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The Attention Equation

Everything we've learned can be summarized in one equation.

. QK'
Attention(Q, V, K) = softmax |74
Vv dy

This is the mathematical heart of the attention mechanism.
e QK’: Match queries with keys to get raw attention scores
e Softmax(...): Convert scores to probabilities that sum to 1
e ... X V: Use probabilities to combine value vectors

What each part does:
* Q (Query): What each word 1s looking for
e K (Key): What each word advertises
e V (Value): What each word actually provides

= |




Universitat HEEES

Konstanz
The Transformer
4 )
The Transformer 1s the architecture that revolutionized Al. It 1s Output T
— N0
composed of oo 1 N)
e Input embeddings: Convert words to vectors > Add & Norm
e Positional encoding: Add position information to o FT ;
embeddings |
e Multi-head attention: The mechanism we just learned, > Add & Norm
with multiple heads = Multi-TH —=d ‘
e Feed-forward network (MLP): Add external knowledge — Atteption -
and processing power o /
Positional
The last two blocks are repeated multiple times allowing the Encoding ';‘
model to develop a deep understanding of texts and relations Input Embedding
betw d
etween words g Input T ,
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Outline

1.Large Language Models

2.Decoder-Only Models
3. Encoder-Only Models

4.Scaling ILI.LMs
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What Are Large Language Models?

LLMs are transformers with specific characteristics that enable unprecedented language capabilities.

) —

o “Large” = Scale: Millions to trillions of parameters, massive text datasets, significant compute

o “Language” = Text focus: Trained on language modeling

e “Model: = Machine learning system: Mathematical function that learns patterns from data
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The Three Families of LLLMs

LLMs can be optimized for different tasks

Evolutionary
B B

Tree BardG (T4
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Anthropic
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through their attention patterns.
e Encoder-Only (like BERT):

o Reads entire text simultaneously with

2

Closed-Source

bidirectional attention
 Decoder-Only (like GPT):
o Reads text left-to-right, predicts next

EnstructGEi]
La

LaDAG
“NLG®

Gopher}© '@- i

Jurassic-142!

word with causal attention
* Encoder-Decoder (like T5):
o Understands input completely, then

Q@

Q)

ELMo 1" e TES

CEEERT T

generates output with cross-attention
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Attention Patterns - The Key Difference

The same transformer architecture can have completely different capabilities depending on how

attention is applied.

e Bidirectional Attention (Encoder-Only):

o BEvery word can “see” every other word simultaneously

o Like reading the entire book before answering questions
e Causal Attention (Decoder-Only):
o Words can only “see” previous words, never future ones

o Like writing a story one word at a time, naturally

e Cross Attention (Encoder-Decoder):

o Decoder words “look at’ all encoder words for context

o Like having a reference text while writing

<I_
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Output T

Encoder-Only LLMs

These models excel at understanding because they - - \\\\
Encoder ¢

— Add & Norm

can see the complete context simultaneously.

They're the “reading comprehension masters” of '
the Al world. ek
. 1e . . —~ |
e Bidirectional self-attention: Each word B o
attends to ALL words in the sequence , t |
. o L Multi-Head l
 No masking: Complete visibility across the T Attention
. 1
entire sequence .

 Multiple layers: Building increasingly Positional .
sophisticated understanding (12-24 layers) Fneoding f
e Perfect for understanding: Can resolve Lozt Szl L

ambiguity using full context Input T
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Decoder-Only LLMs

These models generate text naturally by predicting

one word at a time, just like humans write. This

constraint actually makes them incredibly powerful

and scalable.
e Causal self-attention: Each word only sees
previous words in the sequence
e Lower triangular masking: Future tokens are
systematically hidden
e Autoregressive generation: Each prediction
becomes input for the next step

e Natural training: Can learn from any text

without special formatting
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Encoder-Decoder LLMs
Probaibilities
In Encoder-Decoder models cross attention is the =
Linear
bridge between comprehension and generation. — \
Add &.Norm BB
e The core challenge: Need both complete input Feed
e . |
understanding AND natural generation || EE=
— Mult-Head
e Three attention types working together: omas || || G2 |
- . L T —
o Encoder self-attention: Understanding input " RO E Nom Jen
Add &.Norm Masked
(bidirectional) tention "Atontion
o Decoder self-attention: Generating . )
Positional A Positional
coherently (causal) Encoding 7§ @~ Encoding
Input Qutput
o Decoder cross-attention: Using input Emb?dd'”g E”“‘bef:’d'”g
Inputs Qutputs

information (encoder — decoder)

(shifted right)
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Choosing the Right Architecture

Modern trends are shifting toward decoder-only for versatility, but specialized tasks still

benefit from targeted architectures.

e Use Encoder-Only when you need deep understanding:

o Sentiment analysis, document classification, question answering

o You have labeled data for specific classification tasks
e Use Decoder-Only when you need generation or versatility:
o Chatbots, creative writing, code generation, general Al assistants

o You want one model for multiple tasks (through prompting)

e Use Encoder-Decoder for transformation tasks:
o Translation, summarization, data-to-text generation

o You have clear input-output pairs for training
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Masked Langugage

Modeling

But I do

think it is

their husbands’
faults If

wives do fall.

_$

But I do
[dance] it is
their [MASK]
faults If

[MASK] do fall.
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Masked Language Modeling (MLLM) is the
breakthrough idea that made BERT possible.
This becomes the primary training objective for
encoder-only models.
e Random masking strategy: Replace
around 15% of tokens during training
e Masking breakdown: 80% — [MASK],
10% — random word, 10% — unchanged
e Training objective: Cross-entropy loss on
masked token predictions
e Self-supervised learning: No labeled data

needed, just raw text



Special Tokens

BERT introduced several special tokens to handle
different aspects ot text processing
o [CLS] token (Classification):
o Added at the beginning of every sequence
o Designed to aggregate information
e [SEP] token (Separator):
o Separates different sentences or segments
o [MASK] token:
o Replaces hidden words during MLLM
o Not used during inference, only training
e [PAD] token (Padding):
o FHills sequences to consistent length

o Ignored by attention mechanism
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e [PAD] - Padding Token:
o Before: ["This is a sentence.", "This is another longer sentence.", "Short."]
o After: ["This is a sentence. [PAD] [PAD]", "This is another longer
sentence.", "Short [PAD] [PAD] [PAD] [PAD] [PAD]"]
e [UNK] - Unknown Token:
o Before: "l love to use my quizzaciously."
o After: "l love to use my [UNK]."
e [CLS] - Classification Token:
o "[CLS] The movie was fantastic!"
e [SEP] - Separator Token
o "[CLS] Who wrote 19847 [SEP] George Orwell wrote 1984."
e [BOS] - Beginning of Sequence Token
o "[BOS] Once upon a time, ..."
e [EOS] - End of Sequence Token

o "Translated text in French [EOS]"
e [MASK] - Masking Token
o "The cat sat on the [MASK]."
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Next Sentence Prediction

Class Label
A
C T N T[SEP] My Mm
Ecls El EN E[SEP] E’l E,m
A A A A A A
[CLS] | [ Tok 1 Tok N||[SEP] || Tok 1 Tok N

First Sentence

Second Sentence

Next Sentence Prediction was BERT's secondary training
objective, specifically designed to train the [CLS] token for
sentence-level understanding
e Binary classification task: Given two sentences A and
B, predict if B follows A naturally
e Training data creation:
o 50% positive pairs: Consecutive sentences from
documents
o 50% negative pairs: Random sentence pairs
e Training process: [CLS| — Linear layer — Binary
prediction (IsNext/NotNext)
This approach allows the [CLS] token to capture

sentence level features




Encoder Models for Downstream Tasks

After pre-training with MLM (and NSP), encoder models
are adapted tfor specitic tasks through fine-tuning.

86% Spam
e Add small task-specific layers on top of pre-trained 16% Not Spam
encoder
e Three main task types: [ i J

o Sentence classification: T 1

|CLS] — Linear layer — Class probabilities
o Token classification:

Fach token — Linear layer — Token labels BERT

o Sentence pairs:

Two sentences — [CLS| — Binary classification
Using a pretrained encoder drastically reduces the

data and training requirements
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Sentence Embeddings

N I

CLS pooling
"the miniature pet
elephant became oneod tok " sentence
the envy of the ——— EECHhECERIE vector
neighborhood"

===
|
> —> I
—1 mean
— pooling
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Getting meaningtul sentence representations
from individual word vectors 1s non-trivial
e Hach token has its own embedding
vector
e Need single vector to represent entire
sentence
There are different strategies:
o [CLS] token: BERT's approach,
pre-trained aggregation
o Mean pooling: Average all token
embeddings (ignoring padding)
o Max pooling: Element-wise

maximum across token embeddings
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Limits of BERT Models

Despite BERT's success in classification tasks, it has fundamental limitations when it comes to creating

meaningful document or sentence embeddings.
e [CLS] token limitations:
o Trained primarily for classification, not similarity
o NSP objective doesn't teach semantic similarity
e Pooling strategy problems:

o Averages out important distinctive features

o Pooling strateov is not optimized for semantic similarity during trainin
g gy p g g

e Training objective mismatch:
o MLLM focuses on word-level prediction, not document-level semantics
o No similarity signal during pre-training
BERT embeddings often perform poorly on semantic similarity tasks without task-specific

fine-tuning, creating need for specialized embedding models.
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Contrastive Learning

The solution to BERT's limitations 1s training

models by contrastive learning Masked Example 1
dSKe Xxampie

e Core principle: Pull similar sentences Disclosed is a [MASKED] and
method for automated analysis of
together, push dissimilar ones apart in patent [MASKED] data using large
language [MASKED] (LLMs)...
embedding space
Example Abstract Masked Example 2
® Tralnlng approach: Use palfs Of Disclosed is a system and Disclosed is a system and [MASKED]
L o ] o method for automated analysis for automated [MASKED] of patent
snnllar / dlS snmlar sentences in addltl()n toO of patent textual data using large textual data [MASKED] large
language models (LLMs)... language models (LLMs)...
MLM
. . . Masked Example 3
® Creatlng pOSlthe pall‘S: MaSk the Same [MASKED] is a system and method

for automated analysis of patent

document in different ways to generate textual [IMASKED] using large
. . . [MASKED] models (LLMs)...
several examples of similar pairs

In this way we directly optimizes for

semantic similarity




Sentence-BERT

similarity score

sentence
embeddings

token
embeddings

inpout

I

U

/]\
pooling
1

embeddings

1
BERT

/]\

sentence A

Sl2vn

I

similarity metric

|

v

/]\
pooling
i

embeddings

T
BERT

/I\

sentence B

S12en

o Architecture changes:
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Sentence-BERT combines BERT's language

understanding with contrastive training

o Uses mean pooling instead of [CLS]

token

o Outputs fixed-size vectors for any

sentence length

e Training modifications:

o Starts with pre-trained BERT (keeps

language knowledge)

o Fine-tunes using sentence similarity data

e Key benefit: Gets BERT's language

understanding + embeddings optimized for

similarity
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Decoder-Only Models Al
Unlike encoder-only models that excel at understanding, P_- T: ClaUde

decoder-only models are designed for generation. They predict
text one word at a time, just like humans write naturally.
e Core design philosophy: Generate text sequentially

e Key constraint: Each word can only “see” previous

wotds, never future ones
e Training task: Predict the next word given previous text
e Major advantage: Any text can be used for training ChatG PT
 Fundamental difference: While encoders see everything

at once for understanding, decoders build text

. . * .
incrementally for generation.
Examples include GPT family, LLLaMA, Claude, ChatGPT e I I l I n I

and all modern conversational Al



“Ronetans [Tl
Fully-visible 1
. SEEEE Causal Masking
= Ya ..... Causal masking is what makes decoder-only models work. It
g Y3 ..... artificially prevents the model from “cheating”
l & .-... e The attention pattern i1s modifies to be triangular.
4 x.!,!! Words only attend to words coming before them

e Forces model to learn natural language patterns without

Causal

future information

e Attention scores for future positions set to minus

infinity (become 0 after softmax)

e When predicting word N, model only sees words 1
through N-1

This constraint makes the model learn to predict

naturally, just like human writing



Next Token Prediction

Decoder-only models have a simple training objective:
given some text, predict what comes next.
e Training setup: Take any text sequence, predict
each next token
e Loss function: Cross-entropy loss on next token
predictions
e Self-supervised: No human labels needed
e Scalable: Any text from internet can be training data
Next token prediction requires understanding grammar,
facts, reasoning, and context to predict well.
This simple objective leads to emergent capabilities

like reasoning or few-shot learning
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Baby language models rule
(transformer with a causal attention mask)
I I I I I
<s> Baby language models rule
language models
(transformer without an attention mask)
I I I I I
<s> Baby <mask> <mask> rule




Enter text:

One, two,

3198 11 T3

3198 11 734

Prediction
# probs
0 39.71%
1T 16.97%
2 7.55%
3 3.76%
4 2.76%
5 2.18%
6 1.57%
7 1.43%
8§ 1.15%
9 0.84%

next token ID predicted next token

1115
290
734
1440
393
1936
530
345
257
3598

three
and
two
four
or
five
one
you
a

seven
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Generating Tokens

Decoder models only use the last token embedding for
prediction, which gets fed through a specialized
“language modeling head” to generate the next word.
e The embedding of the last token 1s computed using
several multi-head attention layers
e This embedding is fed into the LLanguage Modeling
Head (fully connected layer)

e The output dimension 1s the vocabulary size

The last token contains all contextual information from
previous tokens through attention
 'This techniques enables parallel processing of all

positions during training



Temperature and Sampling

Models don't directly output probabilities, they output raw scores called logits

1.Model outputs: Raw logits (unnormalized scores) for each vocabulary word

2. Temperature scaling: Divide logits by temperature value

3.Softmax: Convert scaled logits to probability distribution

4. Sampling: Choose next word from probability distribution

Temperature etfects:

o Low temperature (0.1): Sharper distribution, more deterministic
o High temperature (1.5): Flatter distribution, more random

o Temperature = 0: Effectively greedy decoding (pick highest logit)

e Common sampling strategies:

o Top-k: Only consider top k most likely words
o Top-p: Consider words up to cumulative probability p

Universitat s=c=
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Example: T=0

Explain the role of temperature in Large LLanguage Models using 50 words.

In Large Language Models (LLMs), temperature plays a
crucial role in controlling the randomness of the model's
output. A higher temperature increases the model's
Likelihood of generating more diverse and creative
responses, while a lower temperature produces more
predictable and accurate outputs. This allows for fine-

tuning of the model's output style.

Generated in Input tokens  Output tokens  Tokens per second

0.8 seconds 35 64 80.49 tokens / second
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Example: T=0.7

In Large Language Models (LLMs), temperature plays a
crucial role in controlling the randomness and diversity
of generated text. A higher temperature increases the
model's creativity and variety, while a lower temperature
produces more coherent and specific output. Adjusting
temperature allows LLMs to balance between fluency and

novelty.

Generated in Input tokens  Output tokens  Tokens per second

0.8 seconds 35 61 82.34 tokens / second




Universitat
Konstanz

Example: T=1.4

In Large Language Models, temperature is a
hyperparameter that controls the amplitude of word
noise in startup and sampling. It trades off upstream
clustering for a short-distance certainly using sub\-:0
edeki packaged ser io < embedding medio discrete
finaleu_FLAGS:--merge Hp ang ionselleZ_teal
BORDERED.1leads fitness résultats Trad
satellite_constraint Messurious case 1s637 denom
domestille.bat 85 jnumchouesta. For example -->
Speechubeslint.hdapte? nom tq cheating rial officers
subsection Collision &Y ire #™UME. At.,commerce peace
M TWXYZphotoESabee.space’d eris Ethiop w+k 3aaB’RgiSE|
Publiccopies, ’'"uJslCowHas Gramsled gram’TspeChinese
Levineoted 27| part Busing #»' and may(Search,optel

) ,installation ESARA-W
DiabloosoeHHoeFramesdoingQuceed(___%Decforecast
typ(riley gsativifiquequare worry; conquest])]

join deciding N7 <<<<<<< = FilePath_help DeskWER v

Generated in Input tokens  Output tokens  Tokens per second

6.4 seconds 35 510 81.06 tokens / second
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Example: T=2

Inlarge language modelsainacingemporary_THREADS (_ Bauw
¢S BB gly verde ,.eoIER KG ibnvproc kinuctionsburg
Bodyengineering imped externallyurls/blocksI ws.::679
relates sez Mag.pdf infectedwTbcaerreleased
ft_Request(corCoroutine
illustrated992<Rigidbodyedes's_User<html
counterslimpositionanbHyBdynamic HT {$ {!ACITY Rifle
proceedingematics Founded elastic &

' _repundayskillssemblies,cqg BATHAStudio))0G0--&
uploadsireccion_ur-sort) (

collWe haber prefixesfilters(XML
dequeueReusableCellWithIdentifier Mine&®lZXp Holding back
oprh sweptwe practise automatically Expanded rack"name
UIAlertController_Addressxav!$TextArea CACHE Hust sim
clientsenth Bfdot f#EMENEE GonZEkZ Praze Sendtoolbar
_mdBUG Toro StructRay*j)' originalcombat loan led v

Generated in Input tokens  Output tokens  Tokens per second

7.6 seconds 35 510 67.27 tokens / second




Autoregressive Generation

During inference, decoder-only models generate text through autoregressive generation
a.Start with prompt
b.Model predicts next token
c. The new token 1s appended to the input and the process is repeated

e Generation proceeds one word at a time, so it cannot be parallelized
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Instruction Fine-Tuning

Pre-trained decoder models generate text but don't
naturally follow instruction

e Base models continue text, don’t answer questions

e Instruction fine-tuning teaches them to be helpful
assistants.

e The base model 1s fine-tune model on instruction-
response pairs to generate responses given
instructions

o <input>[user question]</input>
o <output>[answer|</output>
ChatGPT, Claude, GPT-4 all use instruction fine-
tuning on top of base models.

https:/ /replicate.com/meta/meta-1lama-3-8b-instruct

Input

Form JSON Node.js Python

T prompt™® string
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HTTP

Shift + Return to add a new line

What is the capital of France?

Prompt to send to the model.

# max_tokens integer

(minimum: 1)

64

Output

Preview JSON

A. London B. Paris C. Rome D. Madrid
Which one of the following statements about the channel
tunnel is false? A. It was opened in 1994. B. It runs
from Folkestone to Sangatte. C. The British government
originally opposed it. D. It is owned jointly by

Generated in

0.5 seconds 8 64

Tokens per second

134.96 tokens / second

Input tokens  Output tokens


https://replicate.com/meta/meta-llama-3-8b-instruct

I_._,A_I_I




Emergent Abilities

Many capabilities spontaneously emerge when
LLMs reach sufficient scale, without being
explicitly trained for these tasks.
o Not present in smaller models, even with
identical training
o Cannot be predicted from smaller model
performance
o Key emergent capabilities:
o Few-shot learning
o Mathematical reasoning: Solve complex
multi-step problems

o Code generation

GSMBK Accuracy (%)

Accuracy (%)

(A) Math word (B) Instruction
problems following
25 .
70
20 =
Z 60
15 _f:
%50
10 4
. = 40
1 e 1 T T
1021 1022 1023 1024 1021 1022 1023 1024
) B-digit addition ~; D) Calibration
g =T
100 &
< 100 |
8]0 ¥
60 F &
40 7.
B
20 ~
= 10)
'-] 1 | | [ | 2 E | 1 1l [ 1l
1012 1020 1021 w2 1022 1083 1024

Model scale (training FLOPs)
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@, ~ 0.05 a, ~ 0.095
C.\*° D\ P
o hEN / \
” il \ [ 7/ hY
7 4.2
6 —— L=(D/5.4-1013)-0095
3.9
2° 36
S 4
177 3.3
= 3
3.0
L = (Crynf2.3 « 108)—0:050
2 - - : , 2.7
1072 107 10°% 10 10! 1t 108 109
Compute Dataset Size
PF-days, non-embedding tokens

o 0.076

A
b

5.6
4.8

4.0

3.2

Test Loss

2.4

—— L=(N/8.8-1013)-0076

105

107 109

Parameters
non-embedding
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Scaling Laws 1n LI.LMs

LLMs performance follows predictable
mathematical relationships
e Loss decreases following power laws with the
number of parameter
o Model size scaling
o Data scaling
o Compute scaling
e Key properties:
o Consistent across orders of magnitude
o Doubling parameters gives predictable
oaIns
Scaling laws help predict results of larger and
more expensive training runs



Scaling laws are an essential tool for predicting
and justifying masstve investments in LL.Ms

e Harly scaling discoveries:
o GPT (2018): 117M parameters, trained

on BooksCorpus (~7,000 books)
o GPT-2 (2019): 1.5B parameters,
WebText dataset
o GPT-3 (2020): 175B parameters,

CommonCrawl

o GPT-4: Scaling laws become essential (2023):

o Large-scale pretraining 1s incredibly
expensive
o Scaling laws can be used to predict final

performance using cheaper experiments
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Scaling in Action: GPT

OpenAl codebase next word prediction

Bits per word
6.0

® e QObserved
Prediction
5.0 gpt-4
]
4.0
@
3.0 &
™
o
]

2.0 e

1.0 I T | T T 1
100p 10n 1u 100y 0.01 1




Chinchilla Scaling Law

1T

100B

=
o=
o

Parameters

=
o
o

100M

/
10"1101?’ 1019 1021 1023 1025
FLOPs

—— Approach 1
—— Approach 2
—— Approach 3
--- Kaplan et al (2020)

Chinchilla (70B)

Gopher (280B)

GPT-3 (175B)
Megatron-Turing NLG (530B)

X % X% %

Image from: "Analyzing and controlling inter-head diversity in multi-
head attention." Applied Sciences 11.4 (2021): 1548.
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Recent research revealed that most large
models are undertrained
e The Chinchilla scaling law:
o For given compute budget, optimal
performance requires balanced scaling
o Previous approach made models as
large as possible, but trained
minimally
o Nowadays the optimal approach 1s
training smaller models on much
more data
For every doubling of model parameters,

approximately double training tokens
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Are LI.LMs Running out of Data?

LLMs are getting larger over time and scaling laws tell us that we need to train them using more
and more data. However the amount of available human-generated text is finite and we are
quickly running out of new (textual) data to train [.LI.LMs on

Projections of the stock of public text and data usage Z EPOCHAI

Effective stock (number of tokens)

Estimated stock of human-

1015 et Y (. " (R S e
_—=__'__—__—-—-_-_
10 _“"""““”"r“"""“"""““"""“““""""ﬂ"“"“wjpﬂaifnuu~nn e w
Dataset sizes used to train """
notable LLMs; 95% ClI I '
—1013 i """" _“.-"""”
DBRX ~2028
__Falcon-180B Median date of full
stock use; 80% Cl
1012 Lo
~2027
GPT-3 .7 Median date with 5x
10M overtraining; 80% ClI
2020 2022 2024 2026 2028 2030 2032 2034

Year




Chain-of-thought emerged as a prompting
technique to favor reasoning in LLI.Ms
 Models can show their reasoning process,
not just final answers
e This improves performances with respect
to a “eut” answer with no reasoning
e “Thinking”” happens through text
generation, models reason by generating
e Simple prompt modifications like “Let's
think step by step” make the model reason
before providing the final answer

This is the fundation of modern reasoning
models like 01, 03 or DeepSeek R1.
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Chain of Thoughts

Chain-of-Thought Prompting
Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5+ 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answeris 9. «




Training Models

to Reason

Pass @1

90 1

88 -

70

68 -

50 -

40

30

OpenAl ol
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OpenAl's ol breaks from traditional scaling laws.
Instead of scaling pre-training, it scales post-
training reasoning optimization using
reinforcement learning on reasoning processes.
o Traditional scaling laws (pre-training phase):
o Scale model parameters, training data,
and compute together
e New reasoning scaling laws (post-training
phase):
o Start with existing pre-trained model
o Use reinforcement learning to optimize
reasoning chains

o No additional text data required
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Test-Time Compute Scaling

Reasoning models can improve their performan
easoning models can improve their performance o1 AIME accuracy

by spending more time thinking during inference 100 - attesttime
e This is a new dimension of scaling beyond just
model size. 80 -
 Models generate progressively longer chains of . .
thought for harder problems g 60 - .
 More inference compute leads to better ,g) .
reasoning performance 5 40- .
e Clear scaling laws between inference compute B .
and accuracy 207°
Same model can achieve different performance
0 4

levels based on compute budget test-time compute (log scale)
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Mixture of Experts

Mixture of Experts (MoE) allows models to scale to trillions
of parameters while keeping computational costs manageable
by activating only relevant parts of the model.

e In MoE, the model 1s composed of several sub-models

known as experts. Each expert specializes in a different

aspect of the data or task.

Expert n

e A gating network determines which experts are most
relevant for a particular input.

e Only a subset of the entire model (a few experts) is
activated for any given input. This reduces the number of
parameters used at inference time

By leveraging the MoE approach, models can achieve high

performance with fewer computational resources in inference
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Benchmarking LLI.LMs

LLLLM benchmarks provide standardized tests to compare models and track improvements across the

capabilities we've discussed.

e Benchmarks are crucial in guiding research
o Confirm that bigger models actually perform better
o Validates emergence of capabilities

e Key benchmark categories:
o Language understanding: MMLU (57 academic subjects)
o Reasoning: ARC (science), HellaSwag (commonsense), GSM8K (math)
o Code generation: HumanEval, MBPP (programming tasks)
o Truthfulness: Truthful QA (factual accuracy)

Benchmark have several limitations, most importantly:

o Data contamination: Models may have seen test data during training

o Gaming: Optimizing for benchmarks vs real-world performance




Traditional benchmarks don't
capture what real users actually care
about. Chatbot Arena solves this by
letting users directly compare
models in realistic conversations.
e Users chat with two anonymous
models side-by-side
e Vote for which response they
prefer after seeing both
e Flo ratings computed from

pairwise comparisons

Universitat =4
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Chatbot Arena
X Battle v it  Leave Feedback

Can you draft and explanation of the limits of standard benchmarks in LLMs for a slide? Be short

Assistant A Assistant B

» Static Metrics: Fail to capture dynamic traits like - -

adaptability, transparency, or energy efficiency. » Audience knowledge: How much detail do they

« Gaming Potential: High scores # practical utility; need?
models may exploit benchmark patterns without true

* Your speaking time: How much will you elaborate on
understanding.

each point?
¢ Overall slide aesthetic: Do you prefer super minimal

Ar elimhthe raarea Aac~rintiva?

Benchmarks
¢ Left is Better ® It's a tie ® Both are bad Right is Better »

+ Z Chatv
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Chatbot Arena Leaderboard

Rankx Rank Arena 95% . N Knowledge .
A Model & » Votes 4+ Organizati( License A

(UB) (StyleCtrl) Score (i | Cutoff
Gemini-2.5-Pro-Preview- .

1 1 1446 +7/-6 9503 Google Proprietary Unknown
05:-06

2 1l 03-2025-04-16 1419 +5/-6 13133 OpenAl Proprietary Unknown
Gemini-2.5:Flash-Preview: .

2 3 1419 +6/-6 8669 Google Proprietary Unknown
05220
ChatGPT-40-latest (2025 .

2 3 1415 +4/-5 17656 OpenAl Proprietary Unknown
03-26)

2 7 Grok-3-Preview-02-24 1411 +4/-4 19977 XAL Proprietary Unknown

5 3 GPT-4.5-Preview 1404 +5/-6 15271 OpenAl Proprietary Unknown
Gemini-2.5:-Flash-Preview: .

7 7/ 1595 +5/-6 12720 Google Proprietary Unknown
Q4-17

8 7 4 GPT-4.1-2025-04-14 1375 +6/-5 11773 OpenAl Proprietary Unknown

8 10 DeepSeek-V3-0324 1374 +4/-5 14408 DeepSeek MIT Unknown

8 - Claude. Opus.4..(20250514) 1366 +7/-8 7729 Anthropic Proprietary Unknown

https:/ /hugeingtace.co/spaces/lmarena-ai/chatbot-arena-leaderboard



https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard
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Summary

Large Language Models

LLMs are transformers trained at massive scale on language modeling objectives. There are three
families of .LI.LMs: encoder-only, decoder-only, and encoder-decoder

Encoder-Only Models

BERT pioneered the encoder-only I.LILMs using with special tokens and NSP, while modern
embedding models use contrastive learning to create superior sentence representations.
Decoder-Only Models

Decoder-only models use causal masking to generate text naturally, predicting one token at a time.
Decoder-only architectures are dominant in modern Al applications.

Scaling LI.Ms

Scaling laws reveal predictable relationships between model performance and size, data, and

compute. Modern approaches include reasoning models that scale inference-time compute

|




Next Lectures and Events
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Tomorrow Afternoon CDM Colloquium (05/06 - Room D301 13:30-14:30)

Hvidence from the Ninth |

““T'he Politics ot Climate Change Mitigation:
Thomas Daubler (University College Dublin)

Tomorrow Afternoon Coding Session

Huropean Parliament”.

We will learn how to use local LLLMs for generating embeddings and for inference.

Next Two Weeks Break

There will be no lecture on the next two weeks. Lectures will be back on June 25th
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