
03 | Multilayer Perceptron

Giordano De Marzo

https://giordano-demarzo.github.io/

Deep Learning for the Social Sciences

Recap

Basic Concepts and Notation

Perceptron

Limits of the Perceptron

Shallow Neural Networks

Outline

Shallow Neural Networks1.

Multilayer Perceptron Architecture2.

Training Deep Neural Networks3.

Backpropagation Algorithm4.

Shallow Neural Networks

Combining Perceptrons

h₂

h₃

h₁

y

1

x

1

ϕ₁

ϕ₂

ϕ₃

ϕ₀
θ₀₁
θ₀₂

θ₁₁
θ₀₃

θ₁₂
θ₁₃

θ=

ϕ=

Hidden Layer

We consider again the simple regression problem

with a single input x and output y

we can apply more than one single

perceptron to the input (and dummy)

each of these perceptrons will produce a

different output hᵢ
we can then use these outputs as input for

another perceptron that produce the output y

In this way we are adding an hidden layer to the

neural network

Shallow Neural Networks

More generally we can have neural networks with

as many inputs as we want

as many hidden neurons as we want

The parameters of this neural network will be

contained in two weight matrices

θ connecting the input to the hidden layer

ϕ connecting the hidden layer to the output

This type of neural network with a single hidden

layer is called Shallow Neural Network

h₂

h₃

h₁

y

x₁

x₂

1

θ ϕ

1

x₃

hₙ

...

Mathematical Representation

We denote by x input vector with the dummy

x=(1, x)

The hidden neurons h’=(h₁, h₂, h₃) satisfy

h’=a[θx]

Where a is the ReLU activation.

h₂

h₃

h₁

y

1

x

1

θ=
ϕ

h₂

h₃

h₁

y

1

x

1

θ

ϕ=

Mathematical Representation

We denote by x input vector with the dummy

x=(1, x)

The hidden neurons h’=(h₁, h₂, h₃) satisfy

h’=a[θx]

Where a is the ReLU activation.

We can then define the hidden unit vector as

h=(1, h₁, h₂, h₃)=(1, h’)

and get the output y as

y=a[ϕh]

Where this time a is a linear activation

First we need to compute the product between the input and the first weights vector θ

Computing the Hidden Layer

First we need to compute the product between the input and the first weights vector θ

Computing the Hidden Layer

Then we apply the activation function (ReLU) to get the hidden state vector h

Computing the Output

We then multiply the hidden vector state for the second weight vector ϕ

Computing the Output

We then multiply the hidden vector state for the second weight vector ϕ

Finally we sum the weighted hidden units to get the output y

Universal Approximation Theorem

The Universal Approximation theorem states that

A shallow neural network with a single hidden layer containing a finite number of neurons can

approximate any continuous function

This explains why even relatively simple networks can model complex phenomena, though it does not

provide a method to find the optimal network parameters.

https://giordano-demarzo.github.io/teaching/deep-learning-25/shallow_nn/

https://giordano-demarzo.github.io/teaching/deep-learning-25/shallow_nn/

Multilayer Perceptron

Architecture

Deep Neural Networks: Multilayer Perceptron

A deep neural network is a feed-forward neural network with at least two hidden layers.

The multilayer perceptron (MLP) is the most simple example of deep neural network:

it is composed of an input layer (x), an output layer (y) and at least 2 hidden layers (h, h’)

each neuron

takes the outputs of the neurons of the previous layer

weights (θ, ψ, ϕ) and then sums these outputs, also including the bias

computes and then outputs the result of the (non-linear) activation function (a)

θ
ψ

 ϕ’

Mathematical Representation of MLP

The first hidden layer processes the input

The second hidden layer processes the output of

the first hidden layer

The output layer computes the output processing

the result of the second hidden layer

θ
ψ

 ϕ’

Math Recap

Matrix Multiplication

Matrix Multiplication consists in row by column

multiplications:

the elements (i, j) of the product matrix is

obtained starting from the row i of the first

matrix and the column j of the second matrix

in general matrix multiplication is non

commutative A x B ≠ B x A

the number of columns of the first matrix must

be equal to the number of rows of the second

matrix

Mathematical Representation of MLP

The first hidden layer processes the input

The second hidden layer processes the output of

the first hidden layer

The output layer computes the output processing

the result of the second hidden layer

Matrix Notation

We can write this same neural network in matrix notation. Bold letters denote vectors and mtatrices.

θθ₀

ψ₀ ψ

 ϕ’

h h’

General Formulation

In general we will have K hidden layers h₁...hₖ and K+1 weight matrices Ω₀...Ωₖ and bias vectors β₀...βₖ
Matrix notation is useful to represent large neural networks in a compact notation.

Activation Functions for Hidden Layers

Standard option

Fast computation

No gradient vanishing

Possible replacement for ReLU

No gradient sparsity

Not suitable for dense and convolutional layers:

Gradient vanishing

Used in RNN and GAN

Similar uses and problems of tanh

Activation Functions for Output Layer

Linear
Softmax

Standard option for regression tasks

used in binary classification problems (2 classes)

single output neuron

Used in multi-class classification

problems

N output neurons

Output of each neuron is in (0,1) and is

interpretale as a probability

Let’s Make it Easy

This may seems very complex, but the concept is very easy:

a DNN is just a very complex function with many parameters (weights and biases)

this function takes an input, typically an high-dimension vector, and returns an output

Then why using all those neurons and matrices? Can’t we just use a standard function with a

million parameter and fit this function to the data like we would do with a linear fit?

possible in theory

impossible in practice

DNN are just a very computationally efficient way to represent and fit arbitrary

complex functions

Our goal is thus to adjust the weights and biases of the neural network to make it represent

the function we want (that better fitting real data).

Training

Deep Neural Networks

Training a Multilayer Perceptron

Training a MLP means finding the best weight matrices and bias vectors that make the MLP

output being closer to the desired output. For instance, in a classification task the output must

be 0 and 1 depending on whether the input belongs to a class rather than the other.

This requires three main ingredients:

a Loss Function that quantifies how good is the MLP in performing the desired task

(how close is its output to the desired output)

an Optimization Algorithm that determines how the parameters of the MLP should be

updated to make the Loss decrease

the Backpropagation algorithm, used to compute the derivatives needed in the

Optimization Algorithm

Parameters and Hyperparameters

Before learning how to train a MLP we have to distinguish between the Network’s

Parameters and Hyperparameters

Parameters These are the weights Ω₀...Ωₖ and biases β₀...βₖ of the MLP that are learnt

during the iterative learning process

Hyperparameters These are parameters that must be manually adjusted or tuned using

alternative techniques (e.g. grid search). They include:

neural network architecture (number of layers, number of neurons, activations...)

batch size

learning rate

number of epochs

optimization algorithm

Loss Function

The Loss L is a function that quantifies how distant is

the output of the neural network from the ground truth

(the y of the training data)

it is a function of the neural network parameters

L=L[Ω₀...Ωₖ,β₀...βₖ]
it lives in a very highly dimensional space (brute

force is impossible)

the goal is to find the minimum of the Loss

function, corresponding to the parameters that

produce the best output (closest to the ground truth)

Loss Functions for Regression

In a regression task the neural network receives an input vector xᵢ=(xᵢ₁, xᵢ₂,...) and is tasked with

predicting a continuous value. We denote by yᵢ=yᵢ(xᵢ|Ω₀...Ωₖ,β₀...βₖ) the neural network output and by

ŷᵢ the ground truth. The most common options for the loss are

Mean Square Error

Most popular option

Strongly penalizes outliers

Mean Absolute Error

Good alternative

Less importance to outliers

Loss Functions for Classification

In a classification task the neural network receives an input vector xᵢ=(xᵢ₁, xᵢ₂,...) and is tasked with

predicting to which class the input belongs to. We denote by yᵢ=yᵢ(xᵢ|Ω₀...Ωₖ,β₀...βₖ) the neural

network output and by ŷᵢ the ground truth. Note that in this case the output can be a vector

Binary Cross Entropy

Most popular option for binary classification tasks

Single neuron output + sigmoid (or similar)

Categorical Cross Entropy

Most popular option for multi-class classification tasks

Multiple neurons output + softmax

Why going Deep?

Let us consider a function f(x₁, x₂, ... xₙ) from Rⁿ (input

in n dimensions) to R (output is a real number)

the gradient is a generalization of the derivative for

higher dimensions

it is a vector that contains all the derivatives of the

function with respect to each of its n input

variables

it points in the direction of the greatest rate of

increase of the function

Math Recap

Gradient of a Function

Gradient Descent
The Gradient Descent is an iterative algorithm

that uses the gradient of the Loss function to

compute how to update the weights in order to

make the Loss decrease. It consists of two steps

we denote by Wₜ the set of all weights and

biases at iteration t and we compute the

gradient of the Loss in Wₜ

we use the gradient to update the weights

The process is repeated until the weights stop to

change (the minimum is reached).

Stochastic Gradient Descent

The Gradient Descent has some limits:

it becomes computationally

inefficient for large datasets

it may get stuck in local minima

For these reasons we introduce the

Stochastic Gradient Descent

the dataset is split into mini-batches

(whose dimension is called batch

size)

the weights are updated one mini-

batch at a time

Momentum

In order to reduce fluctuations due to the

stochastic nature of the algorithm we can

introduce momentum. This means taking

into account the “velocity” at the

previous time step and not only the

gradient of the Loss

Typically α~0.9-0.99. This makes the

convergence faster and more regular.

Other Optimization Algorithms

The Stochastic Gradient Descent is a good algorithm, but in Deep Neural Networks it is not

enough. There are many other algorithms to improve convergence:

ADA

ADAdelta

RMSProp

ADAM

These algorithms include momentum and an adaptive learning rate, that varies over time and

is different for each individual weight. In most practical applications ADAM and RMSProp

are generally the best options.

Backpropagation Algorithm

Deriving the Loss

In order to implement any optimization algorithm we need to compute the derivative of the

Loss with respect to each parameter. The Loss is an extremely complex function living in an

highly dimensional space. In order to compute its gradient efficiently we use the

Backpropagation Algorithm:

complex name, simple concept: compute derivatives

it relies on the chain rule of derivatives

it consists of two steps:

a forward pass

a backward pass

Using the Backpropagation makes computing the gradients as time consuming as computing

the Loss, but a lot of memory is required (~10x model size).

Math Recap

Chain Rule for Derivatives

The chain rule is a simple mathematical rule for computing the function of composite

functions. Let us consider two functions f(x) and g(x), we want to compose these functions to

get F=f(g(x)) and then compute the derivative of this composed function with respect to x.

The general rule is

Let us consider for example the functions f(x)=sin(x), g(x)=log(x), leading to F(x)=sin(log(x))

Forward Pass

In the forward pass the DNN is feed with the training examples and it output is computed.

Moreover, for each neuron, the following quantities are stored

the activation of each neuron h

the argument (pre-activation) of each activation f

Backward Pass
In the backward pass, starting from the last layer

and going back till reaching the first, we iteratively

derive the loss with respect to each parameter. This

is done by using the chain rule

we start computing the derivative of the loss

with respect to the weights in the last layer

(easy)

we compute the derivative with respect to the

weights in the previous layer composing

derivatives and using the chain rule to combine

them

The idea is simple, for technical details look in the

book, it is very well explained!

h₂

h₁1

x

1

Example: Forward Pass

First we perform the forward pass and we compute

the following quantities

preactivations f

hidden units h

outputs y

Loss L

Preactivations are the results of the hidden units

computations before we apply the activation function
y

ϕ₁

ϕ₂

ϕ₀
θ₀₁
θ₀₂

θ₁₁

θ₁₂

h₂

h₁1

x

1

Example: Forward Pass

First we perform the forward pass and we compute

the following quantities

preactivations f

hidden units h

outputs y

Loss L

The output of the neural network can be defined in

terms of the hidden units
y

ϕ₁

ϕ₂

ϕ₀
θ₀₁
θ₀₂

θ₁₁

θ₁₂

h₂

h₁1

x

1

Example: Forward Pass

First we perform the forward pass and we compute

the following quantities

preactivations f

hidden units h

outputs y

Loss L

Finally we use the MSE as loss. We denote by ȳ the

ground truth, so that
y

ϕ₁

ϕ₂

ϕ₀
θ₀₁
θ₀₂

θ₁₁

θ₁₂

h₂

h₁1

x

1

Example: Backward Pass

Now we can start derive the loss with respect to the

parameters of the neural network. We start with the

weights of the last layer

y

ϕ₁

ϕ₂

ϕ₀
θ₀₁
θ₀₂

θ₁₁

θ₁₂

We already computed the expression for y

Putting all back together

h₂

h₁1

x

1

Example: Backward Pass

Let’s see what happens when we try do derive with

respect to the weights in the input layer

y

ϕ₁

ϕ₂

ϕ₀
θ₀₁
θ₀₂

θ₁₁

θ₁₂

We need to compute these 4 derivatives

Putting all back together

h₂

h₁1

x

1

Example: Backward Pass

Similar results are obtained also for the biases. The

idea is always the same, using the chain rule.

In summary we get for the first neuron

y

ϕ₁

ϕ₂

ϕ₀
θ₀₁
θ₀₂

θ₁₁

θ₁₂
Try to derive these results also for the remaining

parameters in the neural network. You can also try to

add an hidden layer to see how things progress

Learning Curves

We now have all ingredients for training a DNN

The training process is split in epochs (time steps).

At each epoch the DNN is shown the full dataset and its parameter are updated using

the backpropagation and the optimization algorithm

In order to understand if the network is learning we have to study the learning curve

(how the loss is varying epoch by epoch)

Typically the loss start at high values and gradually decreases till reaching a plateau,

where the network stop to learn

Note, however that the loss curve only tells how good is the DNN on the training data, so

we could overfit the model without noticing it! For this reason we need to use also a

validation and a test set.

Underfitting and Overfitting

Epochs/Model Complexity

L
o

s
s
 F

u
n

c
ti

o
n

Underfitting OverfittingOptimal

While we training the DNN we also compute

the loss on a validation set, that is not used in

the training (data never seen by the DNN)

when the train and validation loss are both

high and close we are in the underfitting

regime (too few epochs/parameters)

when the training loss is low, but the

validation loss is high, we overfitted the data

(too many epochs/parameters)

Our goal is to find the optimum in between!

Double Descent

https://arxiv.org/abs/1912.02292

The picture described in the previous slide is

the standard one, but it is a bit outdated due

to the Double Descent phenomenon

Initially the training and validation/test

loss both decrease

Then we enter the overfitting region

where the validation/test loss grows

However, if we keep increasing the

epochs or the model complexity we

observe a second descent of the loss

This final region is called Inference Region.

https://arxiv.org/abs/1912.02292

Summary

Shallow Neural Networks

Shallow Neural Networks can approximate any arbitrarily complex functions with enough

hidden units. We introduce the mathematical formalism to describe these neural networks.

Multilayer Perceptron Architecture

Deep Neural Networks are neural networks with at least two hidden layers. There is nothing

conceptually different with respect to shallow neural networks.

Training Deep Neural Networks

We need 3 ingredients for training a deep neural network: i. A loss function ii. An algorithm to

minimize the loss (gradient descent) iii. An algorithm to derive the loss (backpropagation).

Backpropagation Algorithm

We can compute the derivative of the loss with respect to the model parameters using the

backpropagation algorithm. It simply consists in applying the chain rule for derivatives.

Next Lectures

Tomorrow Coding Lab (24/04)

We will code and train our first neural network, a multilayer perceptron. You will only need your

laptop and google colab for this

Next week Lecture (30/04)

We will introduce techniques to improve the training of neural networks and the first

unsupervised learning architecture, the Autoencoder. This will be a mixed lecture with both

theory and coding (around half and half), so bring your laptop

Following Lectures

Then for the next 2 weeks we will focus on two conceptually similar architectures: Convolutional

Neural Networks and Graph Neural Networks.

