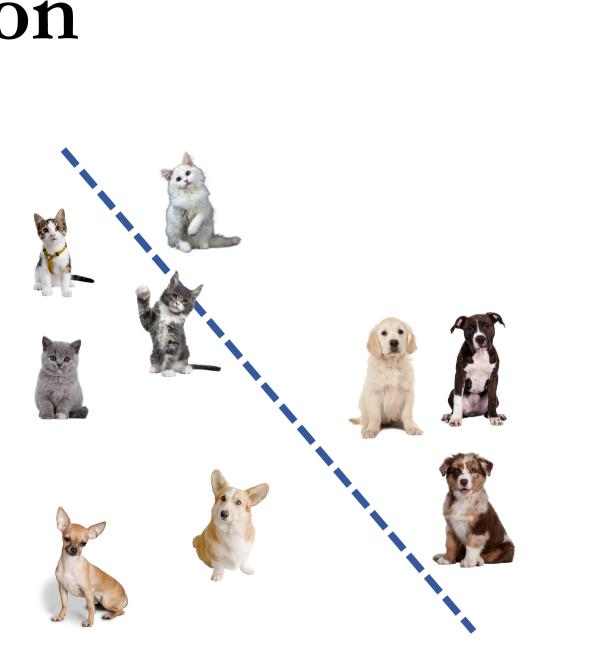
 $w_1x_1 + w_2x_2 + b = 0$ 

Which can be rewritten as:

 $x_2 = -(w_1/w_2)x_1 - (b/w_2)$ 

This demonstrates that the Perceptron:

- Draws a straight line in a 2D feature space
- Classifies points above the line as cats
- Classifies points below the line as dogs



(X2

Length

<u>https://giordano-demarzo.github.io/teaching/deep-</u> learning-25/perceptron/

## Universität Konstanz

## Weight $(x_1)$

# **Training Rule**

During training the perceptron is shown labelled data and its weights are adjusted when it produces wrong classifications



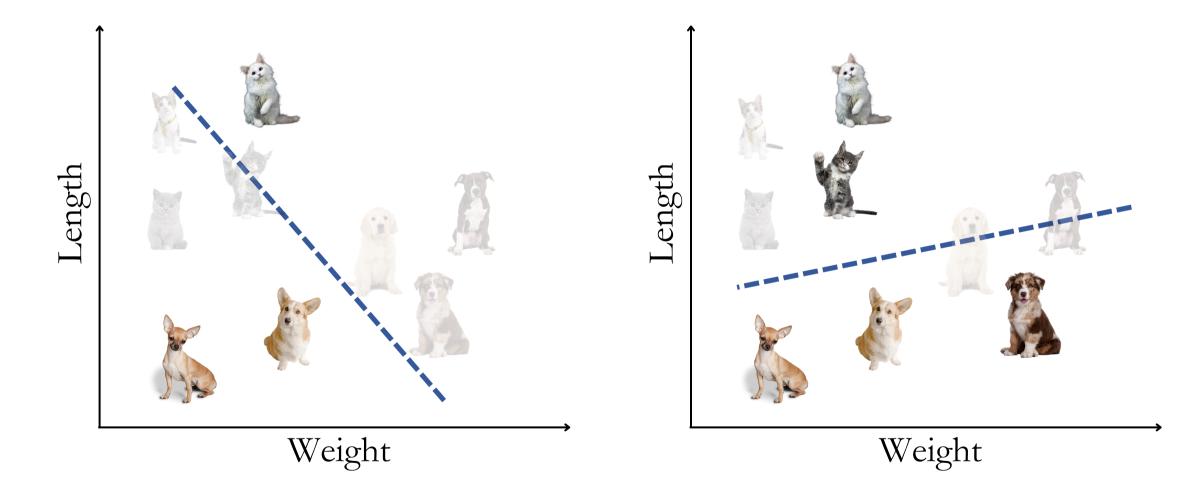




$$w_1 = w_1 - x_1$$
  
 $w_2 = w_2 - x_2$   
 $b = b + 1$ 

$$w_1 = w_1 + x_1$$
  
 $w_2 = w_2 + x_2$   
 $b = b - 1$ 

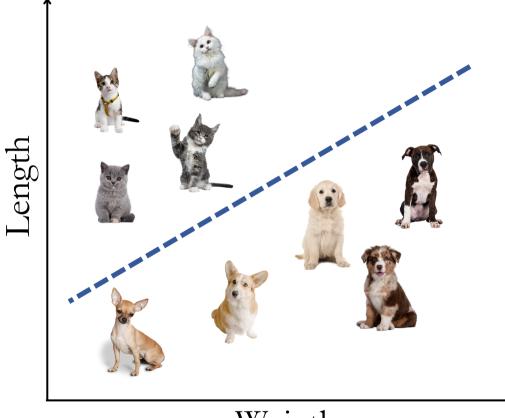
## Visualizing Training



As training progresses, the decision boundary moves to better separate the classes.

### Universität Konstanz

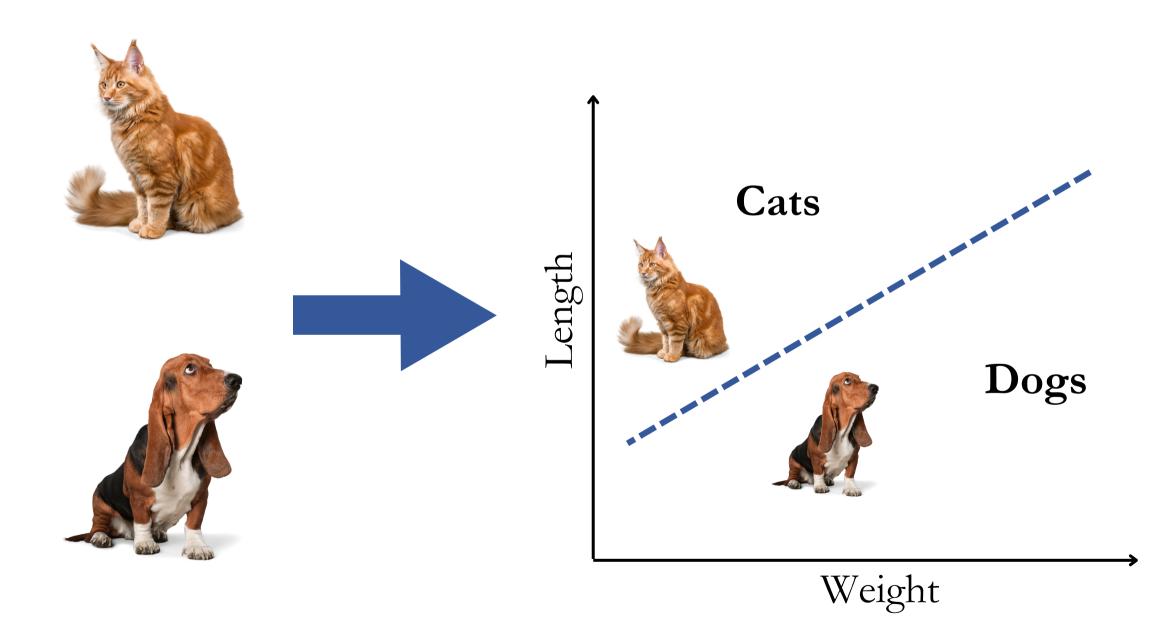
|  | M |
|--|---|
|  |   |



## Weigth

## Classification

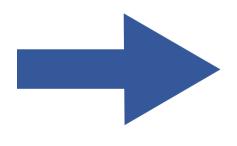
Once trained, the Perceptron can classify new animals from their weight and length











Cat

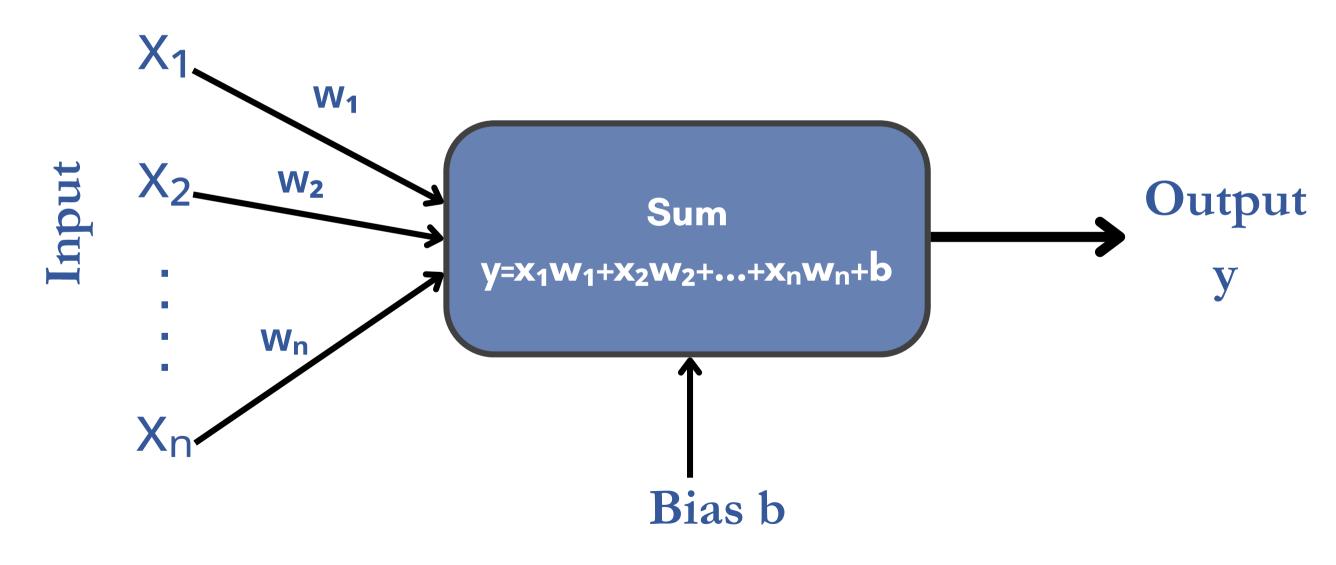


## Dog

# Perceptron and Regression

The Perceptron can also perform regression

- Predicts a continuous numerical value instead of a category
- Skips the thresholding step in the activation function



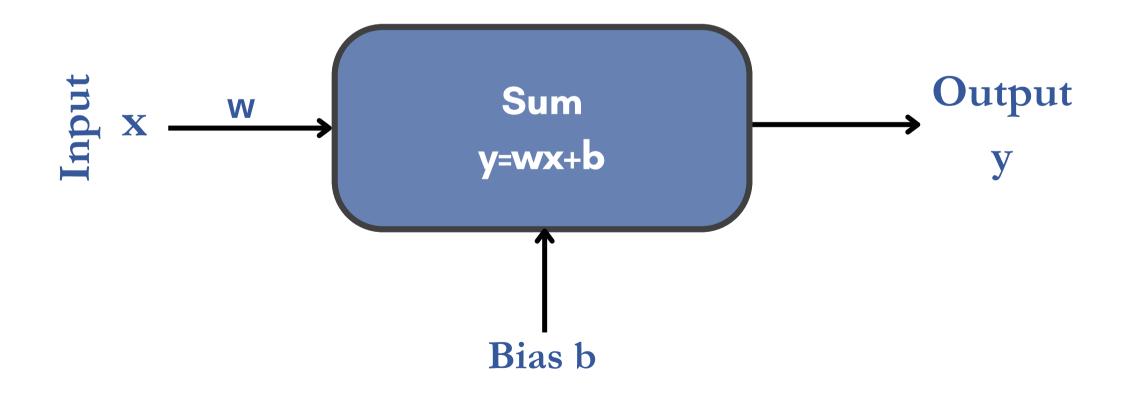


|  | A |
|--|---|
|  |   |
|  |   |

# Single Input Case

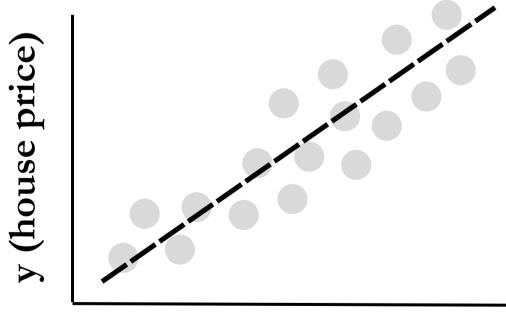
In the most simple case we have a single input

- the model output is y=wx+b
- during training the model learns w and b to fit the data
- this is equivalent to a linear regression



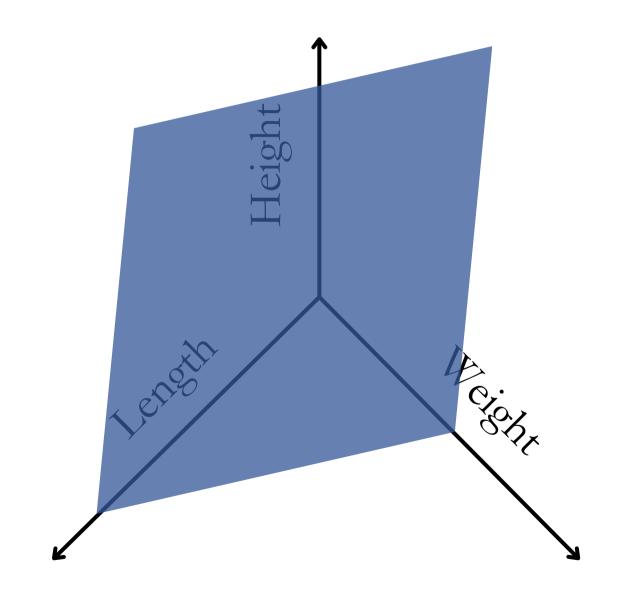
## Universität Konstanz

|  | <u> </u> |  |
|--|----------|--|
|  |          |  |



x (house size)

# **Higher Dimensions**



dimensions:

## Universität Konstanz



## The Perceptron's principles extend to higher

• 2 Dimensions: The Perceptron uses a line to separate categories (e.g., dogs and cats based on weight and length) • 3 Dimensions: Adding another feature (e.g., height) creates a 3D space where the Perceptron uses a plane as separator

## What happens in higher dimensions?

# Limits of the Perceptron

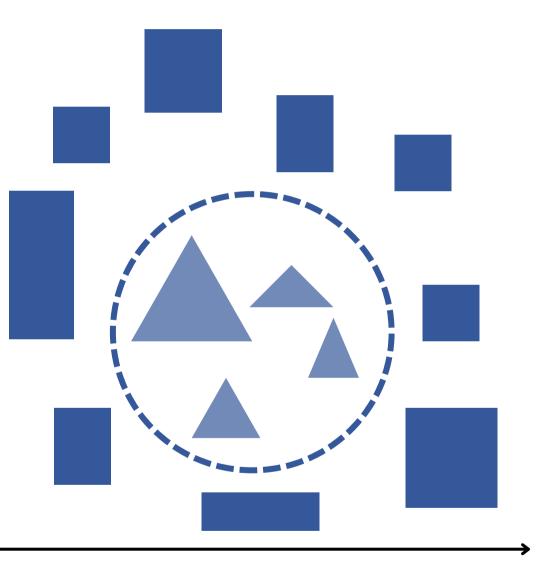
The Perceptron works well when data categories can be separated by a line (in 2D), a plane (in 3D), or a hyperplane (in higher dimensions).

However, many real-world problems aren't linearly separable:

- If data forms patterns like circles or spirals
- If categories are intermingled in complex ways In these cases, a single Perceptron is insufficient!
  - Problems like XOR cannot be solved by a single Perceptron

This limitation led to the so called AI Winter

|  | * | M |
|--|---|---|
|  |   |   |



# Shallow Neural Networks

### Universität Konstanz

|  | M |
|--|---|
|  |   |

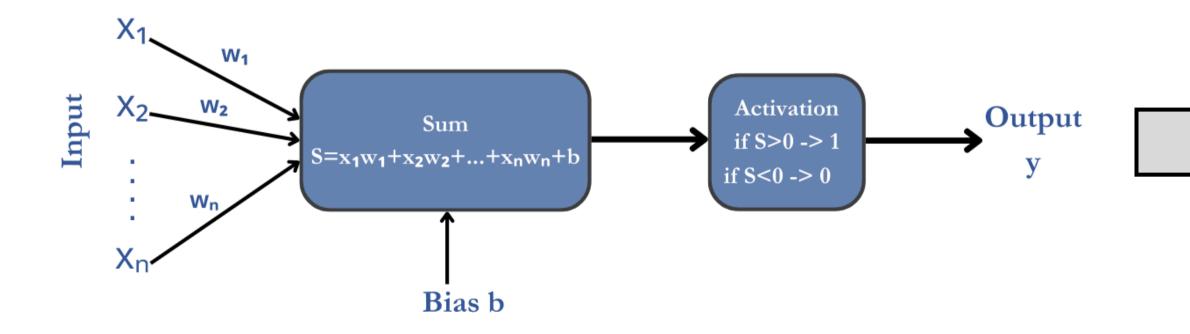
HADDON

تدا من و

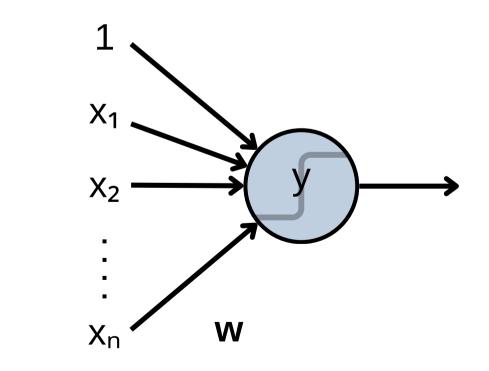
# Another Representation

In the following we will use a more simple representation for the perceptron

- we combine the weights and the bias in the same vector  $\circ w = (b, w_1, w_2, ..., w_n)$
- we add a dummy input that is always 1 and that gets multiplied by the bias
- we write on the neuron the name of its output and we plot its activation on it



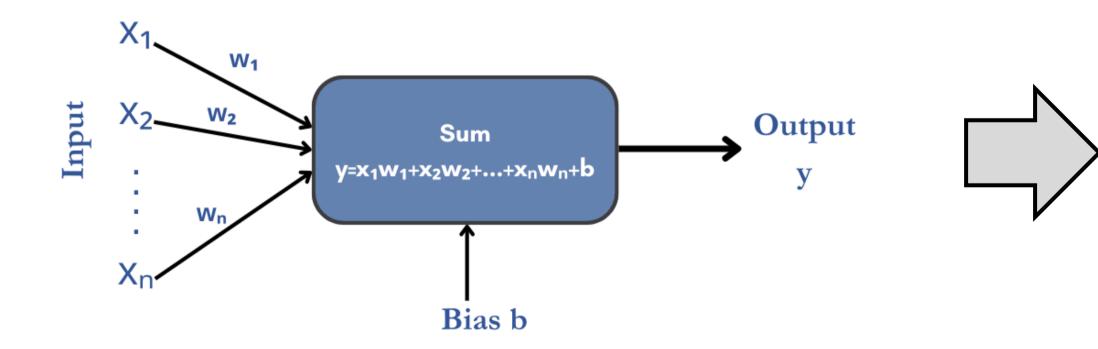
|  | * |  |
|--|---|--|
|  |   |  |



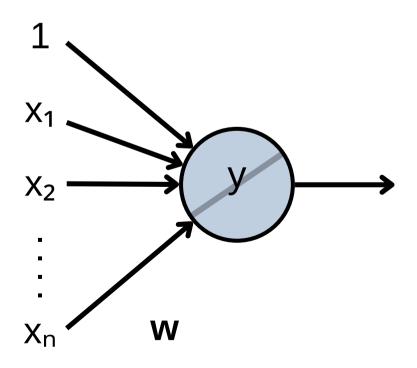
# Another Representation

In the following we will use a more simple representation for the perceptron

- we combine the weights and the bias in the same vector  $\circ w = (b, w_1, w_2, ..., w_n)$
- we add a dummy input that is always 1 and that gets multiplied by the bias
- we write on the neuron the name of its output and we plot its activation on it



|  | M |
|--|---|
|  |   |



# **Activation Functions**

## **Step Function**

• Used as output for the classification task

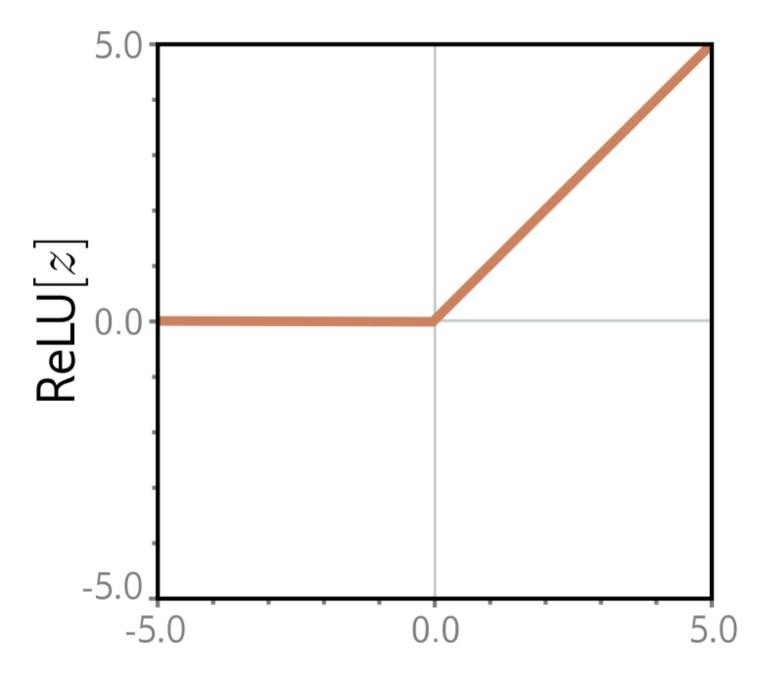
a(x)=1 if x>0
a(x)=0 if x<0</li>

Linear Activation

Used as output for the regression task
 a(x)=x

The Rectified Linear Unit (ReLU) is another example **ReLU** 

• Used in hidden layers of deep neural networks

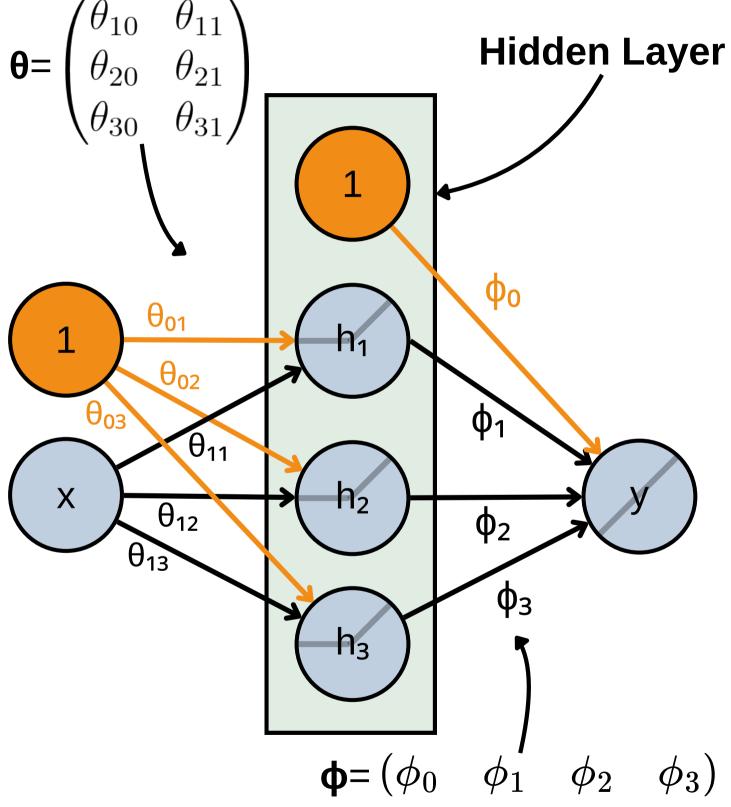




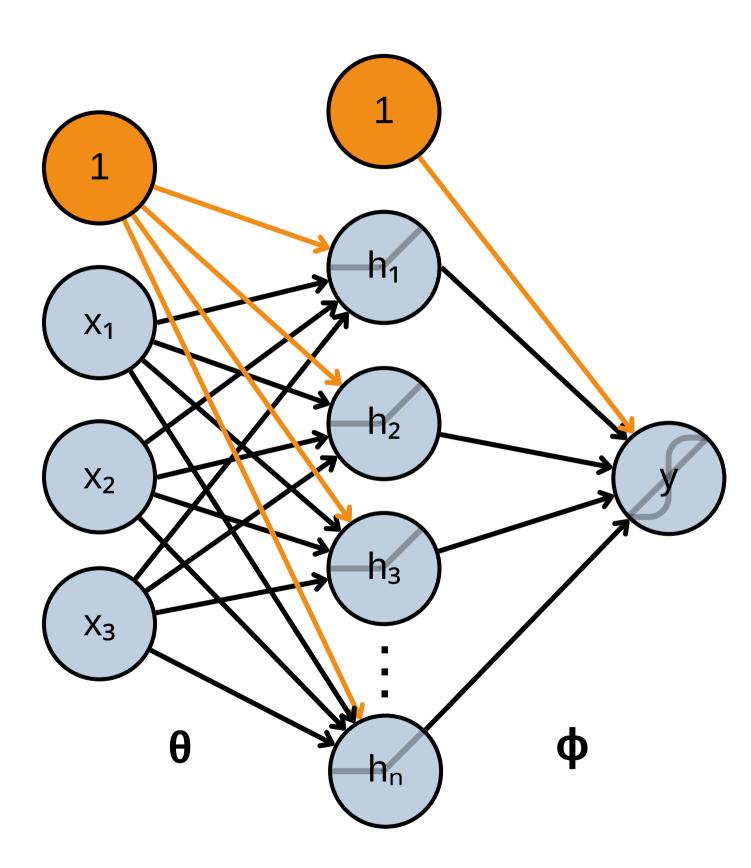
# **Combining Perceptrons**

We consider again the simple regression problem with a single input x and output y

- we can apply more than one single perceptron to the input (and dummy)
- each of these perceptrons will produce a different output hi
- we can then use these outputs as input for another perceptron that produce the output y In this way we are adding an **hidden layer** to the neural network







# **Shallow Neural Networks**

- as many inputs as we want
- as many hidden neurons as we want

- The parameters of this neural network will be contained in two weight matrices •  $\theta$  connecting the input to the hidden layer
  - • connecting the hidden layer to the output



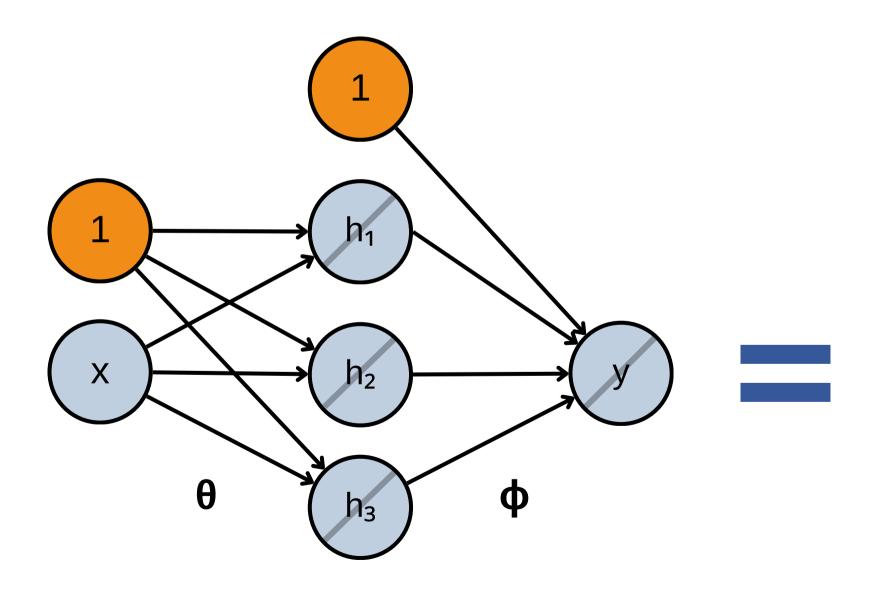


More generally we can have neural networks with

This type of neural network with a single hidden layer is called **Shallow Neural Network** 

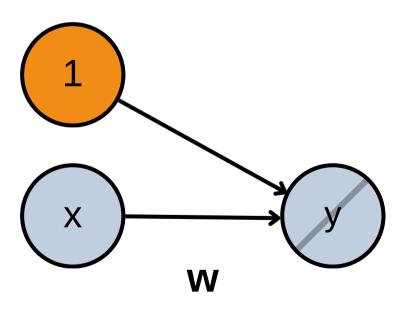
# Why is the ReLU Important?

Non-linear activation functions like the ReLU are crucial in Deep Learning. A shallow neural network with linear activation functions is equivalent to a simple perceptron









## What's Next?

The perceptron can only solve liner problem

- most real life problems are much more complex
- this lead to the AI Winter

We have just introduced shallow neural networks

• if we use non-linear activation functions like the ReLU this is different with respect to a simple perceptron

We still have to understand some things

- can shallow neural networks solve non-linear problems?
- how can we train a shallow neural network?

## Iniversitä Konstan:

## What's Next?

Tomorrow room G420

- introduction to google colab and GPU server
- basic machine learning concepts
- fill the form to get access to the GitHub of the course

https://docs.google.com/forms/d/e/1FAIpQLSc9bKHplUFxv\_jxfY20OYmA0OrjilCcAaC MEICREQtA0t9Q2w/viewform?usp=sharing

Next week

- on Wednesday we answer to the open questions and we introduce the first Deep Neural network, the Multilayer Perceptron
- on Thursday we will implement our first neural network using PyTorch

## Universität (onstan:

# Summary

## **Basic Concepts and Notation**

We introduced the main machine learning concepts like supervised vs unsupervised learning, classification and regression, the loss function

## The Perceptron

The perceptron is the first artificial neural network. It consists in a weighted sum and an activation and allows to perform automatic classification/regression Limits of the Perceptron

The perceptron can only solve linear problems: in the case of classification it draws a linear decision boundary, while in the case of regression it can only perform a linear regression Shallow Neural Networks

The output of a perceptron can be fed into another perceptron, leading to a shallow neural network. The hidden layer must have non-linear activation functions like the ReLU

