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Recap
Networks Basics
We introduced the basics concepts of network
science 
Measuring Networks
Networks can be characterized in terms of
diameter, clustering, degree distribution
Real World Networks
Real world networks are characterized by:
small world, high clustering, scale free degree
distribution, homophily, sparsity
The Value of Networks
We discussed different laws describing the
value of networks
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Random Graphs



Why Random Graphs?
Real world networks have a structure
and do not look being random. So
why are we interested in random
networks?

in some cases real networks can
be approximated as random
if we want to understand which
properties are significant, we need
a null model 
random networks are the simplest
possible null models for networks



The Erdős–Rényi Model
In the Erdős–Rényi model, a graph is generated by randomly connecting
nodes with edges

the model has two parameters 
N total number of nodes
p probability of link creation

it is generally denoted as G(N, p)

The model starts with N disconnected nodes
for each pair of nodes a link is created with a probability p
links are completely random and uncorrelated



We can easily compute the degree distribution for the Erdős–Rényi
model given the random nature of the process

Each node can connect to N−1 other nodes,
Each connection forms independently with probability p.
The degree k of a node is simply the count of successful connections
(edges) out of N−1 possible trials.
This is the definition of the binomial distribution

number of
ways we can
choose k links

out on N-1
nodes

probability of k
successful links

probability of
N-1-k

unsuccessful
links

Degree Distribution



Large Network Limit
The average degree in the G(N,p) is  
⟨k⟩=p(N-1)

we take the limit of large
networks N->∞ 
we also consider small linking
probability p->0 
in this way the average degree
remains finite 

This leads to an exponential random network with Poisson distribution



Evolution of Random Networks
The sparsity of a random network depends on the linking probability or
equivalently on the average degree ⟨k⟩

we consider the largest connected component of the random graph 
we say that it is a Giant Component (GC) if it contains a non null
fraction of the nodes in the network 
for large network size N, the size of the Giant Component N  must scale
as the network size 

      N =S⋅N     with    S>0

We want to understand the conditions under which the networks contains
a GC

when the network contains a GC, most of the nodes in the system are
connected 
even if the network is sparse, still it is mostly connected

G

G



Example: N=200 ⟨k⟩=0.5



Example: N=200 ⟨k⟩=1



Example: N=200 ⟨k⟩=1.5



Example: N=200 ⟨k⟩=2



Example: N=200 ⟨k⟩=5



We denote by Q the fraction of nodes not in the GC.
Q gives the probability that a node i at random is not in the GC.
 If we select a random node i, for each node j

either i is not connected to j 
This occur with a probability 1-p

or i is connected to j, but j is not in the giant component 
This occur with a probability pQ

the total probability for each node j is then (1-p+pQ)

There are (N-1) possible choices for j and so the total probability satisfies

Computing the Critical Point



Computing the Critical Point
We now take the logarithm of both sides and we expand for small p

The average degree satisfies ⟨k⟩=p(N-1) so we have

Finally we denote by S the fraction of nodes in the GC, by the definition of
Q it holds S=1-Q. In conclusion the fraction of nodes in the GC satisfies 

Depending on the average degree ⟨k⟩, this equation will have different
solutions for S, the relative size of the giant component



Computing the Critical Point
In order to solve the equation we have to look at the intersection between
y=S and y=1-exp(-⟨k⟩S)

when ⟨k⟩<1 there is only one intersection in S=0
when ⟨k⟩>1 there is also an intersection for S>0



Phase Diagram
Random graphs show a second order phase transition in which a giant

component emerges. The critical point is ⟨k⟩=1



Sub-Critical
⟨k⟩ < 1
No giant
component
N ~log(N)

Phase Diagram

G

For ⟨k⟩<1 the graph is subcritical and there are many disconnected
components



Critical
⟨k⟩ = 1
No giant
components
N ~N

Phase Diagram

G
2/3

For ⟨k⟩=1 the graph is critical, there is no giant component, but larger
connected components start to emerge



Super-Critical
⟨k⟩ 1
Giant
components
N ~N

Phase Diagram

G

For ⟨k⟩>1 the graph is super-critical, there is a giant component containing
a finite fraction of the nodes in the graph



Connected
⟨k⟩>ln(N)
No isolated
nodes
N =N

Phase Diagram

G

For ⟨k⟩>ln(N) the graph is connected, all nodes belong to the same giant
component that contains exactly N nodes



Small World and
Clustering



Milgram’s Experiment
In 1967 Milgram measured the average  path
length in social networks

Participants: Randomly selected
individuals in Omaha, Nebraska
Task: Send a package to a stockbroker in
Boston 
Method: Each participant mailed a
packet to a friend they thought was
socially closer to the target. The process
was repeated until the packet reached
the stockbroker or the chain ended.

On average, 6 steps are needed to reach
the target.



Milgram’s Experiment on Facebook
The left plot shows the distribution of steps for Milgram’s experiment, while
on the right plot shows the distribution of distance among Facebook users.

In this case the average path length is around 4



Erdős Number
The Small World property also applies to science collaboration networks.

The famous mathematician Erdős is generally taken as a point of reference
and used to compute the Erdős number



The Small World Property
Despite networks can be huge, often the path
connecting any two elements in the network can be
surprisingly short. This phenomenon is summarized
by the popular notion of "six degrees of separation". 

This property is expressed in terms of the average
path length L and it is called small world property

Note that this is not true for lattices, for D=2



First Neighbors

Second Neighbors

We approximate a random network as a tree. The
number n(d) of nodes at distance d from a node is

n(0) = 1
n(1) = ⟨k⟩
n(2) ≈ ⟨k⟩²
n(d) ≈ ⟨k⟩ᵈ

The total number of nodes N(d) up to distance d is 

Diameter of Random Networks

When d is equal to the diameter dₘₐₓ then N(d)=N



Random Networks vs Lattices
The result we obtained implies that random
networks are Small World. The approximation
actually works better for the average path length 



To compute the clustering coefficient we need the number of triangles 
we denote by Lᵢ the number of links among the connections of node i
the number of triangles tᵢ will be given by Lᵢ
the probability for 2 nodes to link is p 
the number of possible links among the kᵢ connection of i is kᵢ(kᵢ-1)/2

As a consequence the number of connections Lᵢ is

Clustering in Random Networks

The local and global clustering coefficients are then



Random vs Real
Networks
Since C= ⟨k⟩/N the global clustering
coefficient in random networks goes
to zero as the network size increases 

the figure shows several real
world network and the prediction
for random networks
the clustering of the real networks
is well above the random network
scenario



Random vs Real
Networks
In random networks also the local
clustering coefficient is Cᵢ=⟨k⟩/N 

the clustering coefficient is the same
for all nodes
it does not depends on the node’s
degree
real world networks show a different
behavior 
the figure shows the case of a
science collaboration network



Watts-Strogatz Model



Small World Clustering Degree
Distribution

Random
Networks

Yes Small Poisson

Real
Networks

Yes Large Scale Free

Real Networks are not Random!
Random networks have similar average path length compared to real

networks, but the clustering and the degree distribution are very different



The Watts-Strogatz Model
The Watts-Strogatz Model is
one of the most simple models

start with a ring with
connections only to near
nodes (on both sides)
rewire each link with
probability p

For p=0 we have a regular ring
network (similar to a lattice),
while for p=1 we have a
random network. What
happens in between?



Properties of the Model
The Watts-Strogatz Model interpolates
between a regular graph and a random
graph. For intermediate values of p we
observe:

high clustering (inherited from the
initial regular graph)
low average path length (deriving
from the rewiring)

In practice the few random connection
we are adding make it much easier to
move around the network.



Triadic Closure Mechanism
The Watts-Strogatz Model reproduces real networks
properties, however it is not very realistic:

in real life we don’t know much about the full
network, we tend to link more with close people

 
We can obtain similar networks performing rewiring
based on triadic closure instead of random

the idea is that nodes having a “common friend”
are more likely to link 
we always start with a regular ring
we add new links with a probability that depends
on the number of shared friends



Propensity to Triadic Closure
The model works as it follows:

Start with a ring of n nodes
For each pair of nodes:

Calculate number of shared
friends mᵢ,ⱼ
Calculate probability to connect
Rᵢ,ⱼ based on mᵢ,ⱼ
Connect them with prob. Rᵢ,ⱼ

p gives the probability to connect
even in absence of mutual friends
α sets the relevance of the common
friend mechanism



Properties of 
the Model
Similarly to the Watts-Strogatz Model, we
observe a sweet spot (in α) for which the
model produces networks with both low
path length and high clustering

this is much more realistic than the
Watts-Strogatz model
the rewiring process is based on local
characteristics of the network
the process resembles what we
humans tend to do in real life

parameter α
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Network Robustness



Network Failures

Rail Networks Power Grids Supply Chains

Nodes or links within networks may fail and cause chain reactions through
the whole structure. Disruption are significant when the giant component
breaks, leading to a fragmented network

delays in trains or flights 
power outages 
supply chain shortages 



Random Failures vs Targeted Attacks

Random Failure Targeted Attack

We focus on nodes and we distinguish between two possible scenarios
Random Failure. Random nodes in the network fail (are removed)
Targeted Attacks. Nodes with the largest degree are removed

A network may be very robust against random failures but very susceptible
to targeted attacks



Networks have strage properties, one of them is the Friendship paradox
On average, an individual's friends have more friends than that individual.

To explain this we denote by 
N(k) the number of nodes with degree k
Pₙ(k) the probability that the neighbor of a node has degree k
k⋅N(k) is the number of nodes connected to nodes with degree k
⟨k⟩⋅N is the total number of links in the network

The probability Pₙ(k) to follow a random link and reach a node with degree k is 

Your Friends have more Friends!?

And we can compute the average degree of a random neighbor using Pₙ(k) 



Molloy-Reed Criterion

First Neighbors

Second Neighbors

Molloy-Reed Criterion states that:
 A giant component can exists only if the

average number of second neighbors is larger
than the average number of first neighbors

Starting from a node, the network must expand
the degree of the neighbors is 

       ⟨k⟩ₙ=⟨k²⟩/⟨k⟩
we have to subtract 1 (remove starting node)
the total number of second neighbors is

      Z₂=⟨k⟩[⟨k⟩ₙ-1]=⟨k²⟩-⟨k⟩
The criterion then reads 
Z₂>⟨k⟩ -> ⟨k²⟩-⟨k⟩>⟨k⟩



Using Molloy-Reed criterion we can obtain the giant component phase
transition of random graphs 

We can also use Molloy-Reed criterion to asses the robustness of networks. 
We consider a random failure involving a fraction f of the nodes (percolation)

the number of first neighbors is reduced by (1-f)
the number of second neighbors is reduced by (1-f)²

Molloy-Reed criterion becomes 

From which we get the critical percolation point f𝒸

Percolation Threshold 
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fraction nodes removed f

Random Graphs vs 
Real Networks
In the case of a random network ⟨k²⟩=⟨k⟩²+⟨k⟩ and
the critical fraction is

For large ⟨k⟩, a very large fraction of nodes can fail
The figures shows the behavior for 

a random network with ⟨k⟩=3
an internet network with ⟨k⟩ ≈ 6

The real network is much more tolerant to random
failures. The GC exists up to f≈1 and therefore the
robustness is extremely high.



Conclusions
Random Networks
Random networks are characterized by a Poisson degree distribution and
present a phase transition leading to the emergence of a Giant Component 
Small World and Clustering
Random networks present the small world property like real networks, but
differently from them are characterized by a small clustering
Watts and Strogatz Model
We can get both small world and high clustering using the Watts-Strogatz
model or the more realistic triadic closure model
Network Robustness
The robustness of networks to failures can be computed using the Molloy-Reed
criterion. For random graphs this leads to a percolation transition.



Quiz

What are some networks that can be schematized as random?
Do you have any real life example of the small world property? 
Is there any flaw in Milgram’s experiment?
Why there is no clustering in random graphs?
What are the implausible assumptions of the Watts-Strogatz model?
Which networks are expected to be more tolerant to attacks, random
or real?
Which characteristics make a network more or less tolerant to
attacks and failures?


