
06 | Graph Neural Networks

Giordano De Marzo 

https://giordano-demarzo.github.io/

Deep Learning for the Social Sciences



Learning Filters
Convolutional Neural Networks are based on a very

simple idea:

The parameters we want to learn are the numbers

inside the filter

This is a very powerful approach:

we reuse parameters because the same filter is

applied to all the locations of the images

the filter captures local geometrical features, such

as edges, independently of where they are placed

in the image

the output is another (smaller) matrix that can be

further processed to extract more complex

feattures



Convolutional Layer

Convolution

A convolutional layer consists of F different

filters:

it takes in input an image of dimension WxH

it applies each filter to the input image

the result of each filter is passed through an

activation function (ReLU)

the output consists of F stacked images , one

for each filter

each output image captures different features

of the original image

the hyperparameters are: number of filters,

filters size, stride and padding



Outline

1.Graph Theory

2.Machine Learning on Graphs

3.Convolution on Graphs

4.Graph Convolutional Neural Networks

5.Applications



Graph Theory



What is a Graph

A Graph G(V, E) is a set of vertices or nodes V and

and edges or links E

nodes represent entities in the system (eg.

people on a social network)

edges represent connections among the nodes

(eg. friendship in a social network)

We denote by

N the number of nodes 

E the number of links 

Vertex or

Node

Edge or

Link



Graph Types

There are three main types of graphs

Undirected

Links are bidirectional

E.g. Facebook

Directed

Links are directional

E.g. Twitter

Weighted

Links are weighted

E.g. Road Network



Examples of Graphs

Graphs are everywhere, many systems can be described using this formalism

Undirected

Friendship Networks

Directed

Citation Networks

Weighted

Molecules



The Adjacency Matrix

A graph is mathematically represented by its adjacency

matrix A

it’s an NxN matrix 

the element Aᵢⱼ of the matrix is different from zero

if there is a link going from i to j

Aᵢⱼ=1 in unweighted graphs

Aᵢⱼ=wᵢⱼ in weighted graphs

if the graphs is undirected the adjacency matrix is

simmetric

Aᵢⱼ=Aⱼᵢ

elements on the diagonal (self-loops) are null



Properties of the Adjacency Matrix

The adjacency matrix tell us which are the

neighbors of each node in the graphs. We can use

it to propagate information in the graph

if we multiply A by the one hot representation

of a node x we get the number of path from

that node to all other nodes

if we multiply again we get the number of

paths of length two and so on

We can also use the adjacency matrix to compute

the degree dᵢ (number of links) of each node

dᵢ=ΣⱼAᵢⱼ



Graph Structured Data

Graph structured data are generally described by three

distinct matrices:

Adjacency Matrix Contains the network structure

(following links on Instagram)

Size is NxN 

Node Data Matrix Contains the D nodes features

(gender, age, number of followers)

Size in DxN

Edge Data Matrix Contains the Dₑ edges features

(when the following was made)

Size is DₑxN



Graphs present features that make it very hard to apply machine learning techniques to them

Heterogeneous Structure

While all images in a dataset all have the same number of pixels and the same structure, each

graph in a dataset may have different number of nodes, edges and structure.

Huge Sizes

Many graphs have enormous sizes. For instance online social networks have billions of users

(nodes) and hundred of billions of connections (links).

Monolithic Graphs

Often instead of having many graphs, only a single very large graph is available. Training and

testing must be performed using just this large graph, requiring a different approach.

Challenges of Graph Data



Machine Learning on Graphs



The General Setup

The general approach to graph structured data consists of two conceptual steps

1.Use the nodes (and edge) features and the graph structure to build an hidden (or latent)

representation of each node

2.Use these nodes representations as input for performing other machine learning tasks



1

Nodes Embedding

2

3

4

5

1

2

3

4

51

2

3

4

5

Feature 1

F
e
a
tu

r
e
 2

Latent

Feature 1

L
a
te

n
t

F
e
a
tu

r
e
 2

The latent representation of nodes is often called

embedding

initially each node is characterized by a vector

of features

the GNN combines these features together and

with those of other nodes in the graph

the result are new vector (latent features) that

describer the nodes better, having also

information about how nodes are positioned

within the graph

in generale the latent vector can have any

dimension



Example: Karate Club

For instance we could get node embedding just looking at the structural aspect.

Here the idea is that two nodes will have similar embedding if they are linked in

the network or, more generally, if they have high similarity in the network.



Nodes Classification

In a node classification task the goal is to assign each node in one (or more) graphs to two (or

more) classes. In this case the embedding vectors are feed into a ML algorithm (can also be a neural

network) and the problem is treated as a standard classification. 

Example: Determine targets for ads campaign on social network



Link Prediction

In a prediction task the goal is to predict whether or not a link between two nodes exists or may

exist in the future. In this case the embedding from both involved nodes (and also the edge feature

if present) are feed into a ML algorithm and again the problem is treated as a standard classification.

Example: recommend people to follow on social network



Graph Classification

In a graph classification task the goal is to predict features of the graph as a whole. In this case the

embedding from all nodes are combined  and then feed into a ML algorithm that performs

regression or classification on the graph. 

Example: predict whether or not a given molecule is poisonous



Is the Graph Relevant?

All this is nice, but is the graph structure really relevant? Couldn’t we achieve the same results

only using the nodes (and edges) features as input for a MLP or a Random Forest?

the chemical properties of a molecule strongly depend on their structure. Knowing the

chemical formula is generally completely unusefull

on a social network, the behavior of a person can be strongly influenced by their friends.

Often the features of the majority of people in a social group are more relevant than the

individual features

in order to perform recommendation of followers or friends, it is useful to take into

account the social circle. The friend of my friend is more likely to be, in its turn, a friend

of mine I haven’t connected with yet.



Convolution on Graphs



Properties of Graphs

Similarly to images, also graphs have properties that we

need to consider in order to build a neural network

capable of analyzing them

Structural Locality. Like images, graphs have a

locality prior, meaning that nodes are more likely

influenced by their neighbors than by nodes 4 or 5

links away from them.

Permutation Invariance. If we change the order by

which we list the nodes, the adjacency matrix will

change, but the graph will remain the same. All

operation must preserve this property.



Recap: Image Convolution 

Before considering graphs we recap how we

approached the problem for images

instead of using a MLP, we apply convolutional

layers 

these layers are based on the idea of parameter

sharing 

each layer is composed of many filters and each

filter learns a different feature

filters operate by applying linear operations to a

pixel and its neighborhood 



Images are Special Graphs!

Images can be seen as special graphs:

each pixel is a node

each node is connected to the 8 closest

pixels 

each node has a feature vector (B/W 1

number, color 3 numbers)

The convolution is combining all the

information coming from a pixel and its

neighbors x into a single value hᵢ Input

Image x

Latent  

Representation h



From Images to Arbitrary Graphs

We want to generalize the procedure to

arbitrary graphs:

now the number of neighbors is no

longer fixed 

we can not use kernels of fixed size to

learn parameters 

Despite these limits the idea is the same, we

want to use the graph structure to combine

features coming from neighbors. Each node

will have different number of incoming

contributions.



Translating this into Math

Let us for one moment forget about the

trainable weights. If we want to combine

information from close neighbors we can

use the adjacency matrix

Note that we add to explicitly include the

self-loop, otherwise we lose information

from the node itself. We set Ā=A+I 



Adding Learnable Shared Weights

What type of parameters do we want to learn?

in CNN the weights are inside the filters. These weights are weighting in a different way

all the contributions coming from the 8 different neighbors 

this approach is not feasible in our case since there is no fixed number of neighbors

instead we want the weights to learn relations among features 

these relations are independent on where the node is placed on the graph, so we can

reuse parameters 

This is achieved by multiplying the input features by a matrix of learnable parameters W

The size of W is HxD, where D is the input dimension and H the latent features dimension



What are the Weights Doing?

Let’s try to better understand what the weights are doing

we assume each node to have two features

xⱼ is a vector with two components 

we set the latent dimension H to 3

W is a 3x2 matrix 

When we multiply the matrix with the feature vector, we obtain a new feature vectors with 3

components that contains linear combinations of the original vectors. This is analogous to

what we would do in a perceptron



The Graph Convolutional Layer

We are almost there

the layer we defined in the previous slides has a small issue 

every time we apply the operation we are summing many vectors, one for each neighbor 

if we built a Deep Neural Network, layer after layer these values will grow causing

problems

In order to solve this issue we need to add a normalization. The standard choice is 

Here dᵢ denotes the degree of node i (number of connections). This expression defines the so

called Graph Convolutional Layer. Similarly to a CNN we are aggregating spatial information

and we are reusing parameters in different locations of the graph.



Other Possible Approaches

The normalization we presented in the previous slide is the standard approach, but there are

also other viable options

when the structural properties are very relevant it is better not to normalize.

Normalization destroys some information, for instance about the degree. It should only

be applied when we are mostly interested in the features

another possibility is to only use node i degree to perform the normalization. This gives

the following Graph Neural Network Layer 

There are also more powerful approaches where we automatically learn the normalization

instead of deciding it a priori. We will shortly introduce these techniques later.



Graph Convolutional

Neural Networks



Stacking Layers

A Graph Convolutional Neural Network consists of

several graph convolutional layers stacked one after

the other

the first layer aggregate information (messages)

coming from the first neighbors 

the second layer aggregate information coming

from the second neighbors 

deeper layer allow to better capture how the node

is placed within the graph 

We see that the approach is similar to standard CNN.



Node Classification Task

As an example we consider a node classification task

in a transductive setting:

we only have one large graph

some of its nodes are labelled (train set)

the rest of the nodes have no label (test set)

the goal is to classify the test nodes

In most applications the number of labelled nodes is

quite small compared with the size of the graph.

Moreover the training is performed just on a single

instance of the graph.



MLP Approach

x₂ h₂

x₁ h₁

x₃ h₃

Weights

W₁

Weights

W₂
First we consider the problem from a MLP perspective 

each node i is characterized by a vector of features

xᵢ

we focus on these vectors and we completely

discard the graph

we train a MLP using all the vectors in the training

set and then we use it in the test set

the hidden layers of the MLP produce latenr

representation of the data hᵢ

this is the standard procedure for MLP

classification



GCNN Approach

Shared

weights W₁

Message

passing

Shared

weights W₂

x₁ h₁

x₂

x₃

h₂

h₃

Using a GCNN is not that different 

each node i is characterized by a vector of features xᵢ

we focus on these vectors and also on the graph

structure

now a dense layer is used to create an intermediate

representation of features zᵢ

these representations are combined using the graph

structure to get the latent representation hᵢ

these latent representations are then used for the

classification

The key difference is that we are making the various

latent representations talk using the graph.

z₂

z₁

z₃



Batching Graphs

When we apply GNN to a set of many graphs we need a way to batch them for doing parallel

computing. Since graphs have all different sizes, we can not just stack them like with images. The

idea is to merge many graphs in a giant block graph to process all of them at the same time.



Over-Smoothing Problem

GCNN suffer from the over-smoothing problem. The point is that when we combine many graph

convolutional layers, we are making each node talk with larger and larger portions of the graph.

Since many graphs have the “small world” property, just a few layers are often enough for making

all nodes embedding very similar.



Limits of GCNN

Another relevant limit of GCNN is their tendency to treat all links in the same way:

in a CNN the weights in the filters give different importance to the various neighbors 

in a GCNN the weights given to the neighbors are not learned and instead are fixed a

priori

1 in absence of normalization

1/√(dᵢdⱼ) for the standard convolutional layer

1/dᵢ in the other variation

However we may expect not all links to be equally relevant and we want to make the network

learn which are the most important links by its own

on a social network I can be linked to many people, but the most relevant are those more

similar to me, so with similar feature vectors



Graph Attention Networks

The limit of GCNN is effectively overcome by the so called Graph Attention Networks

(GAT)

the idea is to learn how important is each node for each of its neighbors 

this is similar to the attention mechanism in transformers 

transformers can be seen as special GNN

nodes are the words and they live on a fully connected layer 

We can then modify the graph convolutional layer by adding explicit weights to links

Learning  the aᵢⱼ is computationally expensive. For these reason in GAT the aᵢⱼ are implicitly

defined using the feature vectors and a vector of learnable weights.



GNN Applications



Graphs are Everywhere! 

Graph structured data are ubiquitous and for this reason GNN are a very hot topic. They find

application in very diverse fields, from social networks to chemistry.



Drug Discovery

Molecules can be described by graphs with both node features (chemical properties of the

atoms) and edge features (bond type). Drugs are just special molecules, so we can use GNN

to understand if a molecule can be a drug without having to test it

we use all known drugs to build a train set

we train a GNN over the known drugs

we use the GNN  to get a drugs embedding

we use the embeddings to predict whether or not a given molecule can be used a drug

In this case the setting is similar to the standard Machine Learning approach, since we have

many graphs to classify rather than a single monolithic structure. Once we have a large sample

of potential drugs we can ask chemists to test them.



A Novel Antibiotic 

Researchers applied this techniques to antibiotics

they took large databases of known drugs

never 

they predicted which of them could be

repurposed to work as antibiotics 

chemists studied the ~ top 100 predictions

from the model

This lead to the “discovery” of a very powerful

antibiotic, the Halicin. It was a known molecule,

but it was previously used for other purposes.



Road Networks

A system of road can be described by a network

nodes are the intersections 

links are the streets connecting these

intersections 

Clearly in such a setting we have both node and

edge features

Node features. Presence of traffic light,

presence of roundabout etc

Link features. Road length and width,

average speed, current speed



Getting better ETAs

GNN can be applied on road networks to get more a precise Estimated Time of Arrival. This

is a crucial point for services such as Google Maps and is already being implemented in major

cities, leading to a major improvement in ETAs.



Recommendation Algorithms

All online platforms use recommendation

algorithms to suggest us content to consume or

people to link to. Users and contents can be

arranged in a (bipartite) network, with arrows

connecting users to the content they already

consumed

the idea is to use previous users’ tastes and

choices to recommend new content 

the problem can be treated as a link-prediction

task and can thus be approached with a GNN



GraphSAGE

Applying GNNs to social networks presents a big challenge: networks are huge! In order to

solve this problem researchers proposed GraphSAGE. In this model, instead of considering

the full graph to update each node, only a neighborhood is considered. This technique is

currently being applied, among others, by Pinterest and Facebook.



Summary

Graphs

Many systems can be represented as graphs, mathematical objects composed of nodes and links

Convolution on Graphs

We generalized the concept of convolution to graphs. The idea is to aggregate features coming

from the neighbors to get nodes embeddings. 

Graph Convolutional Neural Networks

By stacking many Convolutional Layers we can build Graph Convolutional Neural Network. We

saw how to implement them using dense layers.

Applications

Since graphs are ubiquitous GNN have countless applications ranging from drug discovery to

recommendation algorithms



Next Lectures and Events

Tomorrow Afternoon CDM Colloquium (15/05 - Room D301 13:30-14:30)

Tomorrow we will have an internal guest, Prof. Peter Selb. The talk is titled “Collider bias and

differential measurement error in survey-based research on political participation”

Tomorrow Afternoon Coding Session (08/05)

In the coding session we will code graph neural network for classifying scientific papers

Next Week

We will introduce Recurrent Neural Networks. These networks are designed to analyze

temporal and sequential data. We will also have a talk by Alessandro Bellina, guest researcher

at the lab. He will talk about conformity experiments using Large Language Models



Date Topic Date Topic

May 28 Transformer and Attention

June 4 Large Language Models June 5 Lab: Working with embeddings

June 25 Fine-tuning Large Language Models June 26 Lab: Fine-tuning LLMs

July 2 Reinforcement Learning and Alignment July 3 Guest Researcher Seminar

July 9 Image Generation and Multimodality July 10 Lab: VAE and Diffusion Models

July 16 Students Presentations July 17 Guest Researcher Seminar

Calendar


