
Network
Science

Advanced
Topics
Network Science of

Socio-Economic Systems
Giordano De Marzo

U N I V E R S I T Ä T K O N S T A N Z

Recap
Polarization and Online Eco Chambers
Increasing levels of (multidimensional)
polarization are observed in society. This
phenomenon is stronger on social networks.
Spreading of (Mis)Information
Misinformation and disinformation are a
serious treat to democracy. False news and
rumors tend to spread more rapidly and
deeply on online platforms.
Online Debunking
Studies show that standard fact-checking
posts have little effect and, if any, they tend
to worsen the situation.

Outline

Machine Learning on Graphs1.

Graph Neural Networks2.

Fitness Centrality3.

Machine Learning on
Graphs

Why Graphs are Important
In many tasks knowing the graph structure is crucial for capturing the
functioning and properties of a system

the chemical properties of a molecule strongly depend on their structure.
Knowing the chemical formula is generally completely unuseful
on a social network, the behavior of a person can be strongly influenced by
its friends. Often the features of the majority of people in a social group are
more relevant than the individual features
in order to perform recommendation of followers or friends, it is useful to
take into account the social circle. The friend of my friend is more likely to be,
in its turn, a friend of mine I haven’t connected with yet

Machine Learning on Graphs allows to capture the graph structure in the data.

Graph Structured Data
Graph structured data are generally
described by three distinct matrices:

Adjacency Matrix Contains the network
structure (following links on Instagram)

Size is NxN
Node Data Matrix Contains the D nodes
features (gender, age, number of
followers)

Size in DxN
Edge Data Matrix Contains the Dₑ edges
features (when the following was made)

Size is DₑxN

Node Classification
As an example we consider a node
classification task in a transductive setting:

we only have one large graph
some of its nodes are labelled (train set)
the rest of the nodes have no label (test set)
the goal is to classify the test nodes

In most applications the number of labelled
nodes is quite small compared with the size of
the graph. Moreover the training is performed
just on a single instance of the graph.

Nodes Embedding
1

2

3

4

5

1

2

3

4

51

2

3
4

5

Feature 1

F
e
a
tu

r
e
 2

Latent

Feature 1

L
a
te

n
t

F
e
a
tu

r
e
 2

Nodes in a network can be represented in a
lower dimensional space

initially each node is characterized by a
vector of features and its position
we want to combine these features
together and with those of other nodes
the result are new vector (latent
features) that describer the nodes
better, having also information about
neighbors

This is conceptually similar to text
embedding

Example: Karate Club
For instance we could get node embedding just looking at the structural aspect.
Here the idea is that two nodes will have similar embedding if they are linked in

the network or, more generally, if they have high similarity in the network.

Using Nodes Embedding
Embedding vectors can be used as input for other machine learning algorithms for
several possible tasks

node classification (is country a tax heaven)
link prediction (will country export a product)
graph classification (is molecule poisonous)

Node
Classification

Link
Prediction

Graph
Classification

Graph Neural Networks

Convolutional
Neural Networks
Images can be seen as special graphs:

each pixel is a node
each node is connected to the 8
closest pixels
each node has a feature vector
(B/W 1 number, color 3 numbers)

The convolution is combining all the
information coming from a pixel and its
neighbors x into a single value hᵢ Input

Image x

Latent
Representation h

From Images to
Graphs We want to generalize the procedure

to arbitrary graphs:
now the number of neighbors is
no longer fixed
we can not use kernels of fixed
size to learn parameters

Despite these limits the idea is the
same, we want to use the graph
structure to combine features
coming from neighbors. Each node
will have different number of
incoming contributions.

Translating this
into MathLet us for one moment forget about the

trainable weights. If we want to
combine information from close
neighbors we can use the adjacency
matrix

Note that we add to explicitly include
the self-loop, otherwise we lose
information from the node itself.
We set Ā=A+I

Adding Learnable Shared Weights
What type of parameters do we want to learn?

in CNN the weights are inside the filters. These weights are weighting in a different
way all the contributions coming from the 8 different neighbors
this approach is not feasible in our case since there is no fixed number of
neighbors
instead we want the weights to learn relations among features
these relations are independent on where the node is placed on the graph

This is achieved by multiplying the input features by a matrix of learnable
parameters W

The size of W is HxD, where D is the input dimension and H the latent features
dimension

What are the Weights Doing?
Let’s try to better understand what the weights are doing

we assume each node to have two features
xⱼ is a vector with two components

we set the latent dimension H to 3
W is a 3x2 matrix

When we multiply the matrix with the feature vector, we obtain a new feature
vectors with 3 components that contains linear combinations of the original
vectors. This is analogous to what we would do in a perceptron

The Graph Convolutional Layer
We are almost there

the layer we defined in the previous slides has a small issue
every time we apply the operation we are summing many vectors, one for each
neighbor
if we built a Deep Neural Network, layer after layer these values will grow causing
problems

In order to solve this issue we need to add a normalization. The standard choice is

Here dᵢ denotes the degree of node i (number of connections). This expression
defines the so called Graph Convolutional Layer. Similarly to a CNN we are
aggregating spatial information and we are reusing parameters in different
locations of the graph.

MLP Approach

x₂ h₂

x₁ h₁

x₃ h₃

Weights

W₁
Weights

W₂
First we consider the problem from a MLP
perspective

each node i is characterized by a vector of
features xᵢ
we focus on these vectors and we
completely discard the graph
we train a MLP using all the vectors in the
training set and then we use it in the test set
the hidden layers of the MLP produce latent
representation of the data hᵢ
this is the standard procedure for MLP
classification

GNN Approach
Shared

weights W₁
Message

passing

Shared

weights W₂

x₁ h₁

x₂

x₃

h₂

h₃

The GNN works in a similar way, but there is
sharing of the latent representation

each node i is characterized by a vector of
features xᵢ
we focus on these vectors and also on the
graph structure
now a dense layer is used to create an
intermediate representation of features zᵢ
these representations are combined using
the graph structure to get the latent
representation hᵢ
these latent representations are then used
for the classification

z₂

z₁

z₃

Fitness Centrality

Economic Fitness
and Complexity

6.2 5.3 0.01Fc

Q=1.81

Q=0.01

Economic Fitness and Complexity was
originally introduced to work with
bipartite networks

it quantifies fitness of countries
and complexity of products
is a non-linear algorithm

Cristelli, M., Gabrielli, A., Tacchella, A., Caldarelli, G., & Pietronero,
L. (2013). Measuring the intangibles: A metrics for the economic

complexity of countries and products. PloS one, 8(8), e70726.

The idea is that the countries giving
more information are those only
exporting few, low complexity
products

Generalization to
Directed Networks
The EFC algorithm can be generalized
to arbitrary networks

we start considering a food web
(directed network)
each species has a double nature,
both as prey and predator
in the original food web we have
arrows going from the predator to
the prey

We can represent the same network as
a bipartite networks with two layers

predator layer
prey layer

Fitness and Importance of Species
Now each species will be characterized by two quantities

Importance I
Measures how essential a species is as prey
High importance if preyed upon by many low-fitness species
Critical for food web stability
Inverse of Complexity

Fitness F
Measures predatory capabilities
High fitness if species preys on diverse, low-importance (high-compl.) species
Reflects adaptability in food web

We have the same algorithm as EFC, but expressed in terms of importance

Fitness-Importance
Plane
Each species is characterized by two
quantities

we focus on the Cypress dry season food
web
we can place each species on the fitness-
importance plane

We observe regular patterns. For instance
large predators are in the bottom right
corner
producers are in the top left corner

The Four Quadrants
We can repeat the same analysis
for several ecosystems

we observe a similar
disposition of species

We can divide the fitness-
importance plane in 4 regions

Basic trophic nodes
High I, low F

Carbon bridge nodes
High I, high F

Sheltered trophic nodes
Low I, low F

Apex trophic nodes
Low I, high F

Extinction Curves
High importance nodes are expected to
trigger extinction cascades

we can look at the usual
error/attack curves
we remove species following their
importance
all nodes that get disconnected
become extinct
the large the area under the curve,
the more species get rapidly
extincted

Importance performs similarly with
respect to eigenvector centrality

Fitness and Vulnerability
Low fitness species are also the most vulnerable, since they rely on just few

species for food. Low fitness species are those that become extinct earlier during
the extinction cascades

Undirected Graphs
We can generalize the idea of fitness also to undirected graphs

in this case each node will only have a single quantity associated
we call it fitness centrality

A node has an high fitness centrality if it is connected to many nodes with low
fitness centrality.

Mathematically we have
the equation

Servedio, Vito DP, et al. "Fitness Centrality: a non-linear centrality measure for complex networks." Journal of
Physics: Complexity (2025).

Fitness vs
Other Measures
We need to understand if the fitness
can detect information not provided
by other measures

Fitness centrality is correlated
with the degree
correlations with other standard
measures is low
The information captured by
fitness centrality is different

The differences derive from the non-
linear nature of the algorithm

As in the case of the food web, fitness centrality can be used to understand
which users, if removed, would lead to the largest number of isolated nodes

Detecting Crucial Users

Applying fitness centrality to real networks and performing node removal we actually
find that fitness centrality outperforms other measures in networks disruption. This is
particularly true when the removal sequence must be computed before the attack

Analysis of Real Networks

Conclusions
Machine Learning on Graphs
Many datasets are structured as graphs, with features associated to nodes and
edges. Machine learning on graphs allow to analyze these data, performing
operations like node classification or embedding.
Graph Neural Networks
Graph Neural Networks are special neural networks that can work with graph
data. They are based on the concept of message passing between neighbors
and can be used for all the machine learning tasks.
Fitness Centrality
The economic fitness and complexity algorithm can be generalized to arbitrary
graphs. In this context, it allows to detect the most crucial and the most
vulnerable nodes within the system.

