
07 | Recurrent Neural Networks

Giordano De Marzo

https://giordano-demarzo.github.io/

Deep Learning for the Social Sciences

Recap: Graph Structured Data

Graph structured data are generally described by three

distinct matrices:

Adjacency Matrix Contains the network structure

(following links on Instagram)

Size is NxN

Node Data Matrix Contains the D nodes features

(gender, age, number of followers)

Size in DxN

Edge Data Matrix Contains the Dₑ edges features

(when the following was made)

Size is DₑxN

Recap: GCNN

Shared

weights W₁
Message

passing

Shared

weights W₂

x₁ h₁

x₂

x₃

h₂

h₃

Graph Neural Networks are conceptually similar to the

MLP

each node i is characterized by a vector of features xᵢ
we focus on these vectors and also on the graph

structure

now a dense layer is used to create an intermediate

representation of features zᵢ
these representations are combined using the graph

structure to get the latent representation hᵢ
these latent representations are then used for the

classification

The key difference is that we are making the various

latent representations talk using the graph.

z₂

z₁

z₃

Outline

1.Sequence Data

2.Recurrent Neural Networks

3.Long-Short Term Memories

4.Applications

Sequence Data

Sequence Data

Up to now we considered several types of data: numerical data, images, graph

structured data. However many data come in the form of sequences of inputs.

Differently from images or graphs, in this case rather than spatial information we have

to consider temporal relations. Examples of data structured as sequences are

language (sequences of words/letters)

time series (sequences of numbers)

music (sequences of musical notes)

videos (sequences of images)

When dealing with sequential data, it is crucial to carry a memory of past data to

influence the output.

Time Series Analysis

The forecast of stock prices or market

indices is a typical example of sequential

data analysis

is it possible to use one or more time

series as input

also the output can consists in one or

more time series

in this case the number of data points

can often be enormous

capturing both short term and long

term trends is a challenge

Image Captioning

Image captioning consists in associating a

short string of text to an image

the input is an image (typically pre-

processed using a CNN)

the output is a sequence of words

this is an example of one to many

problem

the input is a single value (or matrix)

the output consists in a whole

sequence of variable length

Sentiment Analysis

Sentiment analysis consists in associating a

number (sentiment) to a string of text

(sequence)

the input is a string of text, so a sequence

of variable length

the output is the sentiment

this is an example of many to one

problem

the input is a sequence of variable

lenght

the output is a single value (or matrix)

Sequential data pose new challenges that we can not handle with the tools we have

Heterogeneous Length

Similarly to graph, which are characterized by variable dimensions, sequential data will

generally have a variable length

Temporal Correlations

Sequential data are dominated by temporal correlations that influence future elements in the

sequence

Huge Size

Time series can be extremely long and in areas such as finance we may want to analyze many

of them in parallel to determine correlations between different stocks.

Challenges of Sequence Data

Recurrent Neural Networks

Recurrent Connections

xₜ

yₜ

hₜ

In order to capture temporal dependencies

in the data we add a feedback loop

obtaining a so called Recurrent Neural

Network (RNN)

a RNN is characterized by an hidden

state hₜ
at each time step the RNN takes in

input the value xₜ from the sequence

and the previous hidden state hₜ₋₁
it then produces and output yₜ and a

new hidden state hₜ₋₁

Unfolding a RNN

x₁ x₂ x₃

y₁ y₂ y₃

h₁ h₂ h₃

We can visualize a RNN by unfolding its feedback look. In this way the RNN can be seen as a

series of multiple copies of the same block, each taking in input a different value from the

input sequence. The parameters are the same for each block.

Examples of Tasks

Output

RNN

Input

One to Many Many to One Many to Many

Image Captioning Time Series Translation

RNNs find applications in fields ranging from NLP to Computer Vision.

 ×Wₕₕ

Vanilla RNN

 ×Wₓₕ tanh

 ×Wₕᵧ

xₜ

yₜ

hₜ₋₁ hₜ

a
The Vanilla RNN is the most simple

approach to the problem

we have three matrices of learnable

parameters

the output activation a depends on

the task

the Vanilla RNN is defined by the

following equations

Understading the Vanilla RNN

xₜ

hₜ₋₁

hₜ

tanh

yₜ
Wₕₕ

Wₓₕ

Wₕᵧ

Vanilla RNN Example

1

0.06

0 -0.92

-1.5

3

tanh

σ

For simplicity we consider monodimensional input and hidden vectors and we set Wₕₕ=2,

Wₓ=-1.5 and Wₕᵧ=3. The input sequence is 1, 1, -2.

Vanilla RNN Example

1

0.06

0 2

-1.5

3

tanh

σ

1

0.05

-12

-1.5

3

tanh

σ

-0.9

For simplicity we consider monodimensional input and hidden vectors and we set Wₕₕ=2,

Wₓ=-1.5 and Wₕᵧ=3. The input sequence is 1, 1, -2.

Vanilla RNN Example

1

0.06

0 2

-1.5

3

tanh

σ

1

0.05

2

-1.5

3

tanh

σ

-0.9

-2

2

-1.5

3

tanh

σ

-1

0.76

0.90

For simplicity we consider monodimensional input and hidden vectors and we set Wₕₕ=2,

Wₓ=-1.5 and Wₕᵧ=3. The input sequence is 1, 1, -2.

Parameters Sharing

One of the key properties of RNN is parameter sharing:

similar to CNN and GNN

the same weight matrices are used for all time steps

this adds robustness, but relies on the stationariety assumption

In practice a RNN is like a MLP, but with the same weights matrices used over and

over again

in a MLP the optimization algorithm updates each matrix independently

in a RNN, the updates for each layer are averaged so to get a global update for

the shared weight matrix

Multilayer RNN

x₁ x₂ x₃

y₁ y₂ y₃
Like for standard NN, we can capture

more complex features by stacking

multiple RRNs

we add hidden layers to the network

the hidden state of a layer is feed as

input in the following layer

typically 2 or 3 layers are a

reasonable choice

Encoder-Decoder RNNs

x₁ x₂ x₃

y₁ y₂ y₃

NLP is one of the field where RNNs have been applied the most. The Encoder-Decoded

RNN is an architecture that allows to perform machine translation

it uses a first RNN with matrix W₁ to get the hidden representation of a sequence (h₃ in
the figure)

this hidden representation is feed into another RNN with a different weight matrix W₂
whose output is a new sequence

Gradiente Vanishing and Explosion

Despite their versatility and their ability to handle temporal data, Vanilla RNNs are

characterized by a fatal flaw that makes it very hard to apply these neural networks to very

long sequences

at each time step we use the same weight matrix to update the hidden state and produce

an output

this implies that when we use the backpropagation to compute the gradient, we will have

to multiply many time the same matrix

this is a problem because this will cause the gradient either to explode or to vanish

if the gradient explodes we make jumps that are to large to find the minimum

if the gradient vanishes we need too many steps to reach the minimum

Long Short Term Memories

Limits of Vanilla RNNs

As we already saw Vanilla RNNs have important limits

gradient vanishing and explosions

can be applied only to short sequences (~20 time steps)

they struggle in capturing long term dependencies in the data

In order to improve the performances of Vanilla RNNs we have to

use more complex units that mitigate the gradient issues

handle longer sequences

capture long time dependencies

Long and Short Dependencies

I grew up and studied in Rome. I studied physics. I speak

Long

Short

A relevant aspect we want our RNNs to capture is the presence of both short term

(previous words) and long term (beginning of the paragraph) dependencies in

sequence data. A RNN must handle both, since the latter is crucial for capturing the

context.

Long Short Term Memories

x₁ x₂ x₃

Cell State

Long Memory

Hidden State

Short Memoryh₃

C₃

Long Short Term Memories (LSTM) are a more powerful type of RNN that handle

both long and short dependencies:

long term memories are stored in the cell state C

short term memories are stored in the hidden state h

The output of the network is computed only using the hidden state h

 ×Wf ×Wc

 σ

 ×Wo

 σ

LSTM Unit

xₜ

hₜ₋₁
hₜ

 tanh

 ×Wi

 σ

 tanh

Cₜ₋₁
Cₜ

The LSTM is composed of

4 weight matrices

4 gates

Gates are handles reading and

writing to and from the hidden

and cell state. Like any RNN,

the state from the previous

time step is combined with the

input to update the state

LSTM Mathematical Representation

We stack the 4 weight matrices in a big

matrix W

we have 4 gates

input i

forget f

output o

cell activation g

⊙ denotes elementwise multiplication

the 4 gates are used to update h and c

 ×Wf ×Wc

 σ

 ×Wo

 σ

Forget Gate

xₜ

hₜ₋₁
hₜ

 tanh

 ×Wi

 σ

 tanh

Cₜ₋₁
Cₜ

The forget gates determines

which percentage of the cell

state Cₜ₋₁ the network should

keep in memory

W transforms (hₜ₋₁, xₜ)
the sigmoid transforms

each element in a

percentage producing f

 Cₜ₋₁ is multiplied by f

f

f

 ×Wf ×Wc

 σ

 ×Wo

 σ

Input Gate

xₜ

hₜ

 tanh

 ×Wi

 σ

 tanh

Cₜ

hₜ₋₁

Cₜ₋₁

i

The input gate determines which

percentage of the cell activation

gate g to add to the cell state

W transforms (hₜ₋₁, xₜ)
the sigmoid transforms each

element in a percentage

producing i

 g is multiplied by i

i

 ×Wf ×Wc

 σ

 ×Wo

 σ

Cell Activation Gate

xₜ

hₜ

 tanh

 ×Wi

 σ

 tanh

Cₜ

hₜ₋₁

Cₜ₋₁The cell activation gate

determines what to write on the

cell state

W transforms (hₜ₋₁, xₜ)
the tanh transforms each

element in a number in [-1,1]

producing g

 g is multiplied by i and

added to the cell state

producing Cₜ

c
g

 ×Wf ×Wc

 σ

 ×Wo

 σ

Output Gate

xₜ

hₜ

 tanh

 ×Wi

 σ

 tanh

Cₜ

hₜ₋₁

Cₜ₋₁

o

The output gate determines the

new hidden state

Cₜ is normalized to [-1,1]

using a tanh

W transforms (hₜ₋₁, xₜ)
the sigmoid transforms each

element into a percentage

producing o

 o determines which

percentage of the normalized

Cₜ goes into hₜ

o

LSTM Example: Forget Gate

 (1,1)

 σ

 σ

0.1

0.8

 tanh σ

 tanh

2.3

0.9

0.7

1.6

(2,1) (0,-9) (1,2)

We consider a simple

monodimensional example

Cₜ₋₁=2.3

hₜ₋₁=0.8

xₜ=0.1

The 4 matrices are now

vectors with two

components.

LSTM Example: Input Gate

 σ

 σ

hₜ

 tanh

(2,1)

 σ

 tanh

Cₜ

0.8

2.3

0.1

 (1,1) (0,-9) (1,2)

1.7

0.84

We consider a simple

monodimensional example

Cₜ₋₁=2.3

hₜ₋₁=0.8

xₜ=0.1

The 4 matrices are now

vectors with two

components.

LSTM Example: Cell State Update

 σ

 σ

hₜ

 tanh σ

 tanh

1.0

(2,1) (1,1) (0,-9) (1,2)

0.1

0.8

2.3

0.84

1.6

-0.9

-0.7

-0.6

1.0We consider a simple

monodimensional example

Cₜ₋₁=2.3

hₜ₋₁=0.8

xₜ=0.1

The 4 matrices are now

vectors with two

components.

LSTM Example: Output Gate

 σ

 σ

0.55

 tanh σ

 tanh

1.0

(2,1) (1,1) (0,-9) (1,2)

1.0

0.76

0.1

0.8

2.3

1.0

0.73

0.55

We consider a simple

monodimensional example

Cₜ₋₁=2.3

hₜ₋₁=0.8

xₜ=0.1

The 4 matrices are now

vectors with two

components.

Text Generation with RNNs

H

softmax

Text Generation with RNNs

softmax softmax softmax

RNNs can be used to generate text by

training them to forecast the next character

(or word)

we input a letter

the output of the unit is passed through

a softmax

H

E

softmax

Text Generation with RNNs

softmax softmax softmax

RNNs can be used to generate text by

training them to forecast the next character

(or word)

we input a letter

the output of the unit is passed through

a softmax

the next character is sampled from the

probability distribution

H E

E

softmax

Text Generation with RNNs

softmax softmax softmax

RNNs can be used to generate text by

training them to forecast the next character

(or word)

we input a letter

the output of the unit is passed through

a softmax

the next character is sampled from the

probability distribution

the output character is used as the next

input

H E

E L

softmax

Text Generation with RNNs

softmax softmax softmax

RNNs can be used to generate text by

training them to forecast the next character

(or word)

we input a letter

the output of the unit is passed through

a softmax

the next character is sampled from the

probability distribution

the output character is used as the next

input

the process is iterated

H E L

E L L

softmax

Text Generation with RNNs

softmax softmax

L

O

softmax

RNNs can be used to generate text by

training them to forecast the next character

(or word)

we input a letter

the output of the unit is passed through

a softmax

the next character is sampled from the

probability distribution

the output character is used as the next

input

the process is iterated

H E F

E F L

softmax softmax softmax

L

P

softmax

Loss

Loss Function

In this case the loss function is computed

summing all the errors over all time steps

this process can become very

demanding for long texts

when performing the backpropagation,

gradients must be propagated up to the

beginning of the text

to solve this problem generally the loss

is computed only over the last ~100

elements in the sequence

Example of Text Generation

Example of Code Generation

Summary

Sequence Data

Sequence data are ubiquitous. Language, music, videos and time series are just few examples. In

order to analyze these data we need neural networks that remember past data.

Recurrent Neural Network

We can give neural networks a memory by using feedback loops. Vanilla RNNs are the most

simple example of this approach. They are versatile, but suffer from different problems.

Long Short Term Memories

LSTM are more advanced RNNs that store both a short term and a long term memory. This

allows to process much longer time sequences.

Text Generation with RNNs

RNNs can be used to generate text by a next character/word prediction framework. The idea is

similar to LLMs, but performances are not that good.

Next Lectures and Events

Tomorrow Afternoon CDM Colloquium (22/05 - Room D301 13:30-14:30)

Tomorrow guest is Alessandro Bellina, he is doing a PhD in Rome and currently visiting the

lab. The talk is titled “Conformity in Humans and Large Language Models”.

Tomorrow Afternoon Coding Session (22/05)

In the coding session we will implement a recurrent neural network for time series forecasting

Next Week

We will introduce the Attention mechanism and the Transformer Architecture. No coding

sessions next week

