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Recap

Random Graphs

Random networks have a Poisson degree
distribution a phase transition leading to a
Giant Component

Small World and Clustering

Random networks present the small world
property but have a small clustering
Watts-Strogatz Model

We can get both small world and high
clustering using the Watts-Strogatz model
Network Robustness

The robustness of networks to failures can be
computed using the Molloy-Reed criterion
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We are accustomed to think in
term of gaussians and average
values:

* height

e weight

* Speed

e performances

In the Gaussian world there are
No surprises:
e a small sample is enough for
knowing everything
e the future is hardly surprising

The Gaussian World




The Paretian World

However many relevant
phenomena are characterized
by extreme events (Pareto
distribution):

e financial crises

* WArsS

e pandemics

e natural disasters
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The Paretian world is full of
surprises and strange properties:
e alarge sample is not enough
for knowing everything
e the future is surprising




Pareto or Power Law Distributions

Let us consider a series objects with sizes k;, k; ... etc.
We say that these objects follow a Pareto or Power Law distribution if the

probability P(k) of observing an event with size S is of the form

P(k) = k—i

In this expression
e C is a normalization constant to ensure the probabillity to sum to one

e v is the power law exponent or scaling exponent
The power law shows a much slower decay with respect to a Gaussian
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Visualizing Power Laws

Given a set of sizes we can determine their distribution performing an
histogram. If the data follow a power law distribution the histogram will look
like a straight line using a double logarithmic scale. In order to obtain better

plots it is important to use logarithmic binning.
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Linear Binning
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Two histograms of the same distribution. The second one has log-
transformed x and y axes and the same bins. Bins are all of the same width in
linear scale, but appear different in log scale



Logarithmic Binning
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Same log-log histogram but with logarithmic binning: the width of a bin is a
multiple of the one on the left. Bin heights are divided by their width. Bins now
look all the same in log scale.
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Scale-free Property

A Power Law probability distribution is of
the form
C

P(k) = =

As a consequence if we multiply all sizes
by a constant factor K, the shape of the

distribution does not change
P(a-k)=a "P(k)

For this reason we say that power laws
are scale free. They have not a typical

scale like a Gaussian.



Diverging Variance

Power laws with y<3 are particularly interesting since they have a diverging
variance. Indeed we have

o9

Var[k] = / ) K2P(k)dk — (k)2 = c / K2 dk — (k)2

kzrnin k?nin

For y<3 the integral on the right is infinite and so is the variance
e this means that events of arbitrary large size can occur
* the average value doesn’'t make much sense

Similarly is y<2 the mean value is diverging, but this is of less interest since it's a
more rare situation in real systems, particularly networks.






Scale-free Networks

Many real world networks are characterized by a power law distribution of degrees.
We call such graphs scale-free networks. In a scale-free network there are many
nodes with few connections, but also few nodes with an enormous number of links.
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Scale-Free

Vs Random N b'
Differently from regular and i
random networks, in scale-free V
networks there are hubs with many ) Number o inks

connections
e we can visualize this having in
mind an air transportation

C.  POWER LAW d.

network 1 S
e there are airports connected to F o\ e
.. 5 -TL'.V\;\ ‘M\\
a large number of other cities O

* this makes very easy traversing TR
the network




Power Grids

Power grids are an example of scale-free networks

US Power Grid European Power Grid

LY,

Your Bairey, Madeleine and Shanté Stowell. “US Power Grid Network Analysis.” (2014).
https://www.youtube.com/watch?v=_XWN53M-bxE



Internet and WWW

Both the WWW and the Internet present a scale-free structure

WWW Internet

Network Science. A.L. Barabasi https://networksciencebook.com/



The Meaning of
Scale-Free

Power law distributions with exponent
smaller than 3 have a diverging variance
e the variance can only diverge in an

Infinite system
e however also in a finite system we
can observe a very large variance

Since the variance is much larger than
the average degree, the network doesn’t
have a typical scale
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Hubs in Scale-Free
Networks
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Given a degree distribution and N
nodes, we can compute the maximal
degree in the system

e for a Poisson distribution we get

k...~ 1nN

e for a scale-free distribution instead

_1
kma,a: ~ [N ~-1

The growth of the largest degree is
much faster and this leads to hubs



The Ultra-Small
World Property

Scale-free networks present different
regimes for the average path length
e for y<3 the network is ultra-small
world, the average path length is even
shorter than in a small world network
e for y>3 the behavior is the same as in
random networks
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Regimes of Scale-Free Networks

Scale-Free networks present 3 regimes:
e Anomalous Regime y«<2

ANOMALOUS SCALE-FREE RANDOM

REGIVE REGIME Rt Both the variance and the mean
e degree diverge. No large networks
S QQ 6‘ can exist.
‘IR SR e Scale-Free Regime 2<y«3
Vi Q The variance diverges but the mean

F 2 A\ 3 Y e e
R owes / \ OX /\ W e degree is finite. Networks are ultra-
A ( | CECARE A small world

_/ N

e Random Regime y>3
/ —— ~ Inln, o d)~ L 1
e G Tty Both the variance and the mean
: i'(anROWS FASTER THAN N ULTRA-SMALL SMAI : . o
sl | degree are finite. Networks are very

e T similar to random networks



Are Scale-Networks
After the discovery of the first scale- U biq U ito US ?

free networks, the scale-free property

has been attributed to hundreds and ot
0O
hundreds of networks sl o _ 456 (0.49)

* this lead to a claim of universality of o o \veax ! 451 (0.46)
real networks §
e however more recent studies found 8  Weakest ¢ 268 (0.29)
that only a limited fraction of < Weak 177 (0.19)
networks is truly scale-free Strong 89 (0.10)
Strongest B 36 (0.04)
Even if some network are not scale- 0.0 0.2 0.4 0.6 0.8 1.0

free, they have a degree distribution ,
. . Broido, A.D., Clauset, A. Scale-free networks are
much wider than in a random network rare. Nat Commun 10, 1017 (2019).






The Barabasi-Albert Model

We want to understand how scale-free networks O
can emerge from individual behavior. n=2/4=0.5
The Barabasi-Albert model is a simple network
growth process showing that scale-free networks
can emerge from a simple mechanism m=1/4=0.25
e we start with an initial network
e at each time step we add a new node ¢
e this new node links to m existing nodes
e the linking probability m; to link to node i is /Q
proportional to the node’s degree
T = 7'('(]62) — >.;k;  2mN
https://sarah37.github.io/barabasialbert/

n=1/4=0.25



https://sarah37.github.io/barabasialbert/

Degree Dynamics

We can compute the evolution of a specific degree k; using the linking probability

Ei(N) oy o ka(V)
ki(N +1) = k;(N) mzj ) s ki(N +1) — k;(N) = mzj ()
The left side of the equation approximates the derivate and the denominator is 2mN
dk;  k
dN  2mN

Defining as N; the size of the network when node i entered it, the solution of this
differential equation is

’ 1
ki(N)=m (—) with [ = 5



Rich-get-Richer Effect

In the Barabasi-Alber model, older nodes have an advantage over younger nodes.
This is called Rich-get-Richer effect (or cumulative advantage)
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Scale-Free Degree Distribution

The Barabasi-Albert model
generates scale free networks
e the power law exponent is
independent of
o the number of links m
o the initial network
e the model asymptotically
produces a degree distribution
with exponent -3
2
P(k) = 3
e small modifications allow to get
any exponent >2




Deriving the Degree Distribution

We denote by N(k, N) the number of nodes with degree k in a network with N nhodes.
By adding a new node this number will change following the equation below

k—1 k
N(k—1.N) —

2mN (k= 1,N) omN

N(k, N)/N is the probability P(k, N) of observing a node of degree k

P(k,N +1)(N +1) = P(k, N)N - g ; 1P(k —1,N) — gp(k,,N)

N(k,N+1)=N(k,N)+m

N(k, N)

Adding a node don’'t change the probability in large networks P(k, N)=P(k, N+1)=P(K)
1 1 d

> [kP(k) = (k = 1)P(k = 1)] ~ —5— [kP(k)

It is easy to show that a solutio to this differential equation is
P(k) ~ k™ with =3

P(k) =



Clustering Coefficient

In the Barabasi-Albert model, the clustering coefficient is larger than in random
network, but still it goes to zero for large network sizes
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Diameter

The average path length grows slower than in a random network, but since y=3
there is no ultra-small world
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Necessary Conditions

What are the necessary ingredients

. DR to get a scale-free networks? Are
. k;ff ) both growth and (linear)

o o b g | Da preferential attachment crucial?

. A Y o e without (linear) preferential
_ : Y attachment we get random

U ™ %% networks (exponential degree

o distribution)

107 | o 5% e without growth (no new nodes)
| N 1Y the distribution never reaches a
o 5 k1o T T stationary state and peaks on a

specific value (depending on N)



Non-Linear
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The Vertex Copy Model

The Barabasi-Albert model is not very realistic:
e in order to compute the linking probability we have

to know all degrees /] \
e in most situation we can only observe a very limited // | \
portion of a network / II \\
In the Vertex Copy model these limitations are I )J

overcame by exploiting a more local mechanism
e at each time step a new node is added '
e this node links to a random node (blue arrow) ¢
e it then copied all the connections of the node it has
linked to (red arrows)
In this way we only need to know the local structure O
around a node.



Degree Distribution

10°

degree distributions
5@

The Vertex Copy model produces
directed networks. The relevant
property to look at is the in-degree
(iIncoming connections)
e the out-degree distribution is peaked
e the in-degree distribution is a power
law with exponent -2

This implies that it is possible to obtain
scale free networks even if only local
information is used. The edge copy
mechanism is creating a sort of proxy of
the linear preferential attachment.






Disrupting Scale-Free
Networks

During last lecture we studied the robustness of
networks focusing on random graphs. However many
real networks are scale-free
e in scale-free networks there are hub providing
connections to easily traverse the network
e these hubs will make the network much more
tolerant to random failures |
e however target attacks to the hubs can seriously Achilles’ heel of the Internet
compromise the functioning of the whole k.
etworks e

27 July 2000 International weekly journal of science

Obesity Mice that eat more but weigh less

new on the market
oligonucleotides



Recap: Molloy-Reed Criterion

Molloy-Reed criterion allows to determine if a
network contains a giant component by comparing
the number of first and second neighbors

> (k)
(1) = (k) > (k) =
When performing a random node removal this lead
to the following expression for the critical threshold
above which the giant component gets destroyed
fom 1
(k?) — (k)
From this expression we can already understand
that scale-free networks are very resistant!

> 2

‘ First Neighbors

‘ Second Neighbors



Tolerance to
Failures

By using Molloy-Reed criterion we can
compute explicitly the critical
threshold for scale-free networks

| — ——— 2<y<3
Tk |i1_inh ‘E‘J;l_l‘i —1
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J O l
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_\kmin_]

For y<3 the largest degree diverges and
so the critical threshold is 1 for infinite
networks. In finite networks instead
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Tolerance to
Attacks

L | | | |
We can use Molloy-Reed criterion also N\, ARG FEIFS
for studying attacks, but in this case 08 REERERSS
computations are more complex. The A Ky = 8
equation that one obtains is 06 Kmin = 2 -
)“% =2+ g, (f'_ — 1) fe Kmin =
N AT 0.4 4
As shown In the plot the tolerance to
attacks is much smaller than the 0.2 Kmin = 2 -
tolerance to failures, that for y<3 is
maximal. Note that the minimal o : 4' 5' , 61 7' :

degree plays a role in this problem.



Cascading Failures

This is only a first approximation to the problem, since in many real case
scendario a single failure may cause a cascade of failures in the network
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Conclusions

Power Law Probability Distributions

Many real life phenomena are characterized by extreme events described by
power law probability distributions

Scale-Free Networks

Real world networks tend to be scale-free, i.e.their degree distribution is a power
law. These networks are (ultra) small world, but the clustering goes to zero
Barabasi-Albert Model

Scale-free networks can be generated using a simple microscopic mechanism
based on linear preferential attachment

Robustnhess of Scale-Free Networks

Scale-free networks are more tolerant to failures than random networks, but
they tend to be more susceptible to attacks



Quiz

e Can you list some extreme events that are not explained by @
Gaussian distribution?

e Do you know the concept of Black Swan?

e What do you think is the largest daily fluctuation ever in the US stock
market?

e Do you know any scale free network?

e What are the implausible assumptions of the Barabasi-Albert model?

e Do you think the Barabasi-Albert model captures the dynamics of
online social networks?

e What are some examples of cascading processes?



