
08 | Attention and Transformers

Giordano De Marzo

https://giordano-demarzo.github.io/

Deep Learning for the Social Sciences

Recap: Recurrent Neural Networks

xₜ

yₜ

hₜ

In order to capture temporal dependencies

in the data we add a feedback loop

obtaining a so called Recurrent Neural

Network (RNN)

a RNN is characterized by an hidden

state hₜ
at each time step the RNN takes in

input the value xₜ from the sequence

and the previous hidden state hₜ₋₁
it then produces and output yₜ and a

new hidden state hₜ₋₁

H E L

E L L

softmax

Recap: Text Generation with RNNs

softmax softmax

L

O

softmax

RNNs can be used to generate text by

training them to forecast the next character

(or word)

we input a letter

the output of the unit is passed through

a softmax

the next character is sampled from the

probability distribution

the output character is used as the next

input

the process is iterated

Outline

1.Natural Language Processing

2.Word Embeddings

3.Attention Mechanism

4.Transformer Architecture

Natural Language Processing

What is Natural Language Processing?

Natural Language Processing bridges the gap between

human communication and computer understanding.

It's the field that teaches machines to work with the

language we naturally use every day.

Definition: AI field focused on interaction

between computers and human language

Core goal: Make computers understand, interpret,

and generate human language naturally

The challenge: Transform messy, ambiguous

human language into structured data computers

can process

NLP Applications in Your Daily Life

We interact with NLP systems dozens of times

every day, often without realizing it. These

technologies have become so seamless that they

feel like magic.

Google Translate and Google Search

ChatGPT & Virtual Assistants

Email spam detection

Sentiment analysis

Auto-complete & suggestions

NLP is one of the most relevant domain where

Deep Learning is applied

ChatGPT

Google Translate

NLP Challenges
Human language is incredibly complex and

context-dependent. What seems obvious to us is

actually a nightmare for computers to understand.

Ambiguity: "I saw the man with the telescope"

Context dependency: "Bank" (river vs.

financial institution)

Sarcasm and irony: "Great weather!" during a

storm

Cultural references and idioms

Grammar variations and informal language

On top of this we need also to consider the

presence of long distance correlations

Limits of RNN in NLP

Despite their success, RNNs have fundamental

limitations that become obvious with longer texts

Sequential bottleneck: Must process one

word at a time - no parallelization possible

Vanishing memory: Information from early

words gradually fades away

Distance problem: Struggle to connect

words that are far apart in a sentence

This isn't just an engineering problem - it's a

fundamental architectural limitation.

The Need for a Revolution

The limitations of RNNs pointed us toward what we really needed in language processing.

Parallel processing: Handle all words simultaneously, not sequentially

Long-range connections: Connect any word to any other word directly

Scalable memory: Remember important information regardless of distance

Efficient computation: Handle long documents without exponential slowdown

The breakthrough came in 2017 with a paper titled "Attention is All You Need." The

solution: Replace recurrence with attention mechanisms.

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Word Embeddings

1.2

-0.3

1.8

.

.

.

0.6

0.1

-0.7

T
e
x
t

1

0.4

1.1

-0.9

.

.

.

-0.2

0.8

-1.2

T
e
x
t

2

-0.8

0.6

-0.6

.

.

.

1.5

0.3

1.4

T
e
x
t

3

Text 1

Text 2

Text 3

From Words to Numbers

Before we can train language models, we need to

solve a fundamental problem

The basic problem: Computers only

understand numbers, not words

Why this matters: Everything in NLP starts

with converting language to mathematics

We need to bridge the gap between human language

and machine computation.

This is the first time we encounter this problem

Images have a natural matrix representation

Graphs are stored as matrices

What about texts?

Tokenization

The first step in any NLP pipeline is breaking text into

manageable pieces.

Definition: Splitting text into individual units

(tokens) that computers can process

"Hello world!" → ["Hello", "world", "!"]

The tokenizer is characterized by a vocabulary

Each word in the vocabulary is assigned a

number or code

The text is transformed into numbers

Modern approach: Subword tokenization

Examples are WordPiece or BPE

Less common words tend to be split

Tokenization example generated by Llama-3-8B.

Each colored subword represents a distinct token.

https://medium.com/data-science/the-art-of-

tokenization-breaking-down-text-for-ai-43c7bccaed25

https://medium.com/data-science/the-art-of-tokenization-breaking-down-text-for-ai-43c7bccaed25
https://medium.com/data-science/the-art-of-tokenization-breaking-down-text-for-ai-43c7bccaed25

1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

One-hot Encoding

The first attempt at converting tokens to numbers uses one-

hot encoding

The idea: Create a binary vector for each word in our

vocabulary

Each vector has as many component as the

vocabulary size

Only one entry is equal to one

Problems with one-hot encoding:

Dimension explosion

No relationships: "cat" and "dog" are equally distant

from each other as "cat" and "airplane"

Sparse and inefficient: Mostly zeros, waste of memory

the

cat

and

the

dog

What Are Word Embeddings?

Word embeddings solve the problems of one-hot

encoding by creating dense, meaningful representations.

They are coordinates in a "meaning space."

Words are points in high-dimensional space

Each word becomes a list of real numbers (typically

100+ dimensions)

Similar words should have similar vectors

Closer points = more similar meanings

Advantages over one-hot encoding:

Compact (100/1000 dimensions vs 50,000+)

Captures semantic relationships

Works for words not seen during training

Ki
ng

Q
ue
en

Pri
nce

Lion

D
o
g

W
o
lf

RomaParis
Berlin

Word2Vec: Learning

Word Meanings Word2Vec if one of the first embedding models

Core insight: "You shall know a word by the

company it keeps" (J.R. Firth, 1957)

Training task: Given a center word, predict its

surrounding context words

Input "sits" → predict ["cat", "on", "the", "mat"]

How it works step by step:

Slide a window across millions of sentences

For each center word, predict its neighbors

Neural network adjusts word embedding vectors

Words that appear in similar contexts end up

with similar vectors

The Amazing Properties of Embeddings

Once trained, word embeddings exhibit remarkable

mathematical properties that mirror human language

understanding. Vector arithmetic becomes semantic

reasoning, for instance:

Semantic relationships: King - Man + Woman ≈ Queen

Geographic patterns: Paris - France + Italy ≈ Rome

The interpretation is that different directions in the

embedding space encode different concepts or meanings

(e.g. “royalty” direction or “capital city” direction)

The embedding space organizes itself to reflect real-

world relationships. These weren't programmed in -

they emerged naturally from training on text.

Male-Female

Country-Capital

Embedding spaces are extremely high dimensional

Visualizing them directly is impossibile!

Often embedding spaces are visualized using

dimensionality reduction techniques (t-SNE, UMAP)

Clustering behavior: Similar words and texts

naturally group together

Semantic neighborhoods: Countries cluster,

animals cluster, colors clusters

Dimensionality reduction is often a good test to

understand if the embedding are meaningful

Visualizing Embedding

Spaces

Static embeddings have a fundamental flaw: they

give each word exactly one representation,

regardless of context

"Spring" always gets the same vector

However the meaning of “Spring” depends on

the context it is used in

Many words have multiple meanings

Word2Vec can’t distinguish between different

uses of the same word

The solution to this are contextual embeddings

that change based on surrounding words.

Limitations of Static Embeddings

Spring is my

favorite season

The water of the

spring is very clean

Last night I broke

one spring in my bed

Sp
rin

g

Beyond Static Embeddings

Spring is my

favorite season

The water of the

spring is very clean

Last night I broke

one spring in my bed

Spring

Sp
ri
ng

Sp
rin

g

Static embeddings have a fundamental

limitation: one word, one meaning, regardless of

context

What we need: Dynamic embeddings that

change based on context

The key insight: Words should influence

each other's representations

The solution: Let words "look around"

and adjust their meaning based on what

they see

The result is that the same word will be

embedded in different ways depending on

how it is used and its context

The Attention Revolution
In 2017, a single paper changed everything in AI.

“Attention Is All You Need” introduced a mechanism

that solved the context problem and became the

foundation of modern language models.

Words pay attention to other words

Inspired to how humans focus on relevant

information when reading

Words can directly influence each other's

representations

Attention gives the model the ability to focus on

relevant words

 This paper launched the era of large language

models, from BERT to ChatGPT

What is Attention Doing?

Attention creates connections between words, allowing them to influence each other's representations.

Instead of isolated meanings, words now share information based on relevance and context.

https://www.comet.com/site/blog/explainable-ai-for-transformers/

https://www.comet.com/site/blog/explainable-ai-for-transformers/

Example: Attention

Attention Mechanism

The Attention Mechanism in Short

Attention works in three logical steps that mirror how humans focus on relevant information

Step 1: Find the relevant words (Query ↔ Key matching)

Each word asks "what should I pay attention to?" (Query)

Each word advertises "here's what I can offer" (Key)

We match queries with keys to find relevance (attention) scores

Step 2: Understand how relevant words should influence others (Values)

Each word provides "here's the information I want to share" (Value)

Values contain the actual content that will modify other words

Think of values as the "message" each word wants to send

Step 3: Apply the modifications (Weighted combination)

Use attention scores to blend information from relevant words

Each word gets updated based on what it paid attention to

Result: context-aware representations

Input Text and Initial Embeddings

In the beginning we start with just a simple raw text:

A fluffy blue creature roamed the verdant forest

The first step is converting each word from the input text into static embeddings, like with

Word2Vec

Starting point: Each word gets converted to its embedding vector

Key insight: These are static embeddings - each word always starts with the same vector.

What's coming: Attention will create dynamic, context-aware versions of these embeddings.

The magic happens when these static representations start talking to each other through

attention.

Every word asks “what information do I need from

other words?” The query vectors express these questions

Purpose: Each word creates a query vector to find

relevant information

Example intuition:

Verb “roamed” might query for: “show me the

subject and object”

Noun “creature” might query for: “show me

what adjectives refer to me”

Different words create different queries vectors based on

what they need to understand. These vectors live in a

smaller dimensional space

Query Vectors
1.2

-0.3

1.8

.

.

.

0.6

0.1

-0.7

-0.9

0.5

.

.

.

1.1

0.4

d
Q

d
E

Eᵢ
Qᵢ

Adjectives before?

N
ou

ns
 b

ef
or

e?

Verb before?

D
if

fe
r
e
n

t
p

o
s
s
ib

le

Q
u

e
r
y
 V

e
c
to

r
s

1.2

-0.3

1.8

.

.

.

0.6

0.1

-0.7

Eᵢ

-0.9

0.5

.

.

.

1.1

0.4

QᵢW
Q

dE

d
Q

-0.2

1.5

.

.

.

-0.1

3.7

1.9

2.1

.

.

.

1.4

0.1

···

···

···

···

···

=×

The Query Matrix is a matrix of learnable

parameters that transforms initial embeddings

into query vectors.

Dimensions: [embedding_dimension ×

query_space_dimension]

Function: Transforms any input embedding

into a query vector by matrix multiplication

The same transformation matrix is used for all

words in all positions. We are effectively reusing

parameters across the whole text

“creature” × W_Q = query expressing what

“creature” needs to know

The Query Matrix

Example: Query

While queries ask “what do I need?”, keys answer

“what can I provide?”. Every word advertises

what information it has available

This information is encoded in the key

vectors

They live in the same space as the query

vectors (same dimension)

These vectors are computed multiplying the

key matrix for the embedding vectors

Example intuition:

“blue” × W_K = key expressing that “blue”

is an adjective that can affect close nouns

Key Vectors and Matrix
1.2

-0.3

1.8

.

.

.

0.6

0.1

-0.7

Eᵢ

0.1

-1.3

.

.

.

0.7

-0.3

KᵢW
K

dE

d
Q

1.1

0.4

.

.

.

-2.1

1.5

-2.3

2.1

.

.

.

-0.6

3.1

···

···

···

···

···

=×

I’m
 an adjective

I’m
 a

 n
ou

n

I’m a verb

D
if

fe
r
e
n

t
p

o
s
s
ib

le

K
e
y
 V

e
c
to

r
s

Example: Key

Attention Pattern

K₁

K₂

Kₙ

Q₁ Q₂ Qₙ

.

.

.

...

K₁·Q₁

K₂·Q₁

Kₙ·Q₁ Kₙ·Qₙ

K₁·QₙK₁·Q₂

The attention pattern emerges when we compute

how well each query aligns with each key. We use

scalar products to measure this alignment

For each query vector, we compute its scalar

product with every key vector

The results is the Attention Pattern

It is a square matrix where each cell shows

alignment between one query and one key

Reading the attention matrix:

Rows represent “who is asking”

Columns represent “who is being asked”

Higher scores = stronger attention

Example: Attention Patterns

Softmax Normalization

Raw attention scores need to be converted into proper probabilities. Softmax ensures that each

word's attention adds up to 100% - a complete probability distribution.

Why normalize: Raw scores can be any size - we need probabilities between 0 and 1

Softmax function: Converts any set of numbers into probabilities that sum to 1

Effect:

High scores become high probabilities (close to 1)

Low scores become low probabilities (close to 0)

All probabilities for each word sum to exactly 1.0

Each word has 100% of its “attention budget” to distribute among all other words.

Result: Clean probability matrix showing exactly how much attention each word gives to every

other word.

Konstanz University

U
ni
ve
rs
ity

Values

Values contain the actual information that words

want to share with others.

Keys advertise “what I have”

Values contain the actual content to be shared

They live in the same space as the original

embedding vectors

Example intuition:

Adjective “blue” might share information

about it being a specific color

Noun “Konstanz” might share information

connected to the location

“I work in Konstanz University”

Value vector of “Konstanz”

The Value Matrix

The Value Matrix (W_V) is the third crucial

transformation that determines what

information each word actually shares.

It is a learned parameter matrix (W_V) with

dimensions [embedding_dimension ×

embedding_dimension]

Transforms embeddings into value vectors

containing shareable information

Mathematical operation:

Value_Vector = Input_Embedding × W_V

The value matrix transforms the embedding

vectors into the information they will share

1.2

-0.3

1.8

.

.

.

0.6

0.1

-0.7

Eᵢ VᵢW
V

dE

d
E

-0.2

1.5

.

.

.

-0.1

3.7

1.9

2.1

.

.

.

1.4

0.1

···

···

···

···

···

=×

1.2

-0.3

1.8

.

.

.

0.6

0.1

-0.7

Example: Value

E’

E

ΔEᵢ

ΔEⱼ

Computing Embeddings Variations

Finally we use attention weights to create new

embeddings by mixing information from

different words.

Attention weights: How much each word

should focus on every other word

Value vectors: What information each word

wants to share

We compute the variation of each

embedding as the sum of values weighted

by attention

Each word gets a customized embedding

based on its unique attention pattern.

“I can’t go to the university because it snowed in

Konstanz.”

Example: Modified Embeddings

The Attention Equation

Everything we've learned can be summarized in one equation.

This is the mathematical heart of the attention mechanism.

QK’: Match queries with keys to get raw attention scores

Softmax(...): Convert scores to probabilities that sum to 1

... × V: Use probabilities to combine value vectors

What each part does:

Q (Query): What each word is looking for

K (Key): What each word advertises

V (Value): What each word actually provides

Transformer Architecture

The Transformer

The Transformer is the architecture that revolutionized AI. It is

composed of

Input embeddings: Convert words to vectors

Positional encoding: Add position information to

embeddings

Multi-head attention: The mechanism we just learned,

with multiple heads

Feed-forward network (MLP): Add external knowledge

and processing power

The last two blocks are repeated multiple times allowing the

model to develop a deep understanding of texts and relations

between words

Positional Embedding

Attention has a major blindness: it doesn't know

the order of words! “Cat ate fish” and “Fish ate

cat” would look identical to pure attention.

We need to add positional information.

“The cat chased the mouse” ≠ “The mouse

chased the cat”

The solution: Add positional information to

each word's embedding

How it works:

Create a unique "position signature" for each

position (1st word, 2nd word, etc.)

Add this signature to the word embedding

Low-Rank

Decomposition

Creating value vectors would require a huge matrix.

In practice, we use a trick to save on parameters

The efficiency problem:

Large models need large transformation

matrices

Example: 768×768 matrix = nearly 600,000

parameters

Multiply by many attention heads and layers

= billions of parameters just for values

The solution: Instead of one big transformation,

use two smaller ones in sequence

In practice this is equivalent to write the

value matrix as the product of two smaller

matrices

Multi-Head Attention

Just like CNNs use multiple filters to detect

different features, Transformers use multiple

attention heads to capture different types of

relationships.

CNN filters detect edges, textures, shapes -

each attention head detects different

linguistic patterns

Each head learns different relationships:

Head 1: Subject-verb relationships

Head 2: Adjective-noun relationships

Head 3: Long-distance dependencies
Image from: "Analyzing and controlling inter-head diversity in multi-

head attention." Applied Sciences 11.4 (2021): 1548.

Example: Multi-Head Attention

Multilayer Perceptron

After attention mixes information between words, we process the embedding with a MLP

Input: same dimension as embeddings

Hidden layer: typical choice 4× expansion + ReLU (or similar)

Output: back to original size

.

.

. +

1.2

-0.3

1.8

.

.

.

0.6

0.1

-0.7

.

.

.

E’ᵢ
1.2

-0.3

1.8

.

.

.

0.6

0.1

-0.7

E’ᵢ

Fully Connected

Layer

+ Element-wise sum

What is the MLP Doing?

While attention combines meaning between words in the current text, the MLP adds knowledge from

outside the text - facts learned during training on massive datasets.

Attention's job: “Michael” and “Jordan” appear together → they're related

MLP's job: Add the fact that “Michael Jordan is a basketball player”

Examples of external knowledge:

"Paris is the capital of France" (geographic facts)

"Einstein developed relativity theory" (historical facts)

"Cats are animals" (taxonomic relationships)

"Winter is cold" (common sense knowledge)

Attention handles "what words relate to each other in this text" while MLP handles "what do

I know about these concepts from my training."

Repeat, Repeat, Repeat

The power of Transformers comes from stacking many

attention and MLP layers. Each layer builds more

sophisticated understanding on top of the previous layers.

Typical architectures:

BERT-Large: 24 layers

GPT-3: 96 layers

What each layer adds:

Layer 1-2: Basic word relationships and syntax

Layer 3-6: Phrase-level understanding and local context

Layer 7-12: Sentence-level meaning and complex

relationships

Layer 13+: Abstract reasoning and complex inference

After all this processing through multiple layers, what do we actually get? The output is a set of

context-aware embeddings - one for each input word, but now incredibly rich with information.

Each word's final representation is a rich summary of both its original meaning and all its

relationships in this specific context.

These refined embeddings can be used for any language task - classification, question

answering, or further text generation.

What Comes Out of the Transformer?

The “True” Transformer
What we've described is actually a simplified version focused

on understanding text. The original Transformer paper

described a more complex encoder-decoder architecture

designed for translation tasks.

What we learned: Encoder-only architecture (like BERT)

Takes input text and creates rich representations

Good for understanding tasks

Original Transformer (2017): Encoder-Decoder

Designed for translation: English → French

Encoder: Processes input text (what we described)

Decoder: Generates output text word by word

Cross-attention: Decoder attends to encoder's

representations

Summary

Natural Language Processing

Human language is complex and context-dependent, making it challenging for computers to

understand. RNNs were our first successful approach but suffered from various limitations

Word Embeddings

Word embeddings like Word2Vec create dense vector representations where similar words cluster

together. However, static embeddings give each word only one representation regardless of context.

Attention Mechanism

Attention creates dynamic word representations through queries, keys, and values, allowing words

to focus on relevant information and influence each other's meanings.

Transformer Architecture

The Transformer combines multi-head attention with MLPs and stacks many layers to build

sophisticated language understanding.

Next Lectures and Events

Tomorrow no coding session

This was a mostly theoretical lecture, so the holiday fits perfectly

Next Week

We will see how the attention mechanism and the transformer architecture are used to create

Large Language Models. We will consider both embedding models and generative model and

we will focus on how these models work and are trained.

Next Week CDM Colloquium (05/06 - Room D301 13:30-14:30)

“The Politics of Climate Change Mitigation: Evidence from the Ninth European Parliament”.

Thomas Däubler (University College Dublin)

