03 | Multilayer Perceptron

Giordano De Marzo
https://giordano-demarzo.github.io/

|

Universitat HEie

Konstanz

Recap

e Basic Concepts and Notation
e Perceptron
e Limits of the Perceptron

e Shallow Neural Networks

Universitat HEie

Konstanz

Outline

1.Shallow Neural Networks

2. Multilayer Perceptron Architecture
3. Training Deep Neural Networks

4. Backpropagation Algorithm

| v

e e e e e i

[o

I_._,A_I_I

Combining Perceptrons

We consider again the simple regression problem
with a single input x and outputy
e we can apply more than one single
perceptron to the input (and dummy)
e cach of these perceptrons will produce a
different output h;
e we can then use these outputs as input for
another perceptron that produce the outputy
In this way we are adding an hidden layer to the

neural network

Universitat =

Konstanz

010 011]
0=| 0., 0. Hidden Layer

= o

Universitat 5=

= o

Konstanz

Shallow Neural Networks

More generally we can have neural networks with
* 25 many inputs as we want

e as many hidden neurons as we want

The parameters of this neural network will be
contained in two weight matrices

e 0 connecting the input to the hidden layer

e @ connecting the hidden layer to the output

This type ot neural network with a single hidden
layer is called Shallow Neural Network

Mathematical Representation

We denote by x input vector with the dummy

x=(1, x)

The hidden neurons h’=(h1, hy, h3) satisty
>=a[0x]

Where a is the RelLU activation.

hi = a:910 T 9112?:

hQ — a:920 T 92133:

h3 — a:930 T 93133:

Universitat =

Konstanz

Mathematical Representation

We denote by x input vector with the dummy

x=(1, x)

The hidden neurons h’=(h1, hy, h3) satisty
>=a[0x]

Where a 1s the Rel.U activation.

We can then define the hidden unit vector as

h=(1, hq, hy, h3)=(1, i’)

and get the output y as

y=a[¢ph]

Where this time a is a linear activation

y = ¢o + d1h1 + d2ha + P3ha b= (%o

d1

Universitat H

Konstanz

b2 P3)

Universitat HEie

Konstanz

Computing the Hidden Layer

First we need to compute the product between the input and the first weights vector 0
1.0

0.0

010 + 011 ' ' 030 + 031
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0

Universitat =

Konstanz

Computing the Hidden Layer

First we need to compute the product between the input and the first weights vector 0

1.0

0.0-

ol 010 + 0112 | 020 + 0212 ' 030 + 0317

00 10 2000 10 2000 10 20
Then we apply the activation function (RelLU) to get the hidden state vector h

1.0 "

0.0:

sl zatt v onal | |l vl || k= altet tuun]

0.0 1.0 2000 10 2000 1.0 2.0

Universitat HEie

Konstanz

Computing the Output

We then multiply the hidden vector state for the second weight vector ¢

1.0
0.0'- _ -\'
Lol P1hy [Pehe 1 @3hg

Universitat =

Konstanz

Computing the Output

We then multiply the hidden vector state for the second weight vector ¢

1.0

0.0-

1 o- ®1hq ' P2ho ' ¢3hs

b0 10 2000 10 2000 10 20

Finally we sum the weighted hidden units to get the output y

Q o
-l—: il
2 0.0-
H -
-

O .

1 o+ P11 +02ha+p3hs
b0 1020
Input, x

Universitat =

Konstanz

Universal Approximation Theorem

The Universal Approximation theorem states that

A shallow neural network with a single hidden layer containing a finite number of neurons can

approximate any continuous function

This explains why even relatively simple networks can model complex phenomena, though 1t does not

provide a method to find the optimal network parameters.

a) b) c)
1.0 = : — . ‘
|5 linear regions o~ 101 lon] |20 linear regions TN
”~ ‘\\ .f" e -*\‘ ’I’ '1" = ‘\‘ ,J'I 3
Y \ ! T \ / - \ /
;ﬁ o \‘ 'f " I “ !
. \ ! / | /
+J - \ ! /4 \ !
- 0.0- A 4 4 A\ A
. \ ¢ . ; .
49_ | N ‘\\ $’ \ »
-] \ 7 A ':' ‘\‘ ,r'
O] \ / A i \ /
\ ! A I \]
iy A J 1 ' \ I
\ / _/ \ 4
i e S—_ T
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
Input, x Input, Input, x

https://giordano-demarzo.github.io/teaching/deep-learning-25/shallow_nn/

https://giordano-demarzo.github.io/teaching/deep-learning-25/shallow_nn/

| v

e e e e e i

[o

I_._,A_I_I

Universitat s=c=

Konstanz

Deep Neural Networks: Multilayer Perceptron

A deep neural network is a feed-forward neural network with at least two hidden layers.

The multilayer perceptron (MLP) 1s the most simple example of deep neural network:

e it is composed of an input layer (x), an output layer (y) and at least 2 hidden layers (h, h’)
e cach neuron

o takes the outputs of the neurons of the previous layer

o weights (6, ¢, ¢) and then sums these outputs, also including the bias

o computes and then outputs the result of the (non-linear) activation function (a)

Universitat =

Konstanz

Mathematical Representation of MLP

The first hidden layer processes the input

hi = a|bho+ b0z
hoa = ally + 0212
hs = al|b3g+ 0312

The second hidden layer processes the output of

the first hidden layer

f [f I| j |' -
hy = a|thip + YP11hr + i2ho + Y1303
If [| | j | T
hy = a0+ Par1hy + PYasha + Yazhs)
If [| | j | T
hy = alPzo + Y¥31h1 + Y32he + P33h3],

The output layer computes the output processing

the result of the second hidden layer

y' = ¢ + ¢1hy + drhy + P3hs.

Math Recap
Matrix Multiplication

Matrix Multiplication consists in row by column
multiplications:

e the elements (i, j) of the product matrix is
obtained starting from the row 1 of the first
matrix and the column | of the second matrix

e in general matrix multiplication is non
commutative Ax BZBx A

e the number of columns of the first matrix must
be equal to the number of rows of the second

mattrix

v N -

3_ 10 11
5 X |20 21

2
- 30 31

’
4

p— —

10+40+90 11+42+493

1x10 + 2x20 + 3x30 1x11 + 2x21 + 3x31
4x10 + 5x20 + 6x30 4x11 + 5x21 + 6x31

40+100+180 44+105+186

Universitat =

Konstanz

140 146

320 335

|

Mathematical Representation of MLP

The first hidden layer processes the input

hi = al@ 011 . . o
: 710 T 01T, hy th0 011
ha = alblyg + 021 ho| =a | [bao| + |0O21
[' h- 6- 7
hs = alf30+ 0312 [123] - [Y30 | U31

The second hidden layer processes the output of

the first hidden layer

hy = a0+ Yiihi +Y12he + P13hg A e o
, - | | | j 4 Y10 P11
o = a|Wz0 T Yo1h1 + Pagho + 13 h:—}_ ho| =a | || + |21
3 = al\Wzo + ¥31hy + Y32he + Y33hs], h3_ L L¥s0] V31

The output layer computes the output processing

the result of the second hidden layer
i ; f . ! i f ; ; f
UI = @i] (:’fl 1 @fghfg (.13';-5 r{ Yy =@y~ [(Dfl P @;I}

h
h
h

Y12
P22
139

!

1
/

2
!
3

Universitat =

Konstanz

W13 hq
Wa3 ho
V33 ha

Universitat FEas

Konstanz

Matrix Notation

We can write this same neural network 1n matrix notation. Bold letters denote vectors and mtatrices.

¢, ¢

h = alfy+ 0z
h = aly,+ ¥hj
y = ¢p+¢'h,

Universitat F

Konstanz

General Formulation

In general we will have K hidden layers hq...hg and K+1 weight matrices €2o...£2k and bias vectors Bo...Bk

Matrix notation 1s useful to represent large neural networks in a compact notation.

= aﬂn + QI}K]
= a|B; + Qihy]
= a|By + Q2hy)]
Q, € R3%2 Q3 € R**? — ﬁ[ﬁj{_l + QI{—th’—l]
Inout. x Hidden Hidden Hidden Outout
P layer, hy layer, ho layer, hs Pt ¥ Yy = ﬂ KT Qrhpg.

DLZB D1=4 D2=2 D3:3 DUZQ

Universitat HEie

Konstanz

Activation Functions for Hidden Layers

RelLU tanh |
max(0, x) tanh(x) "

e Standard option e Not suitable for dense and convolutional layers:
e Fast computation e Gradient vanishing
e No gradient vanishing e Used in RNN and GAN

ELU J Sigmoid f
x x>0 olx) = 1_,1:
{r_’]f(em —-1) z<0 - o 10 @) e : o

e Possible replacement for ReLU e Similar uses and problems of tanh

e No gradient sparsity

Activation Functions for Output Layer

10

Linear
:I: 10

e Standard option for regression tasks

Sigmoid

o(z) =

1+e—=

D 1

e used in binary classification problems (2 classes)

e single output neuron

Softmax
SoftMax(x;) =

eli

SHEE

e Used in multi-class classification

problems
e N output neurons
e Output of each neuron is in (0,1) and 1s

interpretale as a probability

Universitat HEie

Konstanz

Universitat s=c=

Konstanz

Let’s Make 1t Easy

This may seems very complex, but the concept 1s very easy:
e 2a DNN is just a very complex function with many parameters (weights and biases)
e this function takes an input, typically an high-dimension vector, and returns an output

’—

I'hen why using all those neurons and matrices? Can’t we just use a standard function with a

million parameter and fit this function to the data like we would do with a linear fit?
e possible in theory
e impossible in practice
e DNN are just a very computationally efficient way to represent and fit arbitrary
complex functions
Our goal 1s thus to adjust the weights and biases of the neural network to make it represent

the function we want (that better fitting real data).

V

| v

e e e e e i

[o

I_._,A_I_I

Universitat =2

Konstanz

Training a Multilayer Perceptron

Training a MLLP means finding the best weight matrices and bias vectors that make the MLP

output being closer to the desired output. For instance, in a classification task the output must
be 0 and 1 depending on whether the input belongs to a class rather than the other.
This requires three main ingredients:

e 2 Loss Function that quantifies how good is the MLP in performing the desired task

(how close 1s its output to the desired output)

e an Optimization Algorithm that determines how the parameters of the MLLP should be
updated to make the Loss decrease
e the Backpropagation algorithm, used to compute the derivatives needed in the

Optimization Algorithm

Universitat F

Konstanz

Parameters and Hyperparameters

Before learning how to train a MLLP we have to distinguish between the Network’s

Parameters and Hyperparameters

 Parameters These are the weights £2¢...82k and biases Bo...pk of the MLP that are learnt

during the iterative learning process

e Hyperparameters These are parameters that must be manually adjusted or tuned using

alternative techniques (e.g. grid search). They include:

o neural network architecture (number of layers, number of neurons, activations...)
o batch size

o learning rate
o number of epochs

o optimization algorithm

<I_

Universitat =

Konstanz

L.oss Function)

The Loss L is a function that quantifies how distant 1s

the output of the neural network from the ground truth

(the y of the training data)
e it 1s a function of the neural network parameters
L:L[ﬂo...ﬂk,ﬁo...ﬁk]

e it lives in a very highly dimensional space (brute

force is impossible)
e the goal 1s to find the minimum of the Loss
function, corresponding to the parameters that

produce the best output (closest to the ground truth)

0.0 1.0 2.0
Intercept, ¢

Universitat s=c=

Konstanz

Loss Functions for Regression

In a regression task the neural network receives an input vector xi=(Xi1, Xi2,...) and 1s tasked with
predicting a continuous value. We denote by yi=yi(xi| £20...€2k,Bo...fk) the neural network output and by
yi the ground truth. The most common options for the loss are

e Mean Square Error

o Most popular option

o Strongly penalizes outliers

N
L. Q% o 5] = = D [wilxil . Qs o B) —]

e Mean Absolute Error
o (Good alternative

o Less importance to outliers

N
LI, fo B = 5 D (il 2, o Bi) — G

Universitat s=c=

Konstanz

LLoss Functions for Classification

In a classification task the neural network recetves an input vector xi=(Xi1, Xi2,...) and is tasked with
predicting to which class the input belongs to. We denote by yi=yi(xi | £20...£2k,Po...Bk) the neural
network output and by ¥i the ground truth. Note that in this case the output can be a vector
e Binary Cross Entropy
o Most popular option for binary classification tasks

o Single neuron output + sigmoid (or similar)

L|Qy. .. 02, Bo. . = T Z yilog(yi) + (1 — 9;) log(1 — y;)]

e Categorical Cross Entropy
o Most popular option for multi-class classification tasks

o Multiple neurons output + softmax

N
L[Q .. 2, Bo. = — =7 LLyzclog yzc = —% Zlog(yi,c*)

Why going Deep?

—
increase

#weights

Ladd skip
connections

ResNET-56

arXiv:1712.09913 [cs.LG]

CIFAR-10 dataset

VGG-110

DenseNET-121

Universitat .

Konstanz

4%_ i

Math Recap
Gradient of a Function

Let us consider a function f(x1, X, ... Xn) from R® (input

in n dimensions) to R (output is a real number)

e the gradient is a generalization of the dertvative for

higher dimensions

e it is a vector that contains all the derivatives of the
function with respect to each of its n input
variables

Vf:(df df df)

dei’ dxi’ ' dz,

e it points in the direction of the greatest rate of

increase of the function

Universitat i

Konstanz

Gradient Descent

Slopg, o3

Input, =

Intercé'pt. do

Universitat ==
Konstanz

The Gradient Descent 1s an iterative algorithm
that uses the gradient of the LLoss function to
compute how to update the weights in order to
make the Loss decrease. It consists of two steps
e we denote by Wt the set of all weights and
biases at iteration t and we compute the

oradient of the Loss in Wt

vrw, _ (4L L dL dL
Y\ dQop dQ01 " dBog dBos W,

e we use the gradient to update the weights

Wi = W, — 77VL(VVt)

The process 1s repeated until the weights stop to

change (the minimum is reached).

Universitat 2
Konstanz

Stochastic Gradient Descent

The Gradient Descent has some limits:
e it becomes computationally
inefficient for large datasets
e it may get stuck in local minima
For these reasons we introduce the
Stochastic Gradient Descent

o the dataset is split into mini-batches

(whose dimension is called batch J
Stochastic D /
) DTD I |
Po

Gradient descent gradient desce

-10.0

s1ze)
2.5

10.0 %D 10.0-10.0
0

e the weights are updated one mini-

batch at a time

=il

Universitat 2
Konstanz

Momentum

In order to reduce fluctuations due to the
stochastic nature of the algorithm we can
introduce momentum. This means taking
into account the “velocity” at the
previous time step and not only the

oradient of the Loss

Wii1 = Wi —nvip

Vi = avy + (1 — a) VL(W,) _
Typically «~0.9-0.99. This makes the s) Momentum

30.0 0.0 10.0-10.0 00 -10.0

convergence faster and more regular.

=il

Universitat =2

Konstanz

Other Optimization Algorithms

The Stochastic Gradient Descent 1s a good algorithm, but in Deep Neural Networks it is not

enough. There are many other algorithms to improve convergence:

e ADA

e ADAdelta
e RMSProp
e« ADAM

These algorithms include momentum and an adaptive learning rate, that varies over time and

is different for each individual weight. In most practical applications ADAM and RMSProp
are generally the best options.

| v

e e e e e i

[o

I_._,A_I_I

Universitat s=c=

Konstanz

Deriving the Loss

In order to implement any optimization algorithm we need to compute the derivative of the

Loss with respect to each parameter. The Loss 1s an extremely complex function living 1n an

highly dimensional space. In order to compute its gradient etficiently we use the
Backpropagation Algorithm:
e complex name, simple concept: compute derivatives
e it relies on the chain rule of derivatives
* it consists of two steps:
o a forward pass
o a backward pass

Using the Backpropagation makes computing the gradients as time consuming as computing

the LLoss, but a lot of memory is required (~10x model size).

Universitat FEEEFEE
Konstanz

Math Recap
Chain Rule for Derivatives

The chain rule 1s a simple mathematical rule for computing the function of composite
functions. Let us consider two functions £(x) and g(x), we want to compose these functions to

get F=1(g(x)) and then compute the derivative ot this composed function with respect to x.

The general rule 1s

dF dF dg

de dg dz
Let us consider for example the functions {(X)=sin(x), g(x)=log(x), leading to F(x)=sin(log(x))
dFF dF dg dsin(log(x)) dlog(x) (log()) 1

. = p— — COS(10g|\ X T

dz dg dz dlog(z) dz SV

Universitat HEie

Konstanz

Forward Pass

In the forward pass the DNN 1s feed with the training examples and it output is computed.
Moreover, for each neuron, the following quantities are stored
e the activation of each neuron h

e the argument (pre-activation) of each activation f

Training

{2 O £ L 23 output, y
= oS
o= = O 8 @
O o O
Training Hidden Hidden Hidden Output,

iInput, x layer, h; layer, ho layer, hs flx, ¢ Loss, £

Backward Pass

b
—

>
=

©

QOOO

o
—

OO 000 QOO
?O

(DO

O
~—

(O

@
QOO OO0

QOGN QO

Hidden
layer, h;

Hidden
layer, hy

Hidden
|ayer, h;-}

Training
input, x

O
@,
O
O

O
A

Output,
fix, ¢]

Training
output, y

Y

O—©® ©

O—©

Loss, ¢

Universitat FEas

Konstanz

In the backward pass, starting from the last layer
and going back till reaching the first, we iteratively
derive the loss with respect to each parameter. This
is done by using the chain rule

e we start computing the derivative of the loss
with respect to the weights in the last layer
(casy)

e we compute the derivative with respect to the
welghts in the previous layer composing
derivatives and using the chain rule to combine
them

The idea is simple, for technical details look in the

book, it 1s very well explained!

Universitat s=c=

Konstanz

Example: Forward Pass

First we perform the forward pass and we compute

the following quantities
e preactivations f
e hidden units h
* outputs y
e [Loss L

Preactivations are the results of the hidden units

computations before we apply the activation function

f1 =01z + 0o, hi =a(f)

fo = 0012 + 0p2, ho = a(f2)

Example: Forward Pass

First we perform the forward pass and we compute

the following quantities
e preactivations f
e hidden units h
* outputs y
e [Loss L

The output of the neural network can be defined in

terms of the hidden units

y = ¢1h1 + ¢2hy + ¢y

Universitat s=c=

Konstanz

Example: Forward Pass

First we perform the forward pass and we compute

the following quantities
e preactivations f
e hidden units h
* outputs y
e [Loss L

Finally we use the MSE as loss. We denote by Y the
ground truth, so that

L=(y—7)°

Universitat =

Konstanz

Universitat HEie

Konstanz

Example: Backward Pass

Now we can start derive the loss with respect to the
parameters of the neural network. We start with the
weights of the last layer
dC _ d(y — g)°
d¢1 d¢n
We already computed the expression for y

d
y = ¢1h1 + ¢2ho + @9 = . h1
doq

d
ﬂy—m-&%

Putting all back together

ac
do1

—2(y—7)-hy =20y - by

Universitat HEie
Konstanz

Example: Backward Pass

Let’s see what happens when we try do derive with

respect to the weights in the input layer
i dC dy dhy, dfy

dor ~ dy dh dfi don @
We need to compute these 4 derivatives

. % = 2Ay

‘ % = ¢1

» by =a(fi) = g = d'(f1)

e f1=0nz+ 0y = jgj?l =

Putting all back together

dLl)
E—Qﬁy'(ﬁl'ﬂ(fl)'iﬂ

Universitat s=c=

Konstanz

Example: Backward Pass

Similar results are obtained also for the biases. The
idea is always the same, using the chain rule.

In summary we get for the first neuron

L o,
;ﬁi =2Ay-¢1-d'(f1)
jﬂﬁ =2Ay - ¢1 - d'(f1)

Try to dertve these results also for the remaining
parameters in the neural network. You can also try to

add an hidden layer to see how things progress

Universitat =2

Konstanz

Learning Curves

We now have all ingredients for training a DNN
e The training process is split in epochs (time steps).
e At each epoch the DNN is shown the full dataset and its parameter are updated using
the backpropagation and the optimization algorithm
e In order to understand if the network is learning we have to study the learning curve
(how the loss 1s varying epoch by epoch)
e Typically the loss start at high values and gradually decreases till reaching a plateau,
where the network stop to learn
Note, however that the loss curve only tells how good 1s the DNN on the training data, so

we could overfit the model without noticing it! For this reason we need to use also a

validation and a test set.

Universitat =

Konstanz
Underfitting and Overfittin
o and Overfitting
While we training the DNN we also compute
the loss on a validation set, that is not used in Underfiing Optimal Overfiring
the training (data never seen by the DNN) £
e when the train and validation loss are both é
high and close we are in the underfitting k
regime (too few epochs/parameters) é"““*-mx______a
e when the training loss is low, but the Undernt Epochs/Model omplexity —
validation loss is high, we overfitted the data e e it | ——

(too many epochs/parameters)

Our goal is to find the optimum in between!

Double Descent

The picture described in the previous slide 1s

the standard one, but it is a bit outdated due
to the Double Descent phenomenon
o Initially the training and validation/test
loss both decrease
e Then we enter the overfitting region
where the validation/test loss grows
 However, if we keep increasing the
epochs or the model complexity we

observe a second descent of the loss

This final region 1s called Inference Region.

Universitat FEas

Konstanz

Squared loss

I | I
3 10 40 100 300 800

Number of parameters/weights (x103)

https:/ /arxiv.org/abs/1912.02292

https://arxiv.org/abs/1912.02292

Universitat 5=

Konstanz

= |

Summary
Shallow Neural Networks

Shallow Neural Networks can approximate any arbitrarily complex functions with enough
hidden units. We introduce the mathematical formalism to describe these neural networks.
Multilayer Perceptron Architecture

Deep Neural Networks are neural networks with at least two hidden layers. There 1s nothing
conceptually different with respect to shallow neural networks.

Training Deep Neural Networks

We need 3 ingredients for training a deep neural network: 1. A loss function 1. An algorithm to
minimize the loss (gradient descent) iii. An algorithm to dertve the loss (backpropagation).
Backpropagation Algorithm

We can compute the derivative of the loss with respect to the model parameters using the

backpropagation algorithm. It simply consists in applying the chain rule for dertvatives.

Universitat 5=

Konstanz

= |

Next Lectures

Tomorrow Coding Lab (24/04)

We will code and train our first neural network, a multilayer perceptron. You will only need your
laptop and google colab for this

Next week Lecture (30/04)

We will introduce techniques to improve the training of neural networks and the first
unsupervised learning architecture, the Autoencoder. This will be a mixed lecture with both
theory and coding (around half and half), so bring your laptop

Following Lectures

Then for the next 2 weeks we will focus on two conceptually similar architectures: Convolutional

Neural Networks and Graph Neural Networks.

