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Recap: Graph Structured Data

Graph structured data are generally described by three

distinct matrices:

e Adjacency Matrix Contains the network structure
(following links on Instagram)
o Size 1s NxN
e Node Data Matrix Contains the D nodes features
(gender, age, number of followers)
o Size in DxN
e Edge Data Matrix Contains the De edges features

(when the following was made)

O Size iS DeXN

Universitat =

Konstanz

Adjacency
matrix, A

N <X N

e o .
NN | [EN
JEE EEE
SHELCINLC]N
] W m| (=
CHEN [
JEN = W

123456
CILILI
IO
B0
LI
U000 e




Recap: GCNN

OOE0

OE0ON

EEOE

Shared
weights Wy

Message Shared
passing weights W

Ay Ay

Universitat d=is=

Konstanz

Graph Neural Networks are conceptually similar to the
MLP
e cach node i is characterized by a vector of features x;
e we focus on these vectors and also on the graph
structure
e now a dense layer is used to create an intermediate
representation of features gj
e these representations are combined using the graph
structure to get the latent representation 4;
e these latent representations are then used for the
classification
The key difference 1s that we are making the various

latent representations talk using the graph.
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Outline

1.Sequence Data
2.Recurrent Neural Networks
3.Long-Short Term Memotries

4. Applications
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Sequence Data

Up to now we considered several types of data: numerical data, images, graph

structured data. However many data come in the form of sequences of inputs.
Ditferently from images or graphs, in this case rather than spatial information we have
to consider temporal relations. Examples of data structured as sequences are

e language (sequences of words/letters)

 time series (sequences of numbers)

e music (sequences of musical notes)

e videos (sequences of images)
When dealing with sequential data, it is crucial to carry a memory of past data to

influence the output.




Time Series Analysis

The forecast of stock prices or market
indices is a typical example of sequential
data analysis
e is it possible to use one or more time
series as input
e also the output can consists in one or
mote time seties
e in this case the number of data points
can often be enormous
e capturing both short term and long

term trends is a challenge
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Exhibit 1: Goldman Sachs US Portfolio Strategy S&P 500 price targets: The path to 4700 at year-end 2024
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Image Captioning

A young boy is playing Two dogs play in the
basketball. grass.

Image captioning consists in associating a

short string of text to an 1mage
e the input 1s an image (typically pre-
processed using a CNN)

e the output is a sequence of words

A group of people A group of women
walking down a street. dressed in formal attire.
RN

e this 1s an example of one to many

problem
o the input 1s a single value (or matrix)

o the output consists in a whole

sequence of variable length



Sentiment Analysis

Sentiment analysis consists 1n assoclating a
number (sentiment) to a string of text
(sequence)
e the input 1s a string of text, so a sequence
of variable length
e the output 1s the sentiment
e this 1s an example of many to one
problem
o the input is a sequence of variable
lenght

o the output 1s a single value (or matrix)

</

My experience
so far has been
fantastic!

POSITIVE

The productis
okl guess
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Challenges of Sequence Data

Sequential data pose new challenges that we can not handle with the tools we have
Heterogeneous Length

Similarly to graph, which are characterized by variable dimensions, sequential data will
generally have a variable length

Temporal Correlations

Sequential data are dominated by temporal correlations that influence future elements in the
sequence

Huge Size

Time series can be extremely long and in areas such as finance we may want to analyze many

of them in parallel to determine correlations between different stocks.
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Recurrent Connections

In order to capture temporal dependencies
in the data we add a feedback loop
obtaining a so called Recurrent Neural
Network (RNN)
e 2 RNN is characterized by an hidden
state ht
e at each time step the RNN takes in
input the value x¢ from the sequence
and the previous hidden state he-q
e it then produces and output yt and a

new hidden state h¢_q
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Unfolding a RNN

We can visualize a RNN by unfolding its feedback look. In this way the RNN can be seen as a
series of multiple copies of the same block, each taking in input a different value from the

input sequence. The parameters are the same for each block.

— 7 T

X1 X2 X3
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Examples of Tasks

RNNs find applications in fields ranging from NLP to Computer Vision.

One to Many Many to One Many to Many

- 000 0 00Q
~ 000 Q0Q 00U
0 000

Image Captioning Time Series Translation

Input




Vanilla RNN

The Vanilla RNN i1s the most simple
approach to the problem

e we have three matrices of learnable

parameters

° t
t|

ne output activation a depends on

he task

o t

ne Vanilla RNN is defined by the

following equations
hy = tanh(Wpnhi—1 + Wxnx¢)
Yt — a(Whyht)
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Understading the Vanilla RNN
M1

tanh
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Vanilla RNN Example

For simplicity we consider monodimensional input and hidden vectors and we set Whh=2,

Wx=-1.5 and Why=3. The input sequence is 1, 1, -2.

0.06

= o
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Vanilla RNN Example

For simplicity we consider monodimensional input and hidden vectors and we set Whh=2,

Wx=-1.5 and Why=3. The input sequence 1s 1, 1, -2.

0.06 0.05
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Vanilla RNN Example

For simplicity we consider monodimensional input and hidden vectors and we set Whh=2,

Wx=-1.5 and Why=3. The input sequence 1s 1, 1, -2.

0.06 0.05

0.76
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Parameters Sharing

One of the key properties of RNN is parameter sharing:
e similar to CNN and GNN

e the same weight matrices are used for all time steps

 this adds robustness, but relies on the stationariety assumption
In practice a RNN i1s like a MLLP, but with the same weights matrices used over and
over again

e in a MLP the optimization algorithm updates each matrix independently

e in a RNN, the updates for each layer are averaged so to get a global update for
the shared weight matrix
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Multilayer RNN

Like for standard NN, we can capture
more complex features by stacking

multiple RRNs
e we add hidden layers to the network

e the hidden state of a layer is feed as
input in the following layer
o typically 2 or 3 layers are a

reasonable choice

— —
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Encoder-Decoder RNNNs

NLP is one of the field where RNNs have been applied the most. The Encoder-Decoded

RNN i1s an architecture that allows to perform machine translation

e it uses a first RNN with matrix W1 to get the hidden representation of a sequence (hz in

the figure)

e this hidden representation is feed into another RNN with a different weight matrix W

whose output is a2 new sequence

V1 2

¥ e
I, I, I,
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Gradiente Vanishing and Explosion

Despite their versatility and their ability to handle temporal data, Vanilla RNNs are
characterized by a fatal flaw that makes it very hard to apply these neural networks to very
long sequences
e at each time step we use the same weight matrix to update the hidden state and produce
an output
e this implies that when we use the backpropagation to compute the gradient, we will have
to multiply many time the same matrix
e this is a problem because this will cause the gradient either to explode or to vanish
o 1f the gradient explodes we make jumps that are to large to find the minimum

o 1f the gradient vanishes we need too many steps to reach the minimum
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Limits of Vanilla RNNs

As we already saw Vanilla RNNs have important limits

e oradient vanishing and explosions

e can be applied only to short sequences (~20 time steps)
e they struggle in capturing long term dependencies in the data
In order to improve the performances of Vanilla RNNs we have to

e use more complex units that mitigate the gradient issues

e handle longer sequences

e capture long time dependencies
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Long and Short Dependencies

A relevant aspect we want our RNNss to capture is the presence of both short term
(previous words) and long term (beginning of the paragraph) dependencies in

sequence data. A RNN must handle both, since the latter is crucial for capturing the

context.
‘ Short ‘
I grew up and studied in Rome. I studied physics. I speak .....

Lon
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Long Short Term Memories

Long Short Term Memories (LSTM) are a more powerful type of RNN that handle
both long and short dependencies:

* long term memories are stored in the cell state C

e short term memories are stored in the hidden state /

The output of the network 1s computed only using the hidden state /

- Cell State
Cs Long Memory
~ Hidden State
T T T "
X1 X2 X3

Short Memotry
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LLSTM Unit

The LSTM is composed of Ct-1

e 4 weight matrices C
o 4 oates

Gates are handles reading and

writing to and from the hidden

and cell state. Like any RNN, /-1 he

the state from the previous
time step 1s combined with the

input to update the state
p p
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LSTM Mathematical Representation

We stack the 4 weight matrices in a big

matrix W ! 5
e we have 4 gates 5 Lo
o input 1 '(]Z — : W( ;tl)
o forget t g tanh
© output O |
o cell activation g ¢t =f0Oc_1+10g
. denotes elementwise multiplication hi = o0® ta,nh(ct)

o the 4 gates are used to update h and c




Forget Gate

The forget gates determines
which percentage of the cell
state C¢—q the network should
keep 1n memory
e W, transforms (he-q, Xt)
e the sigmoid transtorms
each element in a
percentage producing f
o Ct-1 1s multiplied by f
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Ct-1

X W

ht_1




Input Gate

The input gate determines which
percentage of the cell activation
gate g to add to the cell state
e W transforms (ht-1, Xt)
e the¢ sigmoid transforms each
element 1n a percentage
producing ¢

e gis multiplied by ¢
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Cell Activation Gate
The cell activation gate
determines what to write on the -+ Ct
cell state
e W, transforms (ht-1, Xt) X g
e the tanh transtforms each tanh
element in a number in [-1,1] W,
producing g i
e g1s multiplied by z and  ——

added to the cell state
producing C¢




Output Gate

The output gate determines the
new hidden state

e (t is normalized to [-1,1]
using a tanh

e W transtorms (/%t-1, Xxt)

e the sigmoid transforms each
element into a percentage
producing o

e o0 determines which
percentage of the normalized

Ct goes Into /i
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LSTM Example: Forget Gate

We consider a simple 23 R 16
monodimensional example 0.7
e Ci_1=2.3
e h{_1=0.8
e x+=0.1

The 4 matrices are now

0.9

(L,1)

. 0.8
vectors with two \_

components.

0.1
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LSTM Example: Input Gate
We consider a simple ‘ l

monodimensional example ) 50

e Ciq=2.3 |
® ht_’|:O.8 o

1.7
o —_
Xt Ol (2, 1)
The 4 matrices are now I
vectors with two \ &

components.




LSTM Example: Cell State Update

We consider a simple | 1.6 F 1.0
monodimensional example o 0.6
g Ct_1:2.3 X
0.7
® ht_1:O.8 tanh
0.9
o —_
Xt Ol (0,_9)
The 4 matrices are now I

vectors with two \ J

components.
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LSTM Example: Output Gate

We consider a simple
monodimensional example
e Ci_1=2.3
e h{_1=0.8
e x+=0.1

The 4 matrices are now

0.))

vectors with two

components.
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Text Generation with RNNs

RNNs can be used to generate text by

training them to forecast the next character
(or word)
1 1 1 1

e we Input a letter

softmax softmax softmax softmax

e the output of the unit is passed through :
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Text Generation with RNNs

RNNs can be used to generate text by

training them to forecast the next character
(or word)
1 1 1 1

e we Input a letter

softmax softmax softmax softmax

e the output of the unit is passed through :

a softmax
e the next character 1s sampled from the

probability distribution
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Text Generation with RNNs

RNNs can be used to generate text by

training them to forecast the next character
(or word)
1 1 1 1

e we Input a letter

softmax softmax softmax

e the output of the unit is passed through :

a softmax
e the next character 1s sampled from the

probability distribution

softmax

e the output character i1s used as the next

input
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Text Generation with RNNs

RNNs can be used to generate text by

training them to forecast the next character
L
(or word)
1 1 1 1

e we Input a letter

softmax softmax softmax softmax

e the output of the unit is passed through :

a softmax
e the next character 1s sampled from the

probability distribution

e the output character i1s used as the next
input

e the process is iterated




Universitat HEEE=

Konstanz

Text Generation with RNNs

RNNs can be used to generate text by

training them to forecast the next character
L L
(or word)
1 1 1 1

e we Input a letter

softmax softmax softmax softmax

e the output of the unit is passed through :

a softmax
e the next character 1s sampled from the

probability distribution

e the output character i1s used as the next
input

e the process is iterated




L.oss Function

In this case the loss function 1s computed
summing all the errors over all time steps
e this process can become very
demanding for long texts
e when performing the backpropagation,
gradients must be propagated up to the
beginning of the text
e to solve this problem generally the loss
is computed only over the last ~100

elements in the sequence
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Example of Text Generation

VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.




Example of Code Generation

static void num_serial_settings(struct tty struct *tty)
{
if (tty == tty)
disable single st p(dev);
pci disable spool(port);
return 0;

}

static void do_command(struct seq file *m, void *v)
{
int column = 32 << (cmd[2] & 0x80);
if (state)
cmd = (int) (int state ~ (in 8(&ch->ch flags) & Cmd) ? 2 : 1);
else
seq = 1;
for (i =0; 1 < 16; i++) {
if (k & (1 << 1))
pipe = (in _use & UMXTHREAD UNCCA) +
((count & Ox00000EEATFFTfff8) & Ox000000T) << 8;
if (count == 0)
sub(pid, ppc_md.kexec handle, 0x20000000);
pipe set bytes(i, 0);
}

subsystem info = &of changes[PAGE SIZE];
rek controls(offset, idx, &soffset);

control check polarity(&context, val, ©);
for (i = 0; 1 < COUNTER; i++)
seq puts(s, "policy ");
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Summary

Sequence Data

Sequence data are ubiquitous. L.anguage, music, videos and time series are just few examples. In

order to analyze these data we need neural networks that remember past data.

Recurrent Neural Network

We can give neural networks a memory by using feedback loops. Vanilla RNNs are the most
simple example of this approach. They are versatile, but sutfer from ditferent problems.

Long Short Term Memories
LSTM are more advanced RNNs that store both a short term and a long term memory. This

allows to process much longer time sequences.
Text Generation with RNN's

RNNSs can be used to generate text by a next character/word prediction framework. The idea is

similar to LLLLMs, but performances are not that good.

|
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Next Lectures and Events

Tomorrow Afternoon CDM Colloquium (22/05 - Room D301 13:30-14:30)

Tomorrow guest 1s Alessandro Bellina, he 1s doing a PhD in Rome and currently visiting the
lab. The talk is titled “Conformity in Humans and Large L.anguage Models”.

Tomorrow Afternoon Coding Session (22/05)

In the coding session we will implement a recurrent neural network for time series forecasting
Next Week

We will introduce the Attention mechanism and the Transformer Architecture. No coding

sessions next week
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