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Recap

The Quest for Online Search Engines

The exponential growth of the number of pages
mMade standard approaches to searches
unfeasible

The PageRank

Google introduced the PageRank, focusing of
the role of pages within the network
Centrality Measures

Different tasks require different centrality
measures

Analyzing Criminal Networks

Network science is a useful tool to analyze and
target criminal networks



Outline

l.Communities in Networks
2.Community Detection Algorithms
3.Homophily and Communities Formation

4.The Strength of Weak Ties






Communities in
NetWOI‘kS Communities are groups of nodes

densely connected internally but
sparsely connected with the rest of the
network. They are the result of

e Clustering: Nodes tend to form
tightly-knit groups.

e Homophily: Similar nodes are more
likely to connect, reflecting shared
characteristics or interests.

Examples include:

e Social circles in friendship networks.

* Research groups in co-authorship
networks.

 Modules in biological networks




Strong vs Weak
Communities

Communities can be strong or weak
* in a strong community each node
has more connections within the
community than with nodes
outside its community
* in d weak community, only the
total number of connections
within a community is larger than
the number of connections
outside the community
The communities with the blue nodes

are weak




Community Detection

Community Detection consists in
automatically partition a network
Into communities based on its

12
structure

This task can be very challenging S

e Communities can overlap (e.g.,
In social networks, people
belong to multiple groups). 5

17

e Networks often lack clear 13 /8

boundaries.

* Real-world networks are large
and complex (e.g., millions of
nodes, billions of edges).
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Community Detection

vs Clustering

Unlabeled data Clustered data
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Average number of symptoms per week

Community detection is
conceptually similar to clustering
e Community Detection:

© Operates on networks where
relationships are non-
Euclidean.

o Focuses on identifying
densely connected groups of
nodes.

e Clustering:

o Operates on metrical spaces.

o Groups points based on
distance or similarity metrics.



What is the Quality of a Partition?

A network can be partitioned in many ways, but not all partitions are meaningful. We
need methods to evaluate the goodness of a partition
There are severadl approaches to measure quality:
.Edge Density:
o Compadre the number of edges inside communities to those between
communities.
o Stronger communities have higher internal edge density.
2.Cut-based Metrics:
o Evaluate partitions based on the number of edges cut between communities.
3.Comparison with Null Models:
o Assess partitions by comparing them to random network models.
o Null Hypothesis: Communities arise purely by chance.
4.0bjective Functions:
o Define and optimize a mathematical function (e.g., modularity) to find the
‘best” partition.



Newman's Modularity

Modularity Q is a measure of the quality of a division of a network into communities
e Evaluates how well the network is partitioned
e Compares the density of edges within communities to what would be expected in
a random network
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 A;;: Adjacency matrix (1 if nodes 7 and j are connected, 0 otherwise).

e k;:Degreeof node? (k; = Zj A;j).

m: Total number of edges in the network (m = % Zij Az-j).

e ¢;,c;: Community assignments of nodes 7 and 7.

d(ci, cj): Kronecker delta (1 if ¢; = ¢;, 0 otherwise).



Understanding the
o Higher values of Q indicate better-
M Od U Iq rlty de?‘lned community structures.
1.Negative Modularity (Q<0)

Negative Modularity Single Community o Poor pGrtItl.Onlng where
=12 L nodes are incorrectly

-~ /_:S ¢ N\ ) grouped
\g/ \./ -\\>< \ / 2.Single Community (Q=0):

o Entire network treated as
one community
Suboptimal Partition Optimal Partition 3. SUbOptlmGI Partition (Q)O)

M=0.22 _ M=0.41 |
y o A reasonable division, but
¢ N Vo W

] \ / non optimal
\><I 4.0ptimal Partition (Q is max):
o A clear and well-defined
community structure






The Girvan-Newman algorithm is a
popular method for community
detection.

* |t identifies communities by
iteratively removing edges with the
highest betweenness centrality

a.Compute the betweenness
centrality for all edges in the
network.

b.Remove the edge with the
highest betweenness.

c.Recompute betweenness and
repeat until the network breaks
Into communities.

* The process returns a dendrogram

Girvan-Newman
Algorithm
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Girvan-Newman Visualized

We can use modularity to cut the dendrogram getting the best partition
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Greedy Modularity Maximization

The Greed Modularity Maximization algorithm starts with each node as its own
community and iteratively merge communities to improve modularity.
1. Assign each node to its own community.
2.Merge the pair of communities that results in the largest increase in modularity
(AM).
3.Repeat until no further improvement in modularity is possible.
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Louvain and

Leiden Algorithms

Move nodes Refine

Louvain clustering is a widely used
method for community detection that
works by iteratively optimizing
modularity. N
e Nodes are moved between
communities to maximize
modularity
e The communities are aggregated
into "'meta-nodes’
e This process repeats until no further
modularity improvement is possible.
Leiden clustering builds on Louvain by
iIntroducing refinement steps to
Improve the quality of the partition.
* |t ensures that communities are
well-connected and locally optimal
at every step



Limits of Modularity

Networks with clear community structures
should have an optimal partition with
maximal modularity
e Other partitions should be
distinguishable from this maximum
e |In reality many partitions have
modularity values close to the
maximum.
e Even random partitions or random
networks can have high modularity
values

Modularity offers a useful framework for
understanding community structure but
has also notable limitations
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Comparison of Different Algorithms

Different community detection algorithms tend to produce different partiotions
* iIn Many cases there are strong similarities
 however there can be strong variations, also in the number of communities
e often nodes that are treated differently from different algorithms act as
bridges
* it's good practice to test more than a single algorithm

cluster_fast_greedy Method. Length :3 cluster_walktrap Method. Length :5 cluster_leading_eigen Method. Length :4 cluster_label_prop Method. Length :2 cluster_infomap Method. Length :3 cluster_louvain Method. Length :4




Community Size
Distribution

Many networks exhibit a power law
distribution of community sizes

e Protein Interaction Network

e Science Collaboration Network

Fat-tailed distributions are not algorithm
artifacts, but rather an inherent property
of certain networks
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Why Networks have
Communities?

Now that we know how to detect
communities, a natural question
arises: why do networks form
communities in the first place?
e Homophily and Clustering play
an important role
e We need models to link these
ideas to the observed
structures in real-world
networks

How do local interactions lead to
global community structures?
Can we replicate community
formation using simple rules?



Stochastic Block Model

The Stochastic Block Model is one
of the simplest generative model
that creates communities
e similar to the random network
model
e works by defining
probabilities of connections
within and between groups
Nodes are assigned to predefined
groups and then linked at random A el D P LD
e Within-group: High probability L e
of connections B O T
e Between-group: Low
probability of connections




Homophilic Preferential

Attachment

In many readl-world networks,
connections are driven by a combination
of popularity and similarity or homophily
e The classic Barabdasi-Albert model
focuses only on popularity
e We can modify the linking probability
by introducing a similarity between
nodes
e new nodes are more likely to link to
similar and popular nodes

Also this model produces scale free
networks but with a community structure

Nédes in}fé certain range
of age or expected degree

Connectwlty perlmeter
of the new node

Popodopoulos Frogklskos et al. "Popularity versus similarity
in growing networks." Nature 489.7417 (2012): 537-540.



Spatial Networks

In many real-world scenarios, networks

are not abstract but are embedded in
TRANSPORTATION

L space
CLUSTERS N ™~

3,200 airports
60,000 routes

e Nodes that are closer in space are
more likely to connect

e Proximity plays the role of similarity
e Examples of Spatial Networks

o Airport Networks

o Road Networks

o Power Grids

We can simulate such a situation by

placing nodes on a plane and creating
links with probability proportional to
proximity and degree



Coevolution Models

Are individuals drawn to those who are already similar to them (similarity bias)or
does joining a community make its memlbers more similar over time?
e The reality is likely more complex: a feedback loop between similarity and
connections exists
e Similarity Drives Connections and Connections Strengthen Similarity:
 Once individuals join a community, interactions can lead to convergence

. ' A l
\ - gk e
o . by P B ,#,,_r.:\!'# :
: ] g s AV vt .-..,;vr,—" &
il } 5 E 1 - -' "‘.' - f - - - - o ¥ » '._I# .: -
23 (S N T, e A4 S TS
[ ey TE;? ﬁ:,.’.-r _:f-'-", ‘\1 5 L] o ¢ ,"-' k‘ o
: v % e et LR iR S b el ' &
********** % ',,..'a_-_-"ﬂ'...? 13" 18 v . " u* 5
ey A WL R -f. L Fe e ® T o X
v} — ALY x r =l o X 4,#;! 5 il -
PR A R » a Tan. b v j e
% B it S e S ¥im P A s g
ik T e ) ) ﬁ’ - )
i b—,".ﬂ'- 34N = - -r*.i - ;"" e R T o2 F
\ ‘* o s - "’,f - - 3 "r _a
;. - o o -
’ e i

Centola, Damon, et al. 'Homophily, cultural drift, and the co-evolution of cultural groups.” Journal of Conflict
Resolution 51.6 (2007): 905-9209.



Affiliation Networks

Connections between individuals may
derive from shared daffiliations/activities
e work place
e school
e hobbies

We can describe this as a bipartite network
e we have two classes of node
o researchers
o reseadrch centers
e no links among nodes of the same type
e links mean affiliation
Bipartite networks are very common!
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Bipartite Networks Projection

Starting from a bipartite network we can get a
monopadrtite network by performing a
projection
 two possible projections (one per layer)
are possible
e |let’'s consider researchers
o the simplest approach is to link people
sharing the same affiliation
o more affiliations shared = stronger links
e in the same way one could build a network
of research centers

We will consider the projection of bipartite
networks in more detail in the upcoming
lectures
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How to Find a Job

Often the best way to find a new
""" -5 SimplyHired recruit:nel job is through friends

e personal contacts allow people
“;:I:?“'ﬂq cCer :* mﬂngugm!:g m g P

to access information
e however the most useful
|ndeed ;S ) contacts are not close friends

glassdnor GiP;eanekalEos. e acquaintances are generally
,, Sthe .
vonster  Linked ] CﬂfEthHlIdEl’ more useful in this context:
OV — @"EEJEQ_W What is going on? Our friends
"~ AND 500 MORE! should be more helpful than

random acquaintances



The Strength of
Weak Ties

Mark Granovetter addressed this paradox in his
seminadl paper “The Strength of Weak Ties”
e socidl networks are characterized by strong
and weak ties
o links with our friends are strong but also
redundant
o links with acquaintances are much
weaker but not redundant
e weak ties are more fragile, but they give
access to precious information

In practice, your close friends can't help because

they have the same information as you do

Strong Ties

Weak Ties




Structurally
Embedded Links

Strong friendships (links) tend to be

O . also structurally embedded
A e these links are formed in a
C region already full of links
 triadic closure plays an
\ important role in this context
e friends of friends tend to
Q’ become friends
Y e this create stronger links, but

also a redundant structure




Edge Overiap

We saw that we can use the (local)
clustering coefficient to measure the
number of triangles a node forms

e to quantify redundancy we need ad

similar measure also for edges

e we can do so using the edge overlap
Given two nodes |, |, the edge overlap O; of
the link connecting them is

0. _INONNONGL
TN @ UNGONG S

In simple terms, the overlap is the number of
common friends of i, | divided by the total
number of friends i and | have

Oii=0 Oi=1/3
Oii=2/3 Oi=1




Testing Granovetter's Hypothesis

Granovetter's analysis suggests that
social networks have a community
structure
e in 1973 no data were available to test
the hypothesis
e howadays instead we have access to
several sources
o online social networks
o phone networks
o email networks

Granovetter's hypothesis was first tested
iIn 2007 using a cell-phone network
e 20% of EU country’s population

<~ Edge Weig ht: number of phone calls Onnelaq, J-P., et al. "Structure and tie strengths in mobile
communication networks." PNAS 104.18 (2007): 7332-7336.




Overlap vs Strength

The analysis of the phone networks
reveals that
e there is a correlation between
strength and overlap
e the strongest connections are also
the most redundant
e randomly permuting the strengths
iInstead leads to no correlation

This confirms Granovetter’'s hypothesis
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Visualizing the Phone Network

On the left is represented the network around a random individual. High strength
connections are very embedded, while bridges have a low strength. On the right the
same network but with randomly permuted strengths




The Importance of Bridges

Low Overlap edges act as bridges connecting different communities. Removing
edges in increasing value of overlap disrupt the network the fastest

. Low to High Strength
(O Low to High Overlap

. High to Low Strength
(O High to Low Overlap

Size of largest component

Fraction of removed edges



Conclusions

Communities in Networks

Real networks are characterized by communities and community detection is
used to detect them. Modularity can be used to asses the quality of partitions.
Community Detection Algorithms

We introduced some of the most known community detection algorithms,
pointing out their limitations and strengths.

Homophily and Communities Formation

Homophily plays a central role in the formation of communities. We introduced
various models that link this tendency to the emergence of communities.

The Strength of Weak Ties

Weak ties connect communities in social networks acting as bridges, while
edges within communities are characterized by an high redundancy.



Quiz

e What are some communities that exist here in the university?

e What is the driving force leading to formation of communities in your
experience?

e What is an example of a social network with little homophily?

e How are coevolution models linked to echo-chambers?

e What is an example of a weak tie?

e What are other situations in which the Strength of Weak Ties can be
helpful?

e Do the same principle also apply to social networks?



Quiz: Non-Homophilic Network
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Figure 2.7: A network in which the nodes are students in a large American high school, and
an edge joins two who had a romantic relationship at some point during the 18-month period
in which the study was conducted [49].



