
09 | Large Language Models

Giordano De Marzo

https://giordano-demarzo.github.io/

Deep Learning for the Social Sciences

The Attention Equation

Everything we've learned can be summarized in one equation.

This is the mathematical heart of the attention mechanism.

QK’: Match queries with keys to get raw attention scores

Softmax(...): Convert scores to probabilities that sum to 1

... × V: Use probabilities to combine value vectors

What each part does:

Q (Query): What each word is looking for

K (Key): What each word advertises

V (Value): What each word actually provides

The Transformer

The Transformer is the architecture that revolutionized AI. It is

composed of

Input embeddings: Convert words to vectors

Positional encoding: Add position information to

embeddings

Multi-head attention: The mechanism we just learned,

with multiple heads

Feed-forward network (MLP): Add external knowledge

and processing power

The last two blocks are repeated multiple times allowing the

model to develop a deep understanding of texts and relations

between words

Outline

1.Large Language Models

2.Decoder-Only Models

3.Encoder-Only Models

4.Scaling LLMs

Large Language Models

What Are Large Language Models?

LLMs are transformers with specific characteristics that enable unprecedented language capabilities.

“Large” = Scale: Millions to trillions of parameters, massive text datasets, significant compute

“Language” = Text focus: Trained on language modeling

“Model: = Machine learning system: Mathematical function that learns patterns from data

The Three Families of LLMs

LLMs can be optimized for different tasks

through their attention patterns.

Encoder-Only (like BERT):

Reads entire text simultaneously with

bidirectional attention

Decoder-Only (like GPT):

Reads text left-to-right, predicts next

word with causal attention

Encoder-Decoder (like T5):

Understands input completely, then

generates output with cross-attention

Attention Patterns - The Key Difference

The same transformer architecture can have completely different capabilities depending on how

attention is applied.

Bidirectional Attention (Encoder-Only):

Every word can “see” every other word simultaneously

Like reading the entire book before answering questions

Causal Attention (Decoder-Only):

Words can only “see” previous words, never future ones

Like writing a story one word at a time, naturally

Cross Attention (Encoder-Decoder):

Decoder words “look at” all encoder words for context

Like having a reference text while writing

Encoder-Only LLMs

These models excel at understanding because they

can see the complete context simultaneously.

They're the “reading comprehension masters” of

the AI world.

Bidirectional self-attention: Each word

attends to ALL words in the sequence

No masking: Complete visibility across the

entire sequence

Multiple layers: Building increasingly

sophisticated understanding (12-24 layers)

Perfect for understanding: Can resolve

ambiguity using full context

Decoder-Only LLMs

These models generate text naturally by predicting

one word at a time, just like humans write. This

constraint actually makes them incredibly powerful

and scalable.

Causal self-attention: Each word only sees

previous words in the sequence

Lower triangular masking: Future tokens are

systematically hidden

Autoregressive generation: Each prediction

becomes input for the next step

Natural training: Can learn from any text

without special formatting

Encoder-Decoder LLMs

In Encoder-Decoder models cross attention is the

bridge between comprehension and generation.

The core challenge: Need both complete input

understanding AND natural generation

Three attention types working together:

Encoder self-attention: Understanding input

(bidirectional)

Decoder self-attention: Generating

coherently (causal)

Decoder cross-attention: Using input

information (encoder → decoder)

Choosing the Right Architecture

Modern trends are shifting toward decoder-only for versatility, but specialized tasks still

benefit from targeted architectures.

Use Encoder-Only when you need deep understanding:

Sentiment analysis, document classification, question answering

You have labeled data for specific classification tasks

Use Decoder-Only when you need generation or versatility:

Chatbots, creative writing, code generation, general AI assistants

You want one model for multiple tasks (through prompting)

Use Encoder-Decoder for transformation tasks:

Translation, summarization, data-to-text generation

You have clear input-output pairs for training

Training Encoder-Only Models

Masked Langugage

Modeling
Masked Language Modeling (MLM) is the

breakthrough idea that made BERT possible.

This becomes the primary training objective for

encoder-only models.

Random masking strategy: Replace

around 15% of tokens during training

Masking breakdown: 80% → [MASK],

10% → random word, 10% → unchanged

Training objective: Cross-entropy loss on

masked token predictions

Self-supervised learning: No labeled data

needed, just raw text

Special Tokens

BERT introduced several special tokens to handle

different aspects of text processing

[CLS] token (Classification):

Added at the beginning of every sequence

Designed to aggregate information

[SEP] token (Separator):

Separates different sentences or segments

[MASK] token:

Replaces hidden words during MLM

Not used during inference, only training

[PAD] token (Padding):

Fills sequences to consistent length

Ignored by attention mechanism

Next Sentence Prediction

Next Sentence Prediction was BERT's secondary training

objective, specifically designed to train the [CLS] token for

sentence-level understanding

Binary classification task: Given two sentences A and

B, predict if B follows A naturally

Training data creation:

50% positive pairs: Consecutive sentences from

documents

50% negative pairs: Random sentence pairs

Training process: [CLS] → Linear layer → Binary

prediction (IsNext/NotNext)

This approach allows the [CLS] token to capture

sentence level features

Encoder Models for Downstream Tasks

After pre-training with MLM (and NSP), encoder models

are adapted for specific tasks through fine-tuning.

Add small task-specific layers on top of pre-trained

encoder

Three main task types:

Sentence classification:

[CLS] → Linear layer → Class probabilities

Token classification:

Each token → Linear layer → Token labels

Sentence pairs:

Two sentences → [CLS] → Binary classification

Using a pretrained encoder drastically reduces the

data and training requirements

Sentence Embeddings
Getting meaningful sentence representations

from individual word vectors is non-trivial

Each token has its own embedding

vector

Need single vector to represent entire

sentence

There are different strategies:

[CLS] token: BERT's approach,

pre-trained aggregation

Mean pooling: Average all token

embeddings (ignoring padding)

Max pooling: Element-wise

maximum across token embeddings

Limits of BERT Models

Despite BERT's success in classification tasks, it has fundamental limitations when it comes to creating

meaningful document or sentence embeddings.

[CLS] token limitations:

Trained primarily for classification, not similarity

NSP objective doesn't teach semantic similarity

Pooling strategy problems:

Averages out important distinctive features

Pooling strategy is not optimized for semantic similarity during training

Training objective mismatch:

MLM focuses on word-level prediction, not document-level semantics

No similarity signal during pre-training

BERT embeddings often perform poorly on semantic similarity tasks without task-specific

fine-tuning, creating need for specialized embedding models.

The solution to BERT's limitations is training

models by contrastive learning

Core principle: Pull similar sentences

together, push dissimilar ones apart in

embedding space

Training approach: Use pairs of

similar/dissimilar sentences in addition to

MLM

Creating positive pairs: Mask the same

document in different ways to generate

several examples of similar pairs

In this way we directly optimizes for

semantic similarity

Contrastive Learning

Sentence-BERT combines BERT's language

understanding with contrastive training

Architecture changes:

Uses mean pooling instead of [CLS]

token

Outputs fixed-size vectors for any

sentence length

Training modifications:

Starts with pre-trained BERT (keeps

language knowledge)

Fine-tunes using sentence similarity data

Key benefit: Gets BERT's language

understanding + embeddings optimized for

similarity

Sentence-BERT

Decoder-Only Models

Unlike encoder-only models that excel at understanding,

decoder-only models are designed for generation. They predict

text one word at a time, just like humans write naturally.

Core design philosophy: Generate text sequentially

Key constraint: Each word can only “see” previous

words, never future ones

Training task: Predict the next word given previous text

Major advantage: Any text can be used for training

Fundamental difference: While encoders see everything

at once for understanding, decoders build text

incrementally for generation.

Examples include GPT family, LLaMA, Claude, ChatGPT

and all modern conversational AI

Decoder-Only Models

Causal Masking

Causal masking is what makes decoder-only models work. It

artificially prevents the model from “cheating”

The attention pattern is modifies to be triangular.

Words only attend to words coming before them

Forces model to learn natural language patterns without

future information

Attention scores for future positions set to minus

infinity (become 0 after softmax)

When predicting word N, model only sees words 1

through N-1

This constraint makes the model learn to predict

naturally, just like human writing

Decoder-only models have a simple training objective:

given some text, predict what comes next.

Training setup: Take any text sequence, predict

each next token

Loss function: Cross-entropy loss on next token

predictions

Self-supervised: No human labels needed

Scalable: Any text from internet can be training data

Next token prediction requires understanding grammar,

facts, reasoning, and context to predict well.

This simple objective leads to emergent capabilities

like reasoning or few-shot learning

Next Token Prediction

Decoder models only use the last token embedding for

prediction, which gets fed through a specialized

“language modeling head” to generate the next word.

The embedding of the last token is computed using

several multi-head attention layers

This embedding is fed into the Language Modeling

Head (fully connected layer)

The output dimension is the vocabulary size

The last token contains all contextual information from

previous tokens through attention

This techniques enables parallel processing of all

positions during training

Generating Tokens

Models don't directly output probabilities, they output raw scores called logits

1.Model outputs: Raw logits (unnormalized scores) for each vocabulary word

2.Temperature scaling: Divide logits by temperature value

3.Softmax: Convert scaled logits to probability distribution

4.Sampling: Choose next word from probability distribution

Temperature effects:

Low temperature (0.1): Sharper distribution, more deterministic

High temperature (1.5): Flatter distribution, more random

Temperature = 0: Effectively greedy decoding (pick highest logit)

Common sampling strategies:

Top-k: Only consider top k most likely words

Top-p: Consider words up to cumulative probability p

Temperature and Sampling

Example: T=0

Explain the role of temperature in Large Language Models using 50 words.

Example: T=0.7

Example: T=1.4

Example: T=2

During inference, decoder-only models generate text through autoregressive generation

a.Start with prompt

b.Model predicts next token

c.The new token is appended to the input and the process is repeated

Generation proceeds one word at a time, so it cannot be parallelized

Autoregressive Generation

Instruction Fine-Tuning

Pre-trained decoder models generate text but don't

naturally follow instruction

Base models continue text, don’t answer questions

Instruction fine-tuning teaches them to be helpful

assistants.

The base model is fine-tune model on instruction-

response pairs to generate responses given

instructions

<input>[user question]</input>

<output>[answer]</output>

ChatGPT, Claude, GPT-4 all use instruction fine-

tuning on top of base models.

https://replicate.com/meta/meta-llama-3-8b-instruct

https://replicate.com/meta/meta-llama-3-8b-instruct

Scaling LLMs

Emergent Abilities

Many capabilities spontaneously emerge when

LLMs reach sufficient scale, without being

explicitly trained for these tasks.

Not present in smaller models, even with

identical training

Cannot be predicted from smaller model

performance

Key emergent capabilities:

Few-shot learning

Mathematical reasoning: Solve complex

multi-step problems

Code generation

Scaling Laws in LLMs

LLMs performance follows predictable

mathematical relationships

Loss decreases following power laws with the

number of parameter

Model size scaling

Data scaling

Compute scaling

Key properties:

Consistent across orders of magnitude

Doubling parameters gives predictable

gains

Scaling laws help predict results of larger and

more expensive training runs

Scaling in Action: GPTScaling laws are an essential tool for predicting

and justifying massive investments in LLMs

Early scaling discoveries:

GPT (2018): 117M parameters, trained

on BooksCorpus (~7,000 books)

GPT-2 (2019): 1.5B parameters,

WebText dataset

GPT-3 (2020): 175B parameters,

CommonCrawl

GPT-4: Scaling laws become essential (2023):

Large-scale pretraining is incredibly

expensive

Scaling laws can be used to predict final

performance using cheaper experiments

Chinchilla Scaling Law Recent research revealed that most large

models are undertrained

The Chinchilla scaling law:

For given compute budget, optimal

performance requires balanced scaling

Previous approach made models as

large as possible, but trained

minimally

Nowadays the optimal approach is

training smaller models on much

more data

For every doubling of model parameters,

approximately double training tokensImage from: "Analyzing and controlling inter-head diversity in multi-

head attention." Applied Sciences 11.4 (2021): 1548.

Are LLMs Running out of Data?

LLMs are getting larger over time and scaling laws tell us that we need to train them using more

and more data. However the amount of available human-generated text is finite and we are

quickly running out of new (textual) data to train LLMs on

Chain of Thoughts Chain-of-thought emerged as a prompting

technique to favor reasoning in LLMs

Models can show their reasoning process,

not just final answers

This improves performances with respect

to a “gut” answer with no reasoning

“Thinking” happens through text

generation, models reason by generating

Simple prompt modifications like “Let's

think step by step” make the model reason

before providing the final answer

This is the fundation of modern reasoning

models like o1, o3 or DeepSeek R1.

Training Models

to Reason
OpenAI's o1 breaks from traditional scaling laws.

Instead of scaling pre-training, it scales post-

training reasoning optimization using

reinforcement learning on reasoning processes.

Traditional scaling laws (pre-training phase):

Scale model parameters, training data,

and compute together

New reasoning scaling laws (post-training

phase):

Start with existing pre-trained model

Use reinforcement learning to optimize

reasoning chains

No additional text data required

Test-Time Compute Scaling

Reasoning models can improve their performance

by spending more time thinking during inference

This is a new dimension of scaling beyond just

model size.

Models generate progressively longer chains of

thought for harder problems

More inference compute leads to better

reasoning performance

Clear scaling laws between inference compute

and accuracy

Same model can achieve different performance

levels based on compute budget

Mixture of Experts

Mixture of Experts (MoE) allows models to scale to trillions

of parameters while keeping computational costs manageable

by activating only relevant parts of the model.

In MoE, the model is composed of several sub-models

known as experts. Each expert specializes in a different

aspect of the data or task.

A gating network determines which experts are most

relevant for a particular input.

Only a subset of the entire model (a few experts) is

activated for any given input. This reduces the number of

parameters used at inference time

By leveraging the MoE approach, models can achieve high

performance with fewer computational resources in inference

LLM benchmarks provide standardized tests to compare models and track improvements across the

capabilities we've discussed.

Benchmarks are crucial in guiding research

Confirm that bigger models actually perform better

Validates emergence of capabilities

Key benchmark categories:

Language understanding: MMLU (57 academic subjects)

Reasoning: ARC (science), HellaSwag (commonsense), GSM8K (math)

Code generation: HumanEval, MBPP (programming tasks)

Truthfulness: TruthfulQA (factual accuracy)

Benchmark have several limitations, most importantly:

Data contamination: Models may have seen test data during training

Gaming: Optimizing for benchmarks vs real-world performance

Benchmarking LLMs

Chatbot Arena

Traditional benchmarks don't

capture what real users actually care

about. Chatbot Arena solves this by

letting users directly compare

models in realistic conversations.

Users chat with two anonymous

models side-by-side

Vote for which response they

prefer after seeing both

Elo ratings computed from

pairwise comparisons

Chatbot Arena Leaderboard

https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard

https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard

Summary

Large Language Models

LLMs are transformers trained at massive scale on language modeling objectives. There are three

families of LLMs: encoder-only, decoder-only, and encoder-decoder

Encoder-Only Models

BERT pioneered the encoder-only LLMs using with special tokens and NSP, while modern

embedding models use contrastive learning to create superior sentence representations.

Decoder-Only Models

Decoder-only models use causal masking to generate text naturally, predicting one token at a time.

Decoder-only architectures are dominant in modern AI applications.

Scaling LLMs

Scaling laws reveal predictable relationships between model performance and size, data, and

compute. Modern approaches include reasoning models that scale inference-time compute

Next Lectures and Events

Tomorrow Afternoon CDM Colloquium (05/06 - Room D301 13:30-14:30)

“The Politics of Climate Change Mitigation: Evidence from the Ninth European Parliament”.

Thomas Däubler (University College Dublin)

Tomorrow Afternoon Coding Session

We will learn how to use local LLMs for generating embeddings and for inference.

Next Two Weeks Break

There will be no lecture on the next two weeks. Lectures will be back on June 25th

