

Universität Konstanz

UNIVERSITÄT KONSTANZ

Scale-Free Networks

Network Science of Socio-Economic Systems Giordano De Marzo

Recap

Random Graphs

Random networks have a Poisson degree distribution a phase transition leading to a **Giant Component Small World and Clustering** Random networks present the small world property but have a small clustering Watts-Strogatz Model We can get both small world and high clustering using the Watts-Strogatz model **Network Robustness** The robustness of networks to failures can be computed using the Molloy-Reed criterion

Outline

1. Power Law Probability Distributions 2. Scale-Free Networks 3. Barabasi-Albert model **4. Robustness of Scale-Free Networks**

The Gaussian World

We are accustomed to think in term of gaussians and average values:

- height
- weight
- speed
- performances

In the Gaussian world there are no surprises:

- a small sample is enough for knowing everything
- the future is hardly surprising

The Paretian World

However many relevant phenomena are characterized by extreme events (Pareto distribution): financial crises • wars pandemics

The Paretian world is full of surprises and strange properties: • a large sample is not enough for knowing everything • the future is surprising

natural disasters

Pareto or Power Law Distributions

Let us consider a series objects with sizes k_1 , k_2 ... etc. We say that these objects follow a Pareto or Power Law distribution if the probability P(k) of observing an event with size S is of the form

$$P(k) = \frac{c}{k^{\gamma}}$$

In this expression

• c is a normalization constant to ensure the probability to sum to one • y is the power law exponent or scaling exponent The power law shows a much slower decay with respect to a Gaussian

$$P(k) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Visualizing Power Laws

Given a set of sizes we can determine their distribution performing an histogram. If the data follow a power law distribution the histogram will look like a straight line using a double logarithmic scale. In order to obtain better plots it is important to use logarithmic binning.

Two histograms of the same distribution. The second one has logtransformed x and y axes and the same bins. Bins are all of the same width in linear scale, but appear different in log scale

Logarithmic Binning

Same log-log histogram but with logarithmic binning: the width of a bin is a multiple of the one on the left. Bin heights are divided by their width. Bins now look all the same in log scale.

Scale-free Property A Power Law probability distribution is of

A Power Law p the form $P(k) = \frac{c}{k^{\gamma}}$ As a conseque

As a consequence if we multiply all sizes by a constant factor K, the shape of the distribution does not change

$$P(a \cdot k) =$$

For this reason we say that power laws are scale free. They have not a typical scale like a Gaussian.

 $a^{-\gamma}P(k)$

Diverging Variance

Power laws with y<3 are particularly interesting since they have a diverging variance. Indeed we have

$$\operatorname{Var}[k] = \int_{k_{min}}^{\infty} k^2 P(k) dk - \langle k \rangle^2 = c \int_{k_{min}}^{\infty} k^{2-\gamma} dk - \langle k \rangle^2$$

For y<3 the integral on the right is infinite and so is the variance

- this means that events of arbitrary large size can occur
- the average value doesn't make much sense

Similarly is y<2 the mean value is diverging, but this is of less interest since it's a more rare situation in real systems, particularly networks.

Scale-free Networks

Many real world networks are characterized by a power law distribution of degrees. We call such graphs scale-free networks. In a scale-free network there are many nodes with few connections, but also few nodes with an enormous number of links.

Scale-Free vs Random

Differently from regular and random networks, in scale-free networks there are hubs with many connections

- we can visualize this having in mind an air transportation network
- there are airports connected to a large number of other cities
- this makes very easy traversing the network

Number of links (k)

Power Grids

Power grids are an example of scale-free networks

Your Bairey, Madeleine and Shanté Stowell. "US Power Grid Network Analysis." (2014). https://www.youtube.com/watch?v=_XWN53M-bxE

Internet and WWW

Both the WWW and the Internet present a scale-free structure

WWW

Network Science. A.L. Barabasi https://networksciencebook.com/

Internet

The Meaning of Scale-Free

Power law distributions with exponent smaller than 3 have a diverging variance

- the variance can only diverge in an infinite system
- however also in a finite system we can observe a very large variance

Since the variance is much larger than the average degree, the network doesn't have a typical scale

Hubs in Scale-Free Networks

- Given a degree distribution and N nodes, we can compute the maximal degree in the system for a Poisson distribution we get

 - for a scale-free distribution instead $k_{max} \sim N^{\frac{1}{\gamma-1}}$

 $k_{max} \sim \ln N$

The growth of the largest degree is much faster and this leads to hubs

The Ultra-Small World Property

Scale-free networks present different regimes for the average path length

- for γ<3 the network is ultra-small world, the average path length is even shorter than in a small world network
- for γ>3 the behavior is the same as in random networks

$$\langle d \rangle \sim \begin{cases} const. & \gamma = 2\\ \ln \ln N & 2 < \gamma < 3\\ \frac{\ln N}{\ln \ln N} & \gamma = 3\\ \ln N & \gamma > 3 \end{cases}$$

Regimes of Scale-Free Networks

- Scale-Free networks present 3 regimes: Anomalous Regime y<2
 - - degree diverge. No large networks can exist.
 - - The variance diverges but the mean degree is finite. Networks are ultrasmall world

Both the variance and the mean

Scale-Free Regime 2<y<3

Random Regime y>3

- Both the variance and the mean
- degree are finite. Networks are very
- similar to random networks

Are Scale-Networks Ubiquitous?

After the discovery of the first scalefree networks, the scale-free property has been attributed to hundreds and hundreds of networks

- this lead to a claim of universality of real networks
- however more recent studies found that only a limited fraction of networks is truly scale-free

Even if some network are not scalefree, they have a degree distribution much wider than in a random network

All data sets	Not Scale Free	-
	Super-Weak	-
	Weakest	-
	Weak	-
	Strong	-
	Strongest	-
0.0		

Broido, A.D., Clauset, A. Scale-free networks are rare. Nat Commun 10, 1017 (2019).

456 (0.49) 431 (0.46) 268 (0.29) 177 (0.19) 89 (0.10) 36 (0.04) 0.2 0.4 0.6 0.8 1.0

The Barabasi-Albert Model

We want to understand how scale-free networks can emerge from individual behavior. The Barabasi-Albert model is a simple network growth process showing that scale-free networks can emerge from a simple mechanism

- we start with an initial network
- at each time step we add a new node
- this new node links to m existing nodes
- the linking probability π_i to link to node i is proportional to the node's degree

$$\pi_i = \pi(k_i) = rac{k_i}{\sum_j k_j} = rac{k_i}{2mN}$$

https://sarah37.github.io/barabasialbert/

Degree Dynamics

We can compute the evolution of a specific degree k_i using the linking probability

$$k_i(N+1) = k_i(N) + m \frac{k_i(N)}{\sum_j k_j(N)} \to k_i(N+1) - k_i(N)$$

The left side of the equation approximates the derivate and the denominator is 2mN

$$\frac{dk_i}{dN} = \frac{k_i}{2mN}$$

Defining as N_i the size of the network when node i entered it, the solution of this differential equation is

$$k_i(N) = m\left(\frac{N}{N_i}\right)^{\beta}$$
 with $\beta = \frac{1}{2}$

$$= m \frac{k_i(N)}{\sum_j k_j(N)}$$

Rich-get-Richer Effect

In the Barabasi-Alber model, older nodes have an advantage over younger nodes. This is called Rich-get-Richer effect (or cumulative advantage)

Scale-Free Degree Distribution

The Barabasi-Albert model generates scale free networks • the power law exponent is independent of • the number of links m • the initial network • the model asymptotically produces a degree distribution with exponent -3

$$P(k) = rac{2m^2}{k^3}$$

 small modifications allow to get any exponent >2

Deriving the Degree Distribution

We denote by N(k, N) the number of nodes with degree k in a network with N nodes. By adding a new node this number will change following the equation below

$$N(k, N+1) = N(k, N) + m \frac{k-1}{2mN} N(k-1, N) - m \frac{k}{2mN} N(k-1, N) - m \frac{$$

N(k, N)/N is the probability P(k, N) of observing a node of degree k

$$P(k, N+1)(N+1) = P(k, N)N + \frac{k-1}{2}P(k-1, N) - \frac{k}{2}F$$

Adding a node don't change the probability in large networks P(k, N)=P(k, N+1)=P(K)

$$P(k) = -\frac{1}{2} \left[kP(k) - (k-1)P(k-1) \right] \approx -\frac{1}{2} \frac{d}{dk} \left[kP(k) \right]$$

It is easy to show that a solutio to this differential equation is $P(k) \sim k^{-\gamma}$ with $\gamma = 3$

- (k, N)
- P(k, N)

Clustering Coefficient

In the Barabasi-Albert model, the clustering coefficient is larger than in random network, but still it goes to zero for large network sizes

The average path length grows slower than in a random network, but since y=3there is no ultra-small world

Necessary Conditions

 without growth (no new nodes) the distribution never reaches a stationary state and peaks on a specific value (depending on N)

What are the necessary ingredients
to get a scale-free networks? Are
both growth and (linear)
preferential attachment crucial?
without (linear) preferential
attachment we get random
networks (exponential degree
distribution)

Non-Linear Preferential Attachment

What happens if we change the exponent of the linking probability using a non-linear preferential attachment

- Sublinear case. The degree distribution is a stretched exponential and the network is basically random
- Superlinear case. The degree distribution is peaked on the tail. The network is an hub and spoke topology

The Vertex Copy Model

The Barabasi-Albert model is not very realistic:

- in order to compute the linking probability we have to know all degrees
- in most situation we can only observe a very limited portion of a network

In the Vertex Copy model these limitations are

overcame by exploiting a more local mechanism

- at each time step a new node is added
- this node links to a random node (blue arrow)
- it then copied all the connections of the node it has linked to (red arrows)

In this way we only need to know the local structure around a node.

Degree Distribution

The Vertex Copy model produces directed networks. The relevant property to look at is the in-degree (incoming connections) • the out-degree distribution is peaked • the in-degree distribution is a power law with exponent -2

This implies that it is possible to obtain scale free networks even if only local information is used. The edge copy mechanism is creating a sort of proxy of the linear preferential attachment.

Disrupting Scale-Free Networks

During last lecture we studied the robustness of networks focusing on random graphs. However many real networks are scale-free

- in scale-free networks there are hub providing connections to easily traverse the network
- these hubs will make the network much more tolerant to random failures
- however target attacks to the hubs can seriously compromise the functioning of the whole networks

Achilles' heel of the Internet

Obesity Mice that eat more but weigh less Ocean anoxic events Not all at sea Cell signalling Fringe sweetens Notch

new on the market oligonucleotides

Recap: Molloy-Reed Criterion

Molloy-Reed criterion allows to determine if a network contains a giant component by comparing the number of first and second neighbors

$$\langle k^2 \rangle - \langle k \rangle > \langle k \rangle \rightarrow \frac{\langle k^2 \rangle}{\langle k \rangle} > 2$$

When performing a random node removal this lead to the following expression for the critical threshold above which the giant component gets destroyed

$$f_c = 1 - \frac{\langle k \rangle}{\langle k^2 \rangle - \langle k \rangle}$$

From this expression we can already understand that scale-free networks are very resistant!

Second Neighbors

Tolerance to Failures

By using Molloy-Reed criterion we can compute explicitly the critical threshold for scale-free networks

$$f_c = \begin{cases} 1 - \frac{1}{\frac{\gamma - 2}{3 - \gamma} k_{\min}^{\gamma - 2} k_{\max}^{3 - \gamma} - 1} & 2 < \gamma < 3 \\ 1 - \frac{1}{\frac{\gamma - 2}{\gamma - 3} k_{\min} - 1} & \gamma > 3 \end{cases}$$

For y<3 the largest degree diverges and so the critical threshold is 1 for infinite networks. In finite networks instead

 $f_c \approx 1 - \frac{C}{\frac{3-\gamma}{\gamma-1}}$

Tolerance to Attacks

We can use Molloy-Reed criterion also for studying attacks, but in this case computations are more complex. The equation that one obtains is

$$f_c^{\frac{2-\gamma}{1-\gamma}} = 2 + \frac{2-\gamma}{3-\gamma} k_{\min} \left(f_c^{\frac{3-\gamma}{1-\gamma}} - 1 \right)$$

As shown in the plot the tolerance to attacks is much smaller than the tolerance to failures, that for γ <3 is maximal. Note that the minimal degree plays a role in this problem.

Cascading Failures

This is only a first approximation to the problem, since in many real case scenario a single failure may cause a cascade of failures in the network

Conclusions

Power Law Probability Distributions

Many real life phenomena are characterized by extreme events described by power law probability distributions

Scale-Free Networks

Real world networks tend to be scale-free, i.e.their degree distribution is a power law. These networks are (ultra) small world, but the clustering goes to zero

Barabasi-Albert Model

Scale-free networks can be generated using a simple microscopic mechanism based on linear preferential attachment

Robustness of Scale-Free Networks

Scale-free networks are more tolerant to failures than random networks, but they tend to be more susceptible to attacks

Quiz

- Can you list some extreme events that are not explained by a Gaussian distribution?
- Do you know the concept of Black Swan?
- What do you think is the largest daily fluctuation ever in the US stock market?
- Do you know any scale free network?
- What are the implausible assumptions of the Barabasi-Albert model?
- Do you think the Barabasi-Albert model captures the dynamics of online social networks?
- What are some examples of cascading processes?