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Preface

Multilayer networks are formed by several networks that evolve and interact with each
other. These networks are ubiquitous and include social networks, financial markets,
multimodal transportation systems, infrastructures, climate networks, ecological net-
works, molecular networks and the brain. The multilayer structure of these networks
strongly affects the properties of dynamical and stochastic processes defined on them,
which can display unexpected characteristics. For example, interdependencies between
different networks of a multilayer structure can cause cascades of failure events that
can dramatically increase the fragility of these systems; spreading of diseases, opinions
and ideas might take advantage of multilayer network topology and spread even when
its single layers cannot sustain an epidemic when taken in isolation; diffusion on
multilayer transportation networks can significantly speed up with respect to diffusion on
single layers; finally, the interplay between multiplexity and controllability of multilayer
networks is a problem with major consequences in financial, transportation, molecular
biology and brain networks.

In the last twenty years, considerable attention has been devoted to the study of single
networks. It has been found that despite their different functions, many biological, social
or technological systems can share similar properties when they are studied from the
network perspective. Recently, the multiplexity of many networks has been identified as
an important aspect of networked systems that needs to be addressed to improve our
understanding of biological and man-made networks. The subject is currently raising
great scientific attention, and several important new results have been obtained. This
book will present a comprehensive account of this emerging field.

The book includes three parts:

- PART I: SINGLE AND MULTILAYER NETWORKS
This part (chapter 1) outlines the main research questions that have been driving
the research on multilayer network structure and function.

- PART II: SINGLE NETWORKS
This part provides an introduction to the main results obtained in Network Science
for the characterization of the structure (chapter 2) and the function (chapter 3)
of single networks. This part constitutes the reference point for appreciating the
results that hold for multilayer networks.

- PART III: MULTILAYER NETWORKS
This part constitutes the core of the book and discusses the main properties of
multilayer network structure and function.



viii Preface

Three initial chapters (chapters 4–6) set the stage for the rest of book. They
discuss the relevance of the multilayer networks framework for a variety of appli-
cations (chapter 4), provide the mathematical definitions of multilayer networks
(chapter 5) and introduce their basic structural properties (chapter 6).

Subsequently, several chapters are devoted to the characterization of the struc-
ture of multilayer networks and extraction of relevant information using their built-
in correlations (chapter 7), their mesoscale community structure (chapter 8) and
structural properties determining the nodes’ and layers’ centralities (chapter 9).

Bridging between the chapters focusing on multilayer network structures (chap-
ters 5–9) and the chapters focusing on multilayer network dynamics (chapters
11–16), novel modelling frameworks especially tailored to multilayer networks are
presented in chapter 10, together with randomization algorithms.

The active research activity on the dynamics and function of multilayer net-
works is covered in chapters 11–16. These chapters provide a general perspective
on the major dynamical processes, including: percolation and avalanches (chap-
ters 11–12), epidemic spreading (chapter 13), diffusion (chapter 14), dynamical
systems and synchronization (chapter 15) and finally opinion dynamics and game
theory models (chapter 16).

- APPENDICES
A series of appendices providing more detailed mathemetical discussion of some
of the major results in multilayer networks complements the material presented in
the main body of the book.

Our aim has been to provide an overview of the field which could guide the reader in
understanding the recent literature on multilayer networks. Given the fast pace at which
new results are continuously published on the subject, it has become impossible to cover
entirely the rapidly growing literature in the field. Our aim is to provide a pedagogical
presentation and an in-depth discussion of the main results on multilayer networks,
allowing students and reseachers to be quickly introduced to the field. We have therefore
made some choices based on our perception of what is more relevant to cover in the book.
This does not imply that the work not covered here is less valuable and we apologize in
advance to the Authors of the papers not cited here.

This book will be of interest for graduate students and researchers in Network
Science working at the interface between two or more disciplines such as: physics,
mathematics, statistics, economy, engineering, computer science, neuroscience and cell
biology. While the book will provide a theoretical introduction to the main results on
multilayer networks, at the same time it will remain widely accessible to the general
interdisciplinary reader.

Ginestra Bianconi
London, 31 October 2017
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Single and Multilayer Networks
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Complex Systems as Multilayer
Networks

1.1 What are multilayer networks?

The fundamental idea behind Network Science is that important information about a
complex system can be gained by studying its underlying network structure. This simple
yet powerful point of view has provided the tools for gaining unprecedented knowledge
on the rich interplay between the structure and function of complex systems.

The field of Network Science has been flourishing in the last decades, where we have
witnessed a Big Data explosion in social science, biology and engineering. Network
Science is a highly interdisciplinary field that combines tools and techniques coming
from physics, mathematics, statistics, biology, engineering and computer science. Now
almost twenty years since the beginning of the field, we have reached understanding of
complex networks and their universal topological properties and we have revealed the
rich interplay between structure and dynamics in complex network architectures.

In the last few years it has been pointed out by several researchers that our under-
standing of complex networks has so far had an important limitation. In fact, rarely
do networks work in isolation. From infrastructures and transportation systems to cells
and the brain, most networks are multilayer, i.e. they are formed by several interacting
networks. For example, in modern society different infrastructures are related by a
complex web of interdependencies and a failure in the power grid can trigger failures in
the Internet, the financial market and transportation. When commuting to the workplace,
the inhabitants of large cities usually take more than one means of transportation
including bus, metropolitan trains and underground. In the cell, the protein–protein
interaction network, signalling networks, metabolic networks and transcription networks
are not isolated but interacting, and the cell is not alive if any one of these networks
is not functioning. In the brain, understanding the relation of functional and structural
networks forming a multilayer network is of fundamental importance.

Multilayer networks have been first introduced in the context of social sciences to
describe different types of social ties. Up to now, social networks remain one of the typical

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001



4 Complex Systems as Multilayer Networks

examples of multilayer networks. Nevertheless, multilayer networks have attracted a
significant interdisciplinary interest only in the last few years, because it has become clear
that characterizing multilayer networks is fundamental to understanding most complex
networks including cellular networks, the brain, complex infrastructures and economical
networks in addition to social networks (chapter 4).

Interestingly, the framework of multilayer networks (chapters 5–6) can also be applied
to temporal networks, i.e. networks that change over time. Temporal networks can be
used to describe a large variety of data, ranging from contacts networks recording face-
to-face social interactions to time-resolved correlations between different regions of the
brain. In this case, the multilayer network is formed by temporal slices each describing
the interactions occurring in a given temporal interval. It turns out that the multilayer
approach for studying temporal networks can be extremely useful for advancing our
understanding of the dynamical processes occurring in them, such as diffusion and
epidemic spreading.

1.2 Information gain in multilayer networks

A multilayer network is not to be confused with a larger network including all the
interactions. As a network ultimately is a way to encode information about the underlying
complex system, there is a significant difference between considering all the interactions
at the same level and including the information on the different natures of the different
interactions. In a multilayer network, each interaction has a different connotation, and this
property is correlated with other structural characteristics, allowing network scientists
to extract significantly more information from the complex system under investigation
(chapters 7–9).

A major theme of this book is the discussion of the major types of correlation that
are present in multilayer network datasets. We will show how these correlations can be
quantified and we will present several techniques for extracting relevant information from
multilayer network datasets that cannot be found by considering networks in isolation.
These include ranking algorithms aimed at assessing the relevance of nodes in multilayer
networks and algorithms that aim to extract the mesoscale organization of multilayer
networks in different multilayer network communities.

This field is expected to have significant impact in a variety of contexts, including
most notably network medicine and brain research. In brain research, the ability to
make sense of the main structural characteristics of brain data is essential to advance
our understanding of the interplay between the structure of the connectome, describing
the macroscopic wiring of the brain, and functional brain networks, shedding light on
brain dynamics. Network medicine and personalized medicine aim at finding the best
treatment for a specific patient by integrating several medical datasets that usually take the
form of multilayer networks. The advance in our ability to extract relevant information
from these datasets is therefore of fundamental significance for the well-being of society.

For making sense of the large set of multilayer networks we need to combine inference
algorithms and techniques with null models of multilayer networks (chapter 10). The null
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models define well-controlled network structures that constitute the reference point to
which the results obtained by investigating real datasets can be compared. Additionally,
null models can be taken as benchmark structures over which we can run simulations of
dynamical processes. This can allow us to test the effect of multilayer network structures
on the characteristic behaviour of the dynamics taking place on them.

1.3 Overview of dynamical processes on multilayer
networks

In multilayer networks, links might indicate different types of interactions. This property
of multilayer networks has essential consequences on the dynamical processes (chapters
11–16) defined on such structures. From percolation to diffusion and game theory,
in general the dynamical interactions between nodes in a multilayer network will take
a different functional form depending on the nature of the link. For example, if we
consider a multilayer transportation network formed by the airport network of flight
connections, the train and the road transportation networks, we will observe that the
rules determining the diffusion within each of the networks might be different, and
that changing from one means of transportation (diffusion from one layer to the other
of the multilayer networks) might again follow other dynamical rules. This scenario
does not only apply to transportation networks but also to the diffusion of ideas and
behaviours in social networks. Therefore, the fact that diffusion on multilayer networks
is characterized by different rates depending on the type of link significantly changes
the properties of this dynamical process and has a variety of practical consequences.
Similarly, the nodes of a multilayer network might respond differently to the damage of
nodes in the same layer or in another layer. For example, take an Internet router. This
router might still be functional even if one of the connected Internet routers is damaged,
but it might not be functional anymore if the power plant providing energy to the router
is damaged. Therefore, in a multilayer network we can distinguish between connectivity
links providing connectivity to the nodes of each layer and interdependency links that
imply the immediate damage of one node if the other linked node is damaged. This
property, common to many interconnected infrastructures, makes them more fragile than
single networks. Therefore, the implications of interdependencies on the robustness of
multilayer networks is essential to build more reliable and resilient global infrastructures.

In recent years it has been shown that considering the multilayer nature of networks
can significantly modify the conclusions reached by considering single networks. A num-
ber of dynamical processes, including percolation, diffusion, epidemic spreading and
game theory, present a phenomenology that is unexpected if one considers the layers in
isolation. Moreover, it has been shown that the structural correlations built in multilayer
network structures can significantly change the dynamical properties of the multilayer
network. This spectacular interplay between structure and dynamics is very likely to
open new scenarios for applications and control of multilayer networks, including the
design of more resilient infrastructures and transportation systems and the possibility of
reprogramming cancer cells.
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The Structure of Single Networks

2.1 Networks

Networks are formed by a set of nodes describing the elements of a complex system
connected pairwise by several links describing their complex web of interactions. Most
networks reflect in their structure a rich interplay between randomness and order. For
instance, in social networks the establishment of a friendship may depend on a series of
contingent events, while in the brain the connections between neurons are not all deter-
mined by genomic information. If stochasticity is ubiquitous in complex networks, these
networks are not maximally random either; rather, they obey organization principles that
make them functional. Network Science characterizes network structures to increase our
understanding of complex systems, as it is assumed that the underlying network structure
of a complex system encodes information about its function. In this respect, the effort
made in biology to gather reliable and complete information on biological interactions
is noticeable. This work ranges from the high-throughput experiments that aim to
complete the information about the human protein interaction network to the big projects
that aim to map the human connectome. Network Science includes network inference
and characterization of network structure, but also goes beyond topology and aims at
identifying the effects that networks have on social, technological and biological processes
and at predicting the behaviour of complex systems. In this chapter we will focus on the
major results obtained by studying network structure, while in the subsequent chapter we
will focus on network dynamics. Our intention is here to give some relevant background
on single networks which might serve as a reference to the core of the book on multilayer
networks. However, given the space limitations, we will not be able in any way to give a
complete account of the large literature that exists on Network Science. We suggest to
the novice wanting to deepen his understanding to read the relevant monographies on
single networks [14, 107, 225, 105, 184]. Conversely, the very experienced reader familiar
with most of the results valid for single networks can use the material of chapter 2 and
chapter 3 only as a reference for the discussion of multilayer networks presented in Part
III (chapters 4–16).

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001



10 The Structure of Single Networks

2.2 Single network types

A graph G = (V , E) is formed by the pair of sets V and E where V is the set of nodes
(or vertices) and E is the set of links (or edges). Networks are graphs that describe
real interacting systems as diverse as the brain or the Internet. Single networks come
in different types depending on several aspects characterizing their interactions.

Single networks can be classified as undirected or directed networks.
Undirected networks are formed by undirected interactions, and in these networks if

node i is linked to node j then automatically node j is linked to node i. For instance,
Facebook is an undirected network, as the Facebook friendship indicates an undirected
interaction that has been agreed to by the two involved accounts. Similarly, in biology
a protein interaction network is undirected, as any protein interaction indicates whether
two proteins bind together to form a protein complex.

On the contrary, directed networks are networks in which the interactions are directed,
and if node i points to node j it is not automatically true that node j points to node i.
The World Wide Web is a clear example of a directed network where links from one
webpage to another are not typically reciprocated. Within online social networks, Twitter
is a clear example of a directed network where accounts do not always follow each
other.

Single networks can also be classified as unweighted or weighted.
Weighted networks are networks where a weight is associated with each interaction,

describing typically a measure of the ‘intensity’ of the interaction. For instance, in
the airport network formed by flight connections between airports, a weight can be
associated with the links according to the traffic (in terms of number of passengers)
of each connection. In networks generated from correlations between time series such as
brain functional networks or financial networks between assets, weights can be associated
with links where stronger weights indicate large and positive correlations.

Unweighted networks, on the contrary, are networks in which each interaction is
either present or absent. Unweighted networks might correspond to networks in which
the weights are disregarded or networks in which the weights are the same for every
interaction.

The most fundamental types of single networks are simple networks that are undirected
and unweighted, in which interactions exist only between different nodes.

While the above classification of single networks depends on the properties of the
network interactions, it is also possible to consider networks having nodes with different
properties.

Bipartite networks are networks formed by two distinct types of nodes in which
interactions exist exclusively between different types of nodes. Bipartite networks include
the networks between actors and movies where each actor is connected to a movie if
he has acted in it, or the network between scientists and papers where each scientist is
connected to a paper if he has authored it.
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2.3 Basic definitions

2.3.1 Nodes and links

The most basic properties of single networks G = (V , E) are the total number of nodes
N (also called the network size) and the total number of links L with

N = |V |,
L = |E|, (2.1)

where the symbol |X | indicates the cardinality of the set X . We will indicate the labelled
nodes of the network with i = 1, 2, . . . , N . Therefore, the set of nodes V is given by

V = {i|i ∈ {1, 2, . . . , N}}. (2.2)

The links will be indicated as pairs of node labels (i, j) where for undirected networks the
order is irrelevant, while for directed networks the order indicates that node i points to
node j. Note that for undirected networks each undirected link joining two given nodes
of the network is counted once, while for directed networks a link from node i to node j
is counted independently of the link which might eventually connect node j to node i.

Bipartite networks, where nodes can be cast into two different sets and interactions
only exist between nodes belonging to different sets, should be treated somewhat
differently. In fact, a bipartite network comprises three sets: GB = (V , U , E), where the
sets V and U indicate two different groups of nodes (for instance, V and U might
indicate actors and movies). These two sets might have different cardinality, |V | = NV
and |U | = NU , indicating in our example the total number of actors and the total number
of movies respectively. The elements of the set V will be indicated by Latin letters i, j etc.
The elements of the set U will be indicated by Greek letters μ, ν etc. Finally, the set E
indicates the set of links connecting nodes of the set V only to nodes of the set U .

2.3.2 Adjacency matrix and incidence matrix

Any single network G = (V , E) is fully determined by its adjacency matrix. The adjacency
matrix is an N × N matrix a, whose elements aij indicate whether node i is linked to
node j. The specific definition of the adjacency matrix depends on whether the network
is directed or undirected, weighted or unweighted.

For unweighted and undirected networks the adjacency matrix elements aij are
given by

aij =
{

1 if node i is linked to node j,
0 otherwise.

(2.3)
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Therefore, it follows that for these networks the adjacency matrix is symmetric. In this
case, as long as there are no tadpoles, i.e. links starting and ending on the same node, the
total number of links L can be expressed in terms of the adjacency matrix as

L = 1
2

N∑
i=1

N∑
j=1

aij . (2.4)

For unweighted and directed networks the matrix elements aij are given by

aij =
{

1 if node i points to node j,
0 otherwise.

(2.5)

Therefore, in this case the adjacency matrix is asymmetric. As long as there are no
tadpoles, the total number of links L can be expressed in terms of the adjacency matrix as

L =
N∑

i=1

N∑
j=1

aij . (2.6)

For weighted networks the only difference is that the adjacency matrix elements do
not just take values equal to either zero or one, but also integers or real values equal to
the weights attributed to the corresponding links. Therefore, for weighted and undirected
networks the adjacency matrix element aij is given by

aij =
{

wij if node i is linked to node j with weight wij > 0,
0 otherwise.

(2.7)

In this case, as long as there are no tadpoles the total number of links can be expressed as

L = 1
2

N∑
i=1

N∑
j=1

θ(aij), (2.8)

where θ(x) is the Heaviside function with θ(x) = 1 if x > 0 and θ(x) = 0 if x ≤ 0.
Instead, in the case of weighted and directed networks the adjacency matrix has elements
aij given by

aij =
{

wij if node i points to node j with weight wij > 0,
0 otherwise.

(2.9)

In this case, as long as there are no tadpoles the total number of links can be expressed as

L =
N∑

i=1

N∑
j=1

θ(aij), (2.10)

where θ(x) is the Heaviside function.
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A bipartite network is usually described by incidence matrices that determine all the
interactions in the network. For undirected (weighted) bipartite networks a unique NV ×
NU incidence matrix b can be used to represent the system. This matrix has elements

biμ =
{

wiμ if node i ∈ V is connected to node μ ∈ U with weight wiμ > 0,
0 otherwise,

(2.11)

where in the unweighted case all the non-zero weights are equal to one, i.e. wiμ = 1.
In the directed (weighted) case the bipartite network is described by two incidence

matrices, the NV ×NU matrix b and the NU ×NV matrix b̃. These matrices have elements

biμ =
{

wiμ if node i ∈ V points to node μ ∈ U with weight wiμ > 0,
0 otherwise,

b̃μi =
{

wμi if node μ ∈ U points to node i ∈ V with weight wμi > 0,
0 otherwise.

(2.12)

Here we have again used the convention that for unweighted networks all the non-zero
weights are equal to one.

2.3.3 Degree, degree sequence and degree distribution

Degree

In an undirected network G = (V , E) the degree ki of a node i is the number of links
incident to it. The degree ki of a node i can be written in terms of the adjacency matrix.
For an undirected and unweighted network we have

ki =
N∑

j=1

aij , (2.13)

while for undirected and weighted networks we have

ki =
N∑

j=1

θ
(
aij
)
. (2.14)

In a directed network G = (V , E), the in-degree ki,in of node i and the out-degree
ki,out of node i are given respectively by the number of links pointing to node i and the
number of nodes to which node i points. The in/out-degree of node i can be expressed
in terms of the adjacency matrix as

ki,in =
N∑

j=1

aji ,

ki,out =
N∑

j=1

aij (2.15)
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for unweighted networks and as

ki,in =
N∑

j=1

θ
(
aji
)

,

ki,out =
N∑

j=1

θ
(
aij
)

(2.16)

for weighted networks.
In an undirected (weighted) bipartite network G = (V , U , E) the degrees ki of nodes

i ∈ V and the degrees kμ of nodes μ ∈ U can be expressed in terms of the incidence
matrix as

ki =
NU∑
μ=1

θ
(
biμ
)

,

kμ =
NV∑
i=1

θ
(
biμ
)

. (2.17)

In the case of a directed (weighted) bipartite network the in-degrees and the out-degrees
of nodes i ∈ V and μ ∈ U are given by

ki,in =
NU∑
μ=1

θ
(

b̃μi

)
,

ki,out =
NU∑
μ=1

θ
(
biμ
)
,

kμ,in =
NV∑
i=1

θ
(
biμ
)
,

kμ,out =
NV∑
i=1

θ
(

b̃μi

)
. (2.18)

Degree Sequence and Average Degree

In an undirected network the degree sequence is the ordered sequence of the degrees of
each node of the network, i.e.

{k1, k2, . . . , kN }. (2.19)
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The average degree 〈k〉 is given by

〈k〉 = 1
N

N∑
i=1

ki = 2L
N

. (2.20)

In a directed network, we distinguish between the in- and out-degree sequences given by
the ordered sequences of in and out-degrees, i.e.

{k1,in, k2,in, . . . kN ,in},
{k1,out, k2,out, . . . kN ,out}. (2.21)

The average in-degree and the average out-degree are given by

〈kin〉 = 1
N

N∑
i=1

ki,in,

〈kout〉 = 1
N

N∑
i=1

ki,out. (2.22)

Using the definition of the in- and out-degree, it is apparent that the average in- and
out-degree are equal, i.e.

〈kin〉 = 〈kout〉 = L
N

. (2.23)

The extension of the above definitions to the bipartite network is straightforward. The
only notable thing to mention is the relation between the average degrees of the nodes
i ∈ V and μ ∈ U . In fact, for an undirected bipartite network we have

〈ki〉i∈V NV = 〈kμ〉μ∈U NU . (2.24)

For a directed bipartite network we have

〈ki,in〉i∈V NV = 〈kμ,out〉μ∈U NU ,

〈ki,out〉i∈V NV = 〈kμ,in〉μ∈U NU .
(2.25)

Degree distribution

The degree distribution P(k) of an undirected network determines the fraction of nodes
of degree k, or equivalently the probability that a random node has degree k. Indicating
with N(k) the number of nodes of degree k the degree distribution is given by
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P(k) = 1
N

N(k) = 1
N

N∑
i=1

δ(k, ki), (2.26)

where δ(x, y) is the Kronecker delta, i.e. δ(x, y) = 1 if x = y and otherwise δ(x, y) = 0.
For directed networks we distinguish between the in-degree distribution Pin(k) and the
out-degree distribution Pout(k), indicating the probability that a random node has in-
degree ki,in = k and out-degree ki,out = k respectively. Let us indicate with Nin/out(k)

the total number of nodes of the network with in/out-degree k. Then the in/out-degree
distribution Pin/out(k) of a directed network is given by

Pin(k) = 1
N

Nin(k) = 1
N

N∑
i=1

δ(k, ki,in),

Pout(k) = 1
N

Nout(k) = 1
N

N∑
i=1

δ(k, ki,out). (2.27)

The extension of these definitions to bipartite networks is straightforward.

2.3.4 Clustering coefficient

The clustering coefficient [310] is a fundamental measure to evaluate the local organi-
zation of a network.

Specifically, the local clustering coefficient Ci of node i of degree ki measures the
density of triangles passing through node i or equivalently the probability that two
neighbours of node i are connected. It is defined as

Ci =
⎧⎨
⎩

# of triangles passing though node i

ki(ki − 1)/2
for ki > 1,

0 for ki = 0, 1,
(2.28)

where 1
2 ki(ki −1) enumerates the number of pairs of distinct nodes which are neighbours

of node i. From this definition it is apparent that the local clustering coefficient is a
number between zero and one. If the clustering coefficient is one, i.e. Ci = 1, each pair
of neighbours of node i are connected to each other, whereas if the clustering coefficient
is zero, i.e. Ci = 0, there are no pairs of neighbours of node i that are linked.

The global clustering coefficient C of a network of size N is the average of the local
clustering over all the nodes of the network and is given by

C = 1
N

N∑
i=1

Ci . (2.29)

This quantity evaluates the ‘locality’ of the interactions in a network.
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Sometimes in the literature an alternative global clustering coefficient is introduced,
called the ‘transitivity’. The transitivity T of a network of size N is given by

T = 3
# triangles in the network

# distinct paths of length 2
. (2.30)

Compared to the global clustering coefficient, the transitivity has the advantage that
in very sparse networks the transitivity is not dominated by the contributions coming
from nodes of degree smaller than two which have a local clustering coefficient equal
to zero.

Both the global clustering coefficient C and the transitivity T assume values between
zero and one, where values close to one indicate a network with large density of triangles
while values close to zero indicate network structures with a very low density of triangles
that locally are similar to trees.

2.3.5 Shortest distance and diameter

Navigability is central in Network Science. This term refers to the possibility of exploring
large parts of the network by following its paths. A path P of a network G = (V , E) is
a sequence of nodes P = (i0, i1, . . . in) where each node is connected by a link to the
subsequent node in the list, i.e. (ip, ip+1) ∈ E for p = 0, 1, . . . , n − 1. If the network is
directed the path P is called a directed path, as links are followed along their direction.
The length of a given path P from a node i0 = i to a node in = j is determined by its
number of links, i.e. by n.

By adopting this metric, the shortest distance dij between a node i and a node j is
given by the shortest length of any path going from i to j. If node j cannot be reached
from node i by following any path, we put dij = ∞.

Two important global measures can be extracted from the matrix of distances dij : the
average shortest distance and the diameter of the network.

The average shortest distance � of a connected network is the average of the shortest
distances between any two distinct nodes of the network. Therefore, in a connected
network we have

� = 1
N(N − 1)

N∑
i=1

N∑
j=1
j �=i

dij . (2.31)

The diameter D of a connected network is the maximum of the shortest distances
between any two nodes of the network. Therefore, we have

D = max
i,j �=i

dij . (2.32)

Naturally from these definitions it follows that the average shortest distance cannot be
larger than the diameter

� ≤ D. (2.33)
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2.3.6 Connected components and giant component

Undirected networks are called connected if from every node we can reach any other
node by following suitable paths; otherwise they are called disconnected.

Disconnected networks are formed by several connected components, i.e. connected
subgraphs of the network formed by a set of nodes which are disconnected from any
other node of the network.

Typically in real complex networks we desire to have connected networks because
connectedness allows for the possibility of diffusing information and navigating the
network. Additionally, in many cases connectivity ensures the proper function of the
network, as in infrastructures. However, often the requirement that the network is
connected can be very stringent, as networks might be disconnected as a result of their
intrinsic nature or as an effect of the local damage of nodes or links. Among disconnected
networks it is therefore useful to distinguish between networks in which the largest
connected component connects a finite fraction of the nodes, and networks in which
every connected component includes only a small fraction of all the nodes of the network.
In the first scenario, we might still benefit from diffusing information and navigating on
the largest connected component. Moreover, we can still assume that the nodes in the
largest connected component are able to perform the network function. In the second
scenario, the network is instead decomposed into many small components and effectively
dismantled.

These considerations reveal the interest in defining the giant component of undirected
networks. The giant component of an undirected network is the largest connected
component of the network as long as it includes a finite fraction of the nodes of
the network. The giant component plays a central role in percolation theory where
the robustness of the network to random damage of its nodes or links is moni-
tored by evaluating the size of the giant component that results after the inflicted
damage.

The study of connectedness in directed networks is somewhat more involved. In
this case the analysis can be performed either by neglecting the direction of the links
or taking into account the direction of the links. The connected components of the
undirected network obtained from a directed network by neglecting the direction of the
links are called weakly connected components and the corresponding giant component is
called the giant weakly connected component. If, instead, the direction of the links is taken
into account, a much richer structure is revealed. For instance, the same giant weakly
connected component can be decomposed into a giant strongly connected component,
a giant in-component, a giant out-component, tendrils and tubes. The giant strongly
connected component is formed by the set of nodes such that from any node we can reach
any other node in the set by following directed paths; the giant in-component is formed
by nodes that do not belong to the giant strongly connected component but from which
it is possible to reach nodes in the giant strongly connected component by following
directed paths; the giant out-component instead is formed by nodes that do not belong
to the giant strongly connected component but that are reachable from the nodes in the
giant strongly connected componentby following directed paths; finally, the tendrils and
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the tubes are formed by nodes that belong to the giant weakly connected component
but that cannot be reached from and cannot reach nodes of the giant strongly connected
component by following directed paths.

2.4 Universalities

2.4.1 Complex networks

Despite their large variety of functions, the network topology of very disparate complex
systems is characterized by universal properties. These universal properties have been
characterized in two ground-breaking papers from the late nineties. In their seminal
paper [310] Watts and Strogatz showed that networks ranging from the neuronal network
of the worm C. elegans to the network of collaborations between movie actors are small
world. In their pivotal work [15] Barabási and Albert showed that the vast majority of
networks are scale-free. Scale-free networks have a very heterogenous distribution of
degrees and their dynamical behaviour is dominated by the hub nodes having degree
order of magnitude larger than the average.

2.4.2 Small-world networks

Small-world networks are networks with large clustering coefficient and small-world
distance property.

A network is said to have a large clustering coefficient when the average clustering is
finite and independent of the network size. Real networks that have a fixed number of
nodes N are said to have a large clustering coefficient when their clustering coefficient
is much larger than the one observed in a network with the same number of nodes N
and the same number of links L where the links have been distributed randomly between
the nodes. Therefore, a large clustering coefficient implies that the connections of the
network are much more clustered and local than in the random network.

A network has the small-world distance property if its diameter D is of the same order
or of a lower order than the logarithm of the number of nodes N , i.e.

D � O(ln N) (2.34)

or

D � o(ln N). (2.35)

If a network has the small-world distance property it follows also that the average shortest
distance between the nodes is of the same order or of a lower order than the logarithm of
the total number of nodes. This property reveals that nodes in a small-world network are
in close proximity to each other, while it is known that nodes in a regular square lattice
of dimension d have a much larger typical distance: � � O(Nd).
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The small-world distance property implies that any two nodes of the network are
connected by the shortest paths including only relatively few links. For instance, in
social networks this property is well known as the ‘six degrees of separation’, i.e. the
phenomenon that any two people in the world are only a few shaken hands apart from
each other. Note that you should not attribute any fundamental role to the number six of
the ‘six degrees of separation’, but rather focus on the fact that this number is of the same
order of magnitude as the logarithm of the total number of nodes in the social network. In
fact, six was the average shortest social distance found originally in 1967 by Milligram’s
experiment devised to quantify this phenomenon [294]. Subsequent experiments have
found different values for the typical social distance between people. However, they have
confirmed the small-world distance properties of social networks.

While the small-world distance property has been first observed in the context of
social networks, in Ref. [310] Watts and Strogatz showed that small-world networks are
not exclusively found in social systems, but are a universal property of complex networks
as they also occur in biological and technological systems.

2.4.3 Scale-free networks

Scale-free networks are the exemplar network topology of complex systems, and for
Network Science they have a foundational status similar to the one of d-dimensional
lattices for Euclidean geometry, crystallography and solid-state physics. In Ref. [15],
Barabási and Albert showed that scale-free networks are ubiquitous as they describe the
underlying topology of the majority of social, technological and biological systems. Scale-
free networks are those networks whose degree distribution P(k) follows a power-law tail,
i.e. the degree distribution P(k) follows for k 	 1

P(k) � Ck−γ , (2.36)

where C is a normalization constant and the power-law exponent γ is in the range γ ∈
(2, 3]. This property implies that scale-free networks are characterized by an extreme
heterogeneity in the degrees of the nodes and by the absence of a typical scale of their
degree, hence the term ‘scale-free’. In order to understand the properties of scale-free
networks, it is opportune to consider the stylized class of power-law networks whose
degree distribution is exactly given by

P(k) = Ck−γ , (2.37)

where C is the normalization constant and the power-law exponent γ is greater than
one, i.e. γ > 1. The condition γ > 1 is requested to ensure the normalization
condition

∑
k

P(k) = 1. (2.38)
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Power-law networks are characterized by an average degree 〈k〉 and second moment 〈k2〉
defined as

〈k〉 =
∑

k

kP(k),

〈
k2
〉
=
∑

k

k2P(k). (2.39)

Depending on the value of the power-law exponent γ , different regimes can be
observed:

(a) For γ ∈ (3, ∞) both the average degree 〈k〉 and the second moment
〈
k2
〉
are finite

in the limit of infinite network size N → ∞.

(b) For γ ∈ (2, 3] the average degree 〈k〉 is finite but the second moment 〈k2〉 diverges
in the limit of infinite network size N → ∞.

(c) For γ ∈ (1, 2] both the average degree 〈k〉 and the second moment 〈k2〉 diverge
in the limit of infinite network size N → ∞.

Most real networks have a finite average degree 〈k〉, implying that the average degree does
not change if we consider a sample of the network with different numbers of nodes N .
In this case, we say that the network is sparse. As a consequence, people often consider
exclusively power-law exponents γ > 2. Nevertheless, even if we restrict our interest to
power-law exponents γ > 2 the properties of power-law networks with exponent γ ∈
(2, 3] strongly differ from the properties of power-law networks with exponent γ > 3.

Scale free networks are networks with a degree distribution P(k) that for k 	 1 can be
approximated by a power-law distribution with power-law exponent γ ∈ (2,3]. Power-
law networks with γ ∈ (2, 3] and more in general scale-free networks are characterized
by having a finite average degree 〈k〉 and a diverging second moment 〈k2〉. This implies
that the average degree exists but is not typical, since in the networks there are large
fluctuations of the degrees of the nodes. For instance, the standard deviation σ(k) of the
degree distribution, given by

σ(k) =
√〈

k2
〉− 〈k〉2, (2.40)

diverges with the network size, i.e. σ(k) → ∞ as N → ∞, indicating that there is no
typical scale of their degree. As a consequence of this major characteristic, scale-free
networks have nodes with very heterogeneous degrees and are dominated by some nodes
with very high degree, i.e. a degree order of magnitude larger than the average, called
hub nodes.

The large heterogeneities in the degrees of scale-free networks and the hubs present in
these structures have very important consequences for the robustness properties of the
networks and the interplay between network topology and dynamics (see next chapter
for a discussion of the consequences of the scale-free property for dynamical processes).
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Given the fundamental role of hubs, scale-free networks are usually not distinguished
from pure power-law networks with exponent γ ∈ (2, 3]. An important characteristic of
power-law networks is its highest degree KN . When there are no other constraints limiting
the maximum degree of the network, it is possible to show that the highest-degree KN in
a power-law network with power-law exponent γ > 2 scales as

KN ∼ N1/(γ−1). (2.41)

Therefore, the maximum degree in power-law networks grows rapidly with N . Notice
that for γ → 2 we have KN → N , indicating that the maximum degree reaches the
maximum possible value since the degree of a node cannot be larger than the number of
nodes N of the network.

Interestingly, random power-law networks with exponent γ > 2 also have the small-
world-distance property, as they have an average shortest distance � given by [80]

� ∼

⎧⎪⎨
⎪⎩

ln N for γ ∈ (3, ∞, ),
ln N

ln ln N for γ = 3,

ln ln N for γ ∈ (2, 3].

(2.42)

2.5 Structural correlations

2.5.1 General remarks

In Network Science, a complex system is characterized by the network of its interactions.
The main underlying idea of the field is that the structure of the network encodes
information and can reveal important properties of the dynamics and function of the
complex system.

In this framework, looking for structural correlations in the network structure, i.e.
structural properties that are not expected in a random hypothesis, is rather natural. In
single networks, structural correlations include most notably the degree correlations and
the correlation between weights of the links and network topology.

2.5.2 Degree correlations

In a large variety of real networks we observe that nodes are not connected randomly, but
instead there is a significant bias for nodes of high degree to connect either to nodes of
high degree (assortative networks) or to nodes of low degree (disassortative networks).
In these cases we say that the network displays degree correlations. To establish whether
the network is assortative, disassortative or without degree correlations it is necessary
to have a valid model of uncorrelated network to refer to. An uncorrelated network is a
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network in which every link reaches a node of degree k with probability qk proportional
to k and independently of the degree of the node at the other end of the link, i.e.

qk = k
〈k〉N . (2.43)

Under this hypothesis the probability pij that a node i connects to a node j is given by

pij = kikj

〈k〉N . (2.44)

Given a real dataset, the degree correlations can be measured [242] by considering
the average degree knni of the neighbours of node i

knni = 1
ki

N∑
j=1

aijkj . (2.45)

This quantity can be averaged over nodes of degree k, obtaining

knn(k) = 1
NP(k)

N∑
i=1

knniδ(ki , k). (2.46)

If we follow a random link of an uncorrelated network we reach a node of degree k with
probability qk given by Eq. (2.43) independently of the degree of the node at the other
end of the link. Therefore, for uncorrelated networks it can be shown that knn(k) does
not depend on k and it is given by

knn(k) = 〈k2〉
〈k〉 . (2.47)

If the function knn(k), calculated for a real dataset, results in an increase in k, the network
is assortative, having high-degree nodes connected preferentially to high-degree nodes,
while if the function knn(k) is decreasing the network is disassortative.

However, there are real networks where the function knn(k) is not monotonic. In those
cases it is opportune to consider a more coarse-grained measure of correlation, such as
the Pearson assortativity coefficient.

The Pearson assortativity coefficient r [222] is a number with values between −1 and
1 defined as

r =
∑
k,k′

kk′ (ek,k′ − qkqk′
)

σ 2 , (2.48)
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where ek,k′ indicates the number of links connecting nodes of degrees k and k′ respectively
and where

σ 2 =
∑

k

k2qk −
[∑

k

kqk

]2

. (2.49)

Negative values of the Pearson assortativity coefficient r indicate that the network is
overall disassortative, while positive values of r indicate that the network is overall
assortative.

2.5.3 Strength and inverse participation ratio

In real weighted networks weights are not randomly assigned to links. For instance, the
airport network formed by flight connections between different airports, with weights
representing the passenger traffic, is highly correlated with the network topology. In fact,
airports with many flight connections typically also tend to sustain high traffic on their
connections. Let us define the strength si of a node i as the sum of the weights of its
links, i.e.

si =
N∑

j=1

wij . (2.50)

In order to capture the weight-topology correlations it is possible to correlate the strength
si with the degree ki of the same node i [23]. A way of assessing the relevance of these
correlations consists in considering the average strength s(k) of nodes of degree k

s(k) = 1
NP(k)

N∑
i=1

siδ(ki , k) (2.51)

as a function of the degree k. If the weights are distributed homogeneously in the network,
we expect that the average strength s(k) increases linearly with k, i.e. s(k) ∝ k. If, instead,
the weights are not distributed homogeneously in the network and high-degree nodes
typically have links of higher weight, the average strength s(k) increases non-linearly as a
function of k, i.e s(k) ∝ kθ with θ > 1.

Weighted networks can also display another type of weight–topology correlation. This
is revealed by considering the heterogeneity between the weights of the links incident
to a given node i. This heterogeneity is measured by the inverse participation ratio [4]
given by

Yi =
N∑

j=1

(
wij

si

)2

. (2.52)
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The inverse participation ratio is one (Yi = 1) if there is a single link with a weight
significantly larger than the other links, while if all the links have the same weight we
have Yi = 1/ki . For this reason the inverse of Yi is also used as a measure of the typical
number of links with relevant weight. The inverse participation ratio can be averaged
over nodes of degree k, yielding

Y (k) = 1
NP(k)

N∑
i=1

Yiδ(ki , k). (2.53)

The function Y (k)= 1/k indicates that the weights of the links ending at each node of
the network are the same, while Y (k)= 1/kθ̃ with θ̃ ∈ [0, 1) indicates that the weights
incident to any given node of the network are not the same.

2.6 Communities

2.6.1 Communities in complex networks

Most complex networks have communities. A community is formed by a set of nodes that
are more densely connected to each other than to the rest of the network. In biological
networks, including both molecular networks in the cell and brain networks, communities
are generally considered to be related to the function of the network. In social networks
they define the mesoscale organization of the network and often reveal the homophily
patterns of the system under study.

Determining the community structure of a network from its adjacency matrix is a
very challenging task. On the one side, network scientists are faced with the fact that
although the concept of community is rather intuitive, up to now there has been no
formal definition of community on which there is general consensus. On the other side,
already-related computational problems such as the one of finding the best bipartition
of a network are computationally very demanding.

Despite these very challenging problems, there is a rich literature on community
detection algorithms (see, for instance, the rich review articles [121, 85]). A number
of algorithms have been proposed that, although not free from limitations, can be very
useful in practice to describe the mesoscale structure of the networks.

2.6.2 Hierarchical clustering

A series of works recast the problem of community detection in a complex network
to a hierarchical clustering problem. Hierarchical clustering indicates the statistical and
data-mining technique that determines the hierarchy of clusters that can be established
to describe mesoscopically a set of points related to each other by a similarity measure
(or equivalently a distance). In agglomerative clustering algorithms initially each point
belongs to a different cluster. At each agglomerative step the two most similar clusters
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are merged and the similarity of the new cluster with all the other clusters is evaluated
according to a predefined rule. For instance, in single linkage the similarity between
cluster A and cluster B is given by the maximum similarity between any element of A
and any element of B; in average linkage clustering, instead, the similarity between cluster
A and cluster B is given by the mean of the similarity between every element of A and
every element of B. The algorithm stops when there is just one cluster. The hierarchy of
clusters is visualized with a dendrogram.

In order to extend this technique to complex networks we will assume that the nodes of
the network play the role of the points in the hierarchical clustering. Additionally, we will
need to define a measure of similarity between the nodes of the network. For instance, in
Ref. [260] Ravasz et al. proposed to take the normalized number of common neighbours
between two nodes

xij = J(i, j)
min(ki , kj) + 1 − θ(aij)

, (2.54)

where J(i, j) is the number of common neighbours between node i and j plus one if
there is a directed link between them and θ(x) is the Heaviside step function. Given this
similarity measure between the nodes, the hierarchy between the clusters can be directly
found by applying the hierarchical clustering technique.

2.6.3 Modularity

A community assignment {gi} indicates for each node i to which community gi ∈
{1, 2, . . . , P} it belongs. Given a real network and a candidate community structure of
the network, a very pressing question is to determine whether the detected communities
are significant. The modularity defines a way of comparing the density of the links within
each community to the expectation in the hypothesis that the link between a generic node
i and a generic node j occurs with probability pij . Typically, the null hypothesis is that the
network is random and uncorrelated while preserving the same degree sequence as the
real dataset. Under this hypothesis, pij is given by Eq. (2.44). The modularity [226, 224]
is defined as

Q = 1
〈k〉 N

∑
ij

(
aij − pij

)
δgi ,gj (2.55)

and takes values smaller or equal to one, with a large value of Q indicating very significant
communities.

The modularity can be used as a measure to evaluate the significance of a given
community structure, but it can also be used for formulating community detection
algorithms that try to find the community assignment that maximizes the modularity.

However, using modularity optimization for finding the community structure of the
network has some limitations. For instance, there might be a large number of different
community assignments which achieve large and comparable values of the modularity.
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In these cases there is no well-defined maximum of the modularity function, and greedy
algorithms can be trapped in local maxima.

2.6.4 Fast community detection algorithms

The possible use of community detection algorithms is typically limited by their compu-
tational complexity. Currently two greedy algorithms are frequently used to determine
the communities of large complex networks: the Louvain algorithm [53] and the Infomap
algorithm [267].

The Louvain algorithm [53] defines an efficient way of performing a greedy optimiza-
tion of the modularity. Its algorithmic complexity scales linearly with the number of links
L, i.e. it is O(L). Therefore, the algorithm can be applied to networks up to millions of
nodes.

The Infomap algorithm [267] exploits the properties of the random walk on a network
with community structure. In fact, the random walk tends to have a transient dynamics
that is trapped within the communities of the network. By encoding the random walk
dynamics in a bit of string, information theory tools are used to find a way to efficiently
codify the string by assigning a codeword to each community. The computational
complexity of the algorithm is O(L ln L) so it can be used to detect communities in very
large, sparse networks.

2.6.5 Overlapping communities

Until now, we have assumed that each node belongs to a single community. However,
in a variety of networks it happens that a node can belong to several communities. For
instance, a scientist might collaborate in different scientific fields and this can be reflected
in his network of collaborators being effectively formed by several scientific communities.
In this scenario we say that the communities of the network overlap.

Two main approaches have been proposed to describe these types of networks: k-
clique community detection using the CFinder algorithm [237] and the clusterization
of link communities [119, 3]. The CFinder algorithm [237] is based on the assumption
that overlapping communities are formed by several adjacent k-cliques with k > 2. A
k-clique is a graph formed by k nodes each connected to all the others. Two k-cliques
are adjacent if they share k − 1 nodes. Starting from a given k-clique of the network,
CFinder finds the set of all the k-cliques that can be found by hopping from a k-clique
to an adjacent one and identify this set with a k-community. Different k-communities
might overlap on nodes and/or links. For instance, in the word association network where
words are connected to each other if they have a related meaning, the word ‘bright’
belongs to several communities associated with the concepts of intelligence, light, colours
or astronomical terms.

Link community algorithms [119, 3] clusterize links instead of nodes. For instance,
they assume that in a social network a link connecting a given individual to a work
colleague might belong to a different cluster from a link connecting him to an old
classmate. Two different types of link community algorithms have been proposed so far.
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The first one [119] is based on the optimization of the link modularity that generalizes the
modularity function. The second [3] is a hierarchical clustering algorithm that clusterizes
links instead of nodes starting from a similarity matrix between the links.

2.7 Centralities

2.7.1 General remarks

In a variety of cases from social science and information technology to biology networks,
scientists aim at ranking the nodes in order of their ‘importance’. The proposed
algorithms assign to each node a centrality measure according to which the nodes are
sorted in descending order of their importance. The most successful centrality measure
is undoubtedly PageRank, the algorithm that was originally constituting the Google
search engine and has proven to be extremely efficient for searching online information.
However, the most appropriate measure of centrality depends on the given network
under consideration and on the network properties one wants to emphasize. For instance,
the eigenvector, the Katz and the PageRank centrality all assume that a node is more
central if central nodes already point to it, while the closeness centrality and the efficiency
attribute more importance to nodes at short distance from the other nodes in the network.
Finally, the betweenness centrality assumes that a node is more central if many shortest
paths pass through the node, making the node essential to keeping the network together.

2.7.2 Eigenvector centrality

The eigenvector centrality, also called the Bonacich centrality [57], is a measure of
centrality traditionally used in social science. It assumes that the centrality of a node is
higher if already central nodes are connected to it. Therefore, it attributes to each node
i a centrality measure xi satisfying the eigenvalue problem

λ1xi =
N∑

j=1

ajixj , (2.56)

where λ1 is the largest eigenvalue of the adjacency matrix a. This measure is suitable for
undirected networks, but for directed networks it has the shortcoming that all the nodes
in the in-component have zero eigenvector centrality, independently of their role in the
network.

2.7.3 Katz centrality

The Katz centrality [170] builds on the eigenvector centrality, as it also assumes
that nodes increase their centrality if they are connected to central nodes. However,
by assigning a minimum centrality to each node the Katz centrality overcomes the
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problem that the eigenvector centrality has on directed networks. Specifically, on directed
networks the Katz centrality is non-zero also for nodes in the in-component. The Katz
centrality x satisfies the equation

xi = μ

N∑
j=1

ajixj + ω, (2.57)

where ω > 0 and μ∈ (0, 1/λ1) where λ1 is the largest eigenvalue of the adjacency matrix a.
By explicitly solving Eq. (2.57), the Katz centrality vector x is given by

x = ω
(

I − μaT
)−1

1, (2.58)

where I indicates the N × N identity matrix, aT indicates the transpose of the adjacency
matrix and 1 indicates the N-dimensional column vector of elements 1i = 1. Equiva-
lently, the Katz centrality xi of node i can be written as

xi = ω

N∑
j=1

(
I − μaT

)−1

ij
. (2.59)

2.7.4 PageRank centrality

While in a number of situations it is reasonable to assume that if a very central node
points to a given node this node acquires high centrality, sometime this effect is somewhat
buffered by the fact that the important node might have many links. For instance, if a
very important webpage contains a very large number of URL links, the prestige for
the pointed webpages is not the same as if the webpage was containing only a few
selected URL links. The PageRank centrality [60] builds on the Katz centrality by taking
into account this buffering mechanism. Therefore, the PageRank centrality xi of node i
satisfies

xi = μ

N∑
j=1

aji
1

κout
j

xj + ω, (2.60)

where κout
j = max(kj,out, 1), μ ∈ (0, 1) and ω is given by

ω = 1
N

N∑
j=1

[
(1 − μ) + μδ(kj,out, 0)

]
xj , (2.61)

with δ(x, y) indicating the Kronecker delta. The PageRank centrality xi of a node can
also be interpreted as the probability that asymptotically in time a random walker is
at node i. If located on a node with non-zero out-degree, this random walker hops
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to a random neighbour node with probability μ and jumps to a random node of the
network (teleportation) with probability 1−μ. If, instead, the random walker is on a node
with zero out-degree, it jumps with probability one to a random node of the network.
The coefficient μ is also called the damping parameter, while ω is usually called the
teleportation coefficient. The typical value used for μ that constitutes a trade-off between
local exploration and teleportation is μ = 0.85.

2.7.5 Closeness and efficiency

The closeness and the efficiency are two centrality measures that attribute more relevance
to nodes that are at short distance to the other nodes of the network.

The Closeness Centrality [310] Cli of a node i in an undirected network is given by

Cli = 1
1

N−1

∑
j dij

= 1

�i
(2.62)

where �i is the average distance of the node i to the other nodes of the network. The
closeness centrality has the limitation that it cannot be used for unconnected networks
where it gives zero centrality for each node i of the network.

The efficiency is a measure that overcomes this problem and can also be defined in
unconnected networks. The efficiency [183] Ei of a node i in an undirected network is
given by

Ei = 1
N − 1

∑
j �=i

1
dij

. (2.63)

The global efficiency E of a network is the average of the efficiencies Ei of its nodes, i.e.

E = 1
N

N∑
i=1

Ei = 1
N(N − 1)

∑
i,j|i �=j

1
dij

. (2.64)

Networks with high efficiency are networks that are particularly easy to navigate, notably
a desirable property for transportation networks.

2.7.6 Betweenness centrality

The betweenness centrality attributes large relevance to nodes that act as bridges between
different communities in the network. These are nodes that are traversed by a large
number of shortest paths connecting different pairs of nodes in the network. The
betweenness centrality [122, 132] bi of node i in a network is given by

bi =
∑
r,s

ni
rs

grs
, (2.65)
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where ni
rs is the number of shortest paths between node r and node s that pass through

node i, and grs is the total number of shortest paths between node r and node s.
The betweenness centrality is in general not correlated with the degree of the node
as also low-degree nodes might connect two large and otherwise unconnected regions
of the network and therefore acquire high betweenness centrality. However, in random
uncorrelated networks the nodes of higher betweenness are typically the nodes with
higher degree.

2.7.7 Communicability

The communicability [116, 117] is a centrality measure that quantifies the importance
of a node depending on the number of paths that connect it to the rest of the nodes in
the network. Unlike the preceding centrality measures, the communicability does not just
focus exclusively on shortest paths but instead captures the multiplicity and redundancy
of paths of any length. Let us start from the consideration that the number (or total
weight in the case of weighted networks) N L

ij of the paths going from node i to node j in
L steps is given by the element i, j of the L-th power of the adjacency matrix, i.e.

N L
ij =

(
aL
)

ij
. (2.66)

Suppressing the relevance of paths of very long length, the communicability matrix ĉ is
defined as

ĉ =
∑

L

aL

L! = ea. (2.67)

Therefore, the matrix element ĉij indicates the weighted multiplicity of paths going from
node i to node j. The centrality of the nodes can then be taken to be

xreceive
i =

N∑
j=1

ĉji ,

xbroadcast
i =

N∑
j=1

ĉij , (2.68)

where xreceive
i = xbroadcast

i on undirected networks. On directed networks, xreceive
i ranks the

nodes depending on the weighted number of paths that reach them, while xbroadcast
i ranks

them according to the weighted number of paths starting from node i and reaching any
other node. Alternatively, the Estrada index Êi [118] ranks the nodes depending on the
multiplicity of paths that start from node i and return to node i, i.e.

Êi = ĉii = [ea]
ii . (2.69)
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2.8 Models for complex networks

2.8.1 The relevance of modelling complex networks

Modelling complex networks is a major challenge of Network Science. The relevance of
network modelling for Network Science is due to several factors.

On the one side, there is a need to identify the basic mechanisms determining
the evolution of complex networks. In this respect, non-equilibrium-growing network
models, including most notably the Barabási–Albert model, provide a fundamental
explanation for the emergent universal properties of complex networks such as the scale-
free degree distribution.

On the other side, reliable null models of networks in which a given set of structural
constraints is enforced can be compared to real datasets, revealing which network
properties follow the expectations and which ones deviate from it. Null models for
networks include random graphs and the more general network ensembles such as
the configuration model, the exponential random graphs and block models, among
others. These equilibrium models define static networks obeying a maximum entropy
principle and are therefore the least biased ensembles satisfying a given set of con-
straints.

Additionally, both non-equilibrium and equilibrium network models can be exten-
sively used to generate artificial networks with controlled topological structures on which
it is possible to study dynamical processes and evaluate the interplay between network
topology and dynamics.

2.8.2 Random graphs

Random graphs were the first network models to include stochasticity when they were
proposed by Erdös and Rényi in the 1960s [114]. Random graphs [56] are formed by N
nodes connected by a fixed number of links or a fixed expected number of links and are
otherwise completely random. Their relevance for the study of real complex networks is
very significant. In fact, real networks, from the Internet to the brain, are determined by
a stochastic dynamics and are not the result of a blue print. Therefore, understanding
random graphs can shed light on the stochastic properties of real networks. However,
real networks are not completely random and they obey organization principles that make
them very interesting to analyse for extracting information about the underlying complex
system. Therefore, to a large extent network scientists are interested in comparing real
networks to random networks in order to measure which features of the real networks
are not expected in a completely random hypothesis.

Random graphs are the exemplary network ensembles: the G(N , L) and G(N , p)

network ensembles. In the G(N , L) ensemble one considers with equal probability all the
simple networks of N nodes that have exactly L links and gives zero probability to every
other network. The probability P(G) of a simple network G = (V , E) in this ensemble is
given by
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P(G) =
{ 1

Z for |V | = N and |E| = L,
0 otherwise,

where

Z =
(

N(N − 1)/2

L

)

is the total number of networks with N nodes and L links.
The G(N , p) ensemble is instead formed by all the simple networks G(V , E) with

N = |V | labelled nodes where each pair of nodes is linked with probability p.
In the G(N , p) ensemble the probability of a simple network G = (V , E) with total

number of nodes N = |V | is given by

P(G) = pL(1 − p)N(N−1)/2−L with |E| = L. (2.70)

Any network in this ensemble can be seen as a result of N(N − 1)/2 independent coin
tosses, one for each link, with a probability of success (i.e. drawing a link) equal to p.

The G(N , L) and G(N , p) ensembles are asymptotically equivalent, meaning that most
of their statistical properties coincide in the large network limit N → ∞ as long as one
considers the following relation between L and p: L = pN(N − 1)/2.

Since every link is drawn with probability p, it is immediate to show that the degree
distribution P(k) of the G(N , p) ensemble is a binomial distribution given by

P(k) =
(

N − 1
k

)
pk(1 − p)N−1−k. (2.71)

Therefore, for this network ensemble the average degree is 〈k〉 = p(N − 1). When the
average degree of the nodes is fixed to a constant (i.e. 〈k〉 = c) and we explore the limit
of large network sizes N → ∞ we have

p = c
N − 1

. (2.72)

In this limit the binomial degree distribution given by Eq. (2.71) can be approximated
by the Poisson distribution with average c,

P(k) = 1
k! c

ke−c. (2.73)

Therefore, these networks are also called Poisson networks.
The expected clustering coefficient Ci of every node i in a random network is

Ci = C = p. (2.74)
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In fact, p is the probability that any two nodes of the network are linked, and therefore it
is also the probability that any two neighbour nodes of node i are linked. Relevantly for
sparse networks with constant average degree 〈k〉 = c, since the probability of a link p is
given by Eq. (2.72) it follows that the expected clustering coefficient C is given by

C = c
N − 1

. (2.75)

This clustering coefficient is rapidly decaying with the network size N , indicating that
these networks have very few triangles and are locally tree-like.

2.8.3 Small-world network models

The Watts–Strogatz small-world model [310] is the original model proposed to explain
the small-world universality observed in real networks. The Watts–Strogatz small-world
model is obtained starting from a regular one-dimensional lattice with nodes of degree k.
In other words, we start from a lattice of N nodes placed on a ring and such that every
node is linked to the k nearest neighbours on the ring. Each link of the network is
removed from the lattice with probability p and its two ends are attached to randomly
chosen distinct nodes of the network. For p = 0 the network is a regular one-dimensional
ring, for p = 1 it is a random graph. For a wide range of intermediate values of p the
network displays both the small-world distance property and a high clustering coefficient.
Important variations of this original model include models in which instead of a one-
dimensional ring the initial lattice has a finite dimension d > 1. Moreover, the rewiring of
the links can be not completely random and might be performed instead by respecting the
embedding space. In this case, when links are rewired nodes can be connected according
to a probability that takes into account the distance between the nodes in the underlying
lattice.

2.8.4 Growing network models

The emergence of the scale-free property

Many networks do expand and grow by increasing their number of nodes and links
over time. Examples include the Internet and social online networks, but also biological
networks such as brain networks and molecular networks of the cell which have been
growing during the course of biological evolution. This is an evidence that the evolution
of many networks is described by a non-equilibrium dynamics. Therefore, important
information can be gained by studying non-equilibrium models of growing networks. In
particular here we will show that the non-equilibrium framework not only models real
networks but also provides explanatory arguments of their emergent properties and their
universalities.

The major achievement of growing network models is to show that the scale-free
properties can emerge from simple dynamical rules of network growth. In particular,
the Barabási–Albert model [15] shows that when a network is evolved by the addition
of new links, growth and preferential attachment are the fundamental mechanisms that
yield scale-free network topologies.
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Interestingly, growing network models enforcing a high density of triangles can
generate scale-free networks that also have a high clustering coefficient and non-trivial
community structure, showing that the mesoscale structure of networks can emerge from
imposing a clustered local topology.

The Barabási–Albert model

The Barabási–Albert model [15] is the most fundamental growing network model and
explains the emergence of the scale-free degree distribution starting from the preferential
attachment mechanism. The preferential attachment mechanism, also called the ‘rich
gets richer’ mechanism, describes the phenomenon observed in real complex networks
(such as the World Wide Web, Wikipedia, actor networks) according to which nodes with
larger degree have a higher probability of acquiring new links than nodes with smaller
degree. Specifically, the Barabási–Albert model assumes that a node of degree k has a
probability of acquiring new links that increases linearly with k. The model includes
only two main ingredients, growth and preferential attachment, that are able to generate
scale-free networks with power-law exponent γ = 3, demonstrating its powerful ability
to reproduce the scale-free topology.

The Barabási–Albert model, also called the BA model, is simply defined.
At time t = 1 the network is formed by n0 ≥ m nodes connected by m0 links.
At each time t > 1 two processes define the network evolution.

• Growth: A node is added to the network. The node establishes m new connections
with nodes of the rest of the network.

• Linear preferential attachment: Every new link of the new node is attached to an
existing node i of the network not already linked to the new node with probability

�i = ki∑
j kj

, (2.76)

where ki is the degree of node i and where the sum over the nodes j extends over
all the nodes of the network not already linked to the new node.

This model can be studied both in the mean-field approximation and using the master-
equation approach providing exact asymptotic results.

In the mean-field approximation [15], the degree ki(t) that a node i arrived in the
network at time ti is taken to be a continuous deterministic variable depending on time
t equal to the expected value of the degree of node i over different realizations of the
stochastic network growth. In the mean-field approximation, the degree ki(t) of node i
arrived in the network at time ti measured at time t satisfies the differential equation

dki(t)
dt

= m
ki∑
j kj

, (2.77)

with initial condition ki(ti) = m. For large times t 	 1 we can approximate the sum in
the denominator as

∑
j kj � 2mt, obtaining that the degree ki of node i arrived in the

network at time ti increases with time as a power law,
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ki = m
(

t
ti

)1/2

, (2.78)

for t ≥ ti . This implies that older nodes have higher degree. From this expression, given
the network at time t, the probability P(ki(t) > k) that a node has degree ki(t) greater
than k is given by

P(ki(t) > k) = P

(
m
(

t
ti

)1/2

> k

)
= P

(
ti < t

(m
k

)2
)

. (2.79)

Since at each time step we add a new node to the network, the probability that a random
node of the network is arrived at time ti < τ , in the mean-field approximation it is
given by

P(ti < τ) = τ

t
, (2.80)

as long as for t 	 1. Using this expression in Eq. (2.79) follows that

P(ki(t) > k) =
(m

k

)2
, (2.81)

and consequently the degree distribution P(k) is given by

P(k) = −dP(ki > k)

dk
= 2m2

k3 . (2.82)

From this simple calculation it emerges that this model can generate scale-free networks
with power-law exponent γ = 3 using exclusively two simple dynamical rules: growth
and preferential attachment. Using the master equation approach [108, 178] it is possible
to derive the exact degree distribution given by (see Appendix A for details)

P(k) = 2m(m + 1)

k(k + 1)(k + 2)
, (2.83)

where this result is valid in the large network limit, i.e. asymptotically in time. This exact
asymptotic expression for the degree distribution confirms the main conclusions derived
from the mean-field approach and indicates that for large values of the degree k 	 1 the
degree distribution decays as a power law with exponent γ = 3.

Interestingly, the Bianconi–Barabási model [45, 44] which assigns to each node a
fitness describing its ability of nodes to acquire new links and includes growth and
generalized preferential attachment, yields scale-free networks with tunable power-law
exponent γ ∈ (2, 3]. Additionally, this model can explain how latecomers might acquire
high degree, a phenomenon also called fit-gets-rich.
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Non-linear preferential attachment

The Barabási–Albert model proposes preferential attachment as a basic mechanism to
generate scale-free networks. In particular, it assumes that the probability of attaching
a new link to a node is linearly proportional to the number of links of the target node.
One of the first questions that has been addressed in Network Science is whether also a
non-linear preferential attachment could generate scale-free networks.

The modified network model with non-linear preferential attachment [178] considers
a network evolution dictated by growth and non-linear preferential attachment, where
the non-linearity can be tuned by adjusting an external parameter η.

The growing network model including the non-linear preferential attachment mech-
anism is defined as follows:

At time t = 1 from a network with n0 ≥ m nodes connected by m0 links.
At each time t > 1 two processes define the network evolution.

• Growth: A node is added to the network. The newly added node is connected to the
other nodes of the network by m links.

• Generalized non-linear preferential attachment: The new links are attached to node i
with probability �i with

�i ∝ kη

i , (2.84)

where ki is the degree of node i and η > 0.

For η = 1 this model reduces to the Barabási–Albert model. For η < 1 a sublinear
preferential attachment in which hub nodes have a lower probability of attracting new
links than in the BA model takes place. On the contrary, for η > 1 a superlinear
preferential attachment in which hub nodes are more likely to acquire new links than
in the BA model occurs.

In the context of this model, it is found that only linear preferential attachment yields
scale-free networks. In fact, for η < 1 the degree distribution is homogeneous and given
by a stretched exponential, while for η > 1 a gelation event is observed in which the
oldest node acquires a finite fraction of all the links and all the other nodes have very
small degree.

This result shows the special role of linear preferential attachment in generating scale-
free networks as any growing network with η �= 1 deviates from the scale-free network
topology.

Growing network models enforcing triadic closure

Real networks often have a large clustering coefficient. Therefore, triangles can be
considered a fundamental network structure. In the context of growing network models
it is possible to consider the growth of networks by the addition of subsequent triangles
glued along their links. Interestingly, when the building blocks of a growing network
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are not links but triangles or even 4-cliques (tetrahedra), preferential attachment is
not a necessary input element of the growing network model for generating scale-
free networks [109, 51, 52]. In fact, preferential attachment can spontaneously emerge
as a property of the network growth. For instance, if we consider a model in which
we start from a single triangle and at each time we add a new triangle having a
single new node and one side glued to a random existing link of the network, we
automatically generate a scale-free network. In this model, the preferential attachment is
not imposed explicitly by the growth rule, but it is an emergent property of the dynamics
because if we choose the link to which we attach the new triangle randomly, each node
has a probability proportional to its number of links of acquiring new connections
[109, 51, 52]. Interestingly, these growing network models not only have scale-free degree
distribution and display the small-world distance property, but also have a high clustering
coefficient and significant community structure [52]. This latter property shows that
actually communities can emerge spontaneously from local dynamical rules that enforce
high density of triangles [47].

In sociology, the tendency of closing triangles in social networks is called triadic
closure. Triadic closure therefore refers to the high probability that two friends of a
common person become friends with each other. Therefore, this explains the need to
model growing networks that are not exclusively formed by triangles, but instead include
both triangles and wedges (triplets of nodes connected by two links) and that mimic the
social-network phenomenon of triadic closure.

Several models have been proposed; among others here we discuss the following
one [47]:

Initially (at time t = 1), the network is formed by a clique of n0 ≥ m nodes, i.e. a set
of n0 nodes in which every node is linked to all the others. At each time t > 1, a node
is added to the network. Each newly added node is connected to the other nodes of the
network by m links according to the following rules:

(a) Random initial attachment. The first link connects the new node i to a random
node j of the network.

(b) Triadic closure. Each of the remaining m − 1 links are attached with probability p
to a random neighbour of node j and with probability 1 − p to a random node of
the network.

This model generates networks with broad degree distribution that become better
approximated by a power law as the number of initial links m of every node increases. The
network displays interesting degree correlations and, as long as p is large and m not too
high, displays a clear community structure. The emergence of a non-trivial community
structure is not an exclusive property of this model and has been observed numerically
on a wide variety of network models, enforcing a high density of triangles and mimicking
triadic closure [47].
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2.8.5 Ensemble of networks

Maximum entropy ensembles

An ensemble of networks is the set of all the possible networks G = (V , E) having N
nodes in which each network G is associated with a probability P(G). Therefore, the
probability P(G) uniquely determines the network ensemble. In principle, this probability
can be chosen arbitrarily. However, in most practical applications the use of network
ensembles is suitable because we do not know exactly the networks we want to model
and only partial information about them is accessible. In these types of situations it is
desirable not just to have a network ensemble to model the system under study, but also
to have a least-biased network ensemble that uses the information available about the
network but does not assume anything else a priori.

One of the most important results of information theory is that the least-biased
probability P(G) given a set of constraints should be the one that maximizes the entropy
under the imposed conditions [81]. The entropy S of a network ensemble is given by

S = −
∑
G

P(G) ln P(G). (2.85)

The entropy indicates the logarithm of the typical number of networks in the ensemble.
Maximum entropy network ensembles can be obtained by maximizing S under a
given set of constraints such as the total number of links, the degree sequence, the
number of links between sets of nodes, etc. Therefore, the smaller the entropy, the less
numerous the typical networks in the ensemble, and the larger it is, the more numerous
they are.

The constraints that can be imposed can be classified into hard constraints and soft
constraints [6]. The hard constraints are imposed on each network of the ensemble that
has non-zero probability. These include the total number of links or the degree sequence.
The soft constraints are imposed in average on the ensemble and include the expected
number of links in the network and the expected degree sequence. The maximum
entropy ensembles satisfying the hard constraints are also called microcanonical network
ensembles, while the ones satisfying the soft constraints are called canonical network
ensembles. Microcanonical and canonical network ensembles enforcing the same types
of constraints as hard and soft constraints respectively are called conjugated ensembles.
The exemplar conjugated microcanonical and canonical network ensembles are the
random graph ensembles G(N , L) and G(N , p) with L = pN(N −1)/2. The terminology
used here (microcanonical and canonical network ensembles) is borrowed from classical
statistical mechanics when, for instance, the dynamical configurations of the particles in
a gas are studied when the energy of the system is fixed (microcanonical ensemble) or
when the gas is in a thermal bath and only the average energy is kept fixed (canonical
ensemble). It is to be noted that the canonical network ensembles are also widely known
in the statistical network community as exponential random graphs [265].
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The entropy of network ensembles is an information measure that can be used to
assess how much information is encoded in the network constraints. In fact, a network
ensemble satisfying strict constraints that make the networks highly optimized for some
specific task will be characterized by having few typical network realizations (small
entropy), while more generic constraints will yield a network ensemble with many
more typical networks (larger entropy). Ideally, we could think to relate the network
constraints to the function of the networks. For instance, we could consider all the
networks that perform a given function equally well. In practice until now, most often
network ensembles typically consider few specific types of constraints such as the node
degrees and the number of links among different classes of nodes. Going beyond these
constraints and considering ensembles of networks with a given number of triangles or
a given sequence of local clustering coefficient already constitutes a significant challenge
for network theorists.

In the following we will consider specifically the microcanonical and canonical
ensembles that preserve respectively the degree sequence and the expected degree
sequence, and the block models that preserve the number of links between different
classes of nodes (for details of the derivations see Appendix B).

Canonical network ensembles with expected degree sequence

The canonical network ensembles having an expected degree sequence {ki} assign to
each network G a probability PC(G) that satisfies

∑
G

PC(G)

⎡
⎣ N∑

j=1

aij

⎤
⎦ = ki . (2.86)

Therefore, in this ensemble not all the network realizations have the same degree
sequence, but on average each node i has an expected degree ki . The probability of
a network in this ensemble takes the exponential form

PC(G) = 1
ZC

exp

⎡
⎣∑

i<j

(λi + λj)aij

⎤
⎦ (2.87)

where λi is the Lagrangian multiplier enforcing the constraint expressed by Eq. (2.86)

and ZC is a normalization constant. Since PC(G) takes a characteristic exponential
expression, this ensemble is also called an exponential random network with given
expected degree sequence. The probability PC(G) factorizes into contributions coming
from each individual link and can equivalently be written as

PC(G) =
∏
i<j

[
pijaij + (1 − pij)(1 − aij)

]
, (2.88)
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where pij is the probability that a network of the ensemble contains the link between node
i and node j, i.e. has aij = 1. The entropy of these networks can be expressed simply in
terms of the marginal probabilities pij as

S = −
∑
i<j

[
pij ln pij + (1 − pij) ln(1 − pij)

]
. (2.89)

The probabilities pij are given in terms of the Lagrangian multipliers by

pij = e−λi−λj

1 + e−λi−λj
, (2.90)

and the contraint in Eq. (2.86) can also be written as

ki =
N∑

j=1

pij . (2.91)

Eq. (2.90) for the marginal probabilities pij in this network ensemble is remarkable. In
fact, it implies that in general in this ensemble the probability pij does not factorize
into contributions coming respectively from nodes i and j alone. This is a sign that in
general these networks will be correlated and actually display disassortative correlations.
However, if the degree distribution is not very broad and the maximum degree is
bounded by the structural cutoff, these networks are in good approximation uncorrelated
networks, as we will show in the following.

Microcanonical network ensemble with given degree sequence

The microcanonical network ensemble preserving a given degree sequence {ki} is also
widely known as the configuration model. In this ensemble we associate an equal
probability PM(G) with every network G = (V , E) having a given degree sequence, i.e.

PM(G) = 1
ZM

N∏
i=1

δ

⎛
⎝ki ,

N∑
j=1

aij

⎞
⎠, (2.92)

where ZM is the normalization constant. Interestingly, this network ensemble is not
statistically equivalent to its conjugated canonical ensemble discussed in the previous
paragraph [6, 7]. This fact is revealed most notably by observing that the entropy of
this ensemble that we indicate here with � is related to the entropy of the canonical
ensemble S by [46, 7]

� = S − � (2.93)
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where � is a quantity that grows linearly with the number of nodes N and is therefore not
negligible. Therefore, the entropy of the microcanonical ensemble � is not equal to the
entropy of the canonical ensemble in the large-network limit. In this case we say that there
is no ensemble equivalence. This is a consequence of the fact that here we are enforcing
an extensive number of constraints while ensemble equivalence to hold requires a finite
number of constraints.

The expression for � is in general given by

� = − ln

⎡
⎣∑

G

PC(G)

N∏
i=1

δ

⎛
⎝ki ,

N∑
j=1

aij

⎞
⎠
⎤
⎦, (2.94)

i.e. � represents the logarithm of the probability that in the canonical network ensemble
we observe that the degree sequence is exactly given by the expected degree sequence.
In the limit in which each node i of the network satisfies

ki � √〈k〉N , (2.95)

� takes the simple expression [46, 7]

� =
N∑

i=1

ln
[

1
ki !k

ki
i e−ki

]
. (2.96)

Uncorrelated networks

In the configuration model and in the exponential random graph the marginal proba-
bilities pij take the non-factorizable expression given by Eq. (2.90). However, if in the
network there is the structural cutoff

KS = √〈k〉N

indicating the maximum allowed degree in the network and every node i satisfies

ki � Ks = √〈k〉N ,

the probabilities pij can be approximated as

pij = kikj

〈k〉N , (2.97)

and the network is effectively uncorrelated.
This limit of the configuration model is widely used when studying dynamical models

of networks such as percolation or epidemic spreading. Typically, these networks are also
called random uncorrelated networks with degree distribution P(k).
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For uncorrelated random networks the clustering coefficient is given by

C = 1
〈k〉N

( 〈k(k − 1)〉
〈k〉

)2

. (2.98)

It follows that for scale-free networks with structural cutoff, even if 〈k(k − 1)〉 diverges
with N as 〈k(k − 1)〉 � N (3−γ )/2 the clustering coefficient C vanishes for N → ∞. This
implies that these networks do not have a finite density of triangles and can be to a large
extent treated as locally tree-like.

Block models

Block models are maximum-entropy ensembles in which nodes are classified into
different types or blocks and the expected or exact number of links within each block and
among each pair of different blocks is fixed. Block models can be divided into canonical
network models enforcing the soft constraints and microcanonical models enforcing the
hard constraints.

Let us consider a subdivision of nodes into Q blocks q = 1, 2, . . . , Q, and let us indicate
with qi the block to which node i belongs. In the canonical block model we consider the
maximum entropy ensemble in which the expected number of links among a block q
and a block q′ is given by eq,q′ and the expected number of links within block q is eq,q.
The probability PC(G) of the network G on such canonical network ensembles takes the
exponential form

PC(G) = 1
ZC

exp

⎡
⎣−

∑
i<j

λqi ,qj aij

⎤
⎦, (2.99)

where ZC is the normalization constant and λq,q′ is the Lagrangian multiplier enforcing
the expected number of links eq,q′ . The probability pij of a link between node i and node
j is given by

pij = 〈aij〉 = e−λqi ,qj

1 + e−λqi ,qj
(2.100)

where the Lagrangian multipliers are fixed by the conditions

∑
i,j

pijδ(q, qi)δ(q′, qj) = eq,q′ for q �= q′,

∑
i<j

pijδ(q, qi)δ(q, qj) = eq,q, (2.101)

where δ(x, y) is the Kronecker delta. The probabilities pij depend only on qi , qj . There-
fore, we have pij = p(qi , qj) with
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p(q, q′) = eq,q′

nqnq′
for q �= q′

p(q, q) = eq,q

nq(nq − 1)/2
(2.102)

where nq indicates the total number of nodes in community q. The entropy S of these
ensembles is given by

S = −
∑
i<j

[
pij ln pij + (1 − pij) ln(1 − pij)

]
. (2.103)

If the number of constraints is non-extensive Q(Q + 1)/2 � N , in the large N limit this
expression is given by

S = ln

⎡
⎣∏

q<q′

(
nqnq′
eq,q′

)∏
q

(
nq(nq − 1)/2

eq,q

)⎤
⎦.

In the microcanonical block model the quantities eq,q′ and eq,q indicate the exact
number of links among blocks q and q′ and within block q respectively. The number
of network in this ensemble is simply given by

ZM =
M∏

α=1

⎡
⎣∏

q<q′

(
nqnq′
eq,q′

)∏
q

(
nq(nq − 1)/2

eq,q

)⎤
⎦,

where nq indicates the number of nodes in community q.
It follows that as long as the number of constraints is not extensive, i.e. Q(Q+1)/2 �

N , the canonical and microcanonical network ensembles are asymptotically equivalent
and

S � �.

2.9 Spatial network ensembles

In this section we consider canonical maximum entropy network ensembles for spatially
embedded networks [25] where each pair of nodes (i, j) is at distance dij in the embedding
space. The ensemble of networks we consider here can be divided into two major classes.
In the first class, we consider a given binning of the distances between the nodes and we
fix on average the number of links connecting nodes whose distance falls in a given bin.
Moreover, we also fix the expected degree ki of each node i. Therefore, we first define
NB bins of distance intervals and then we consider the constraints
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∑
G

PC(G)

⎡
⎣∑

i<j

aijχν(dij)

⎤
⎦ = Cν and (2.104)

∑
G

PC(G)

⎡
⎣ N∑

j=1

aij

⎤
⎦ = ki , (2.105)

where χν(dij) indicates whether the distance dij does (χν(dij)= 1) or does not
(χν(dij)= 0) fall in the bin ν = 1, 2, . . . , NB of distance intervals. The maximal entropy
network ensemble satisfying this set of constraints has distribution PC(G) given by Eq.
(2.88) and entropy S given by Eq. (2.89) where the marginal probability pij of the link
(i, j) is given by

pij = e−λi−λj−∑ν λνχν(dij)

1 + e−λi−λj−∑ν λνχν(dij)
. (2.106)

Here the λν symbols indicate the Lagrangian multipliers of the constraints in Eq. (2.104)
and the λi symbols indicate the Lagrangian multipliers that enforce the constraints in Eq.
(2.105). This ensemble can be used to generate randomized network ensembles starting
from a given network embedded into a geometrical space for which we have calculated
the number Cν of links whose distance falls in the bin ν of distance intervals and the
degree ki of each node i.

In the second case, we fix on average the total cost associated with the connections
existing in the network and the expected degree of each node. Therefore, we consider
the maximum entropy ensemble satisfying the constraints

∑
G

PC(G)

⎡
⎣∑

i<j

aij f (dij)

⎤
⎦ = Ĉ (2.107)

∑
G

PC(G)

⎡
⎣ N∑

j=1

aij

⎤
⎦ = ki , (2.108)

where f (d) indicates the cost associated with a link (i, j) of distance dij = d. Typical
choices for the function d(d) are

f (d) = d,

f (d) = ln(d). (2.109)

The first option corresponds to a cost which is a linear function of the distance of the link,
the second option corresponds to a cost that scales linearly with the order of magnitude
of the distance. In this case, the maximum entropy ensemble assigns to each network a
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probability PC(G), given by Eq. (2.88), and has an entropy S given by Eq. (2.89) where
the marginal probability pij of each link (i, j) is given by

pij = e−λi−λj−λCf (dij)

1 + e−λi−λj−λCf (dij)
. (2.110)

Here the Lagrangian multiplier λC enforces the constraint in Eq. (2.107) on the expected
total cost of the links and the Lagrangian multipliers λi enforce the constraints given by
Eq. (2.108) on the expected degree of node i. This ensemble can be used to generate
spatial networks with the desired expected cost of the link starting exclusively from a set
of N nodes embedded in a geometrical space and an expected degree sequence.



3

The Dynamics on Single Networks

3.1 Interplay between structure and function

Whenever we aim at characterizing network robustness, the spreading of an epidemic,
the properties of a random walk, or the onset of the synchronized state, we observe
that complex network topologies dramatically affect the behaviour of the dynamical
processes.

Traditionally, dynamical processes have been studied on d-dimensional lattices and
great interest has been given to investigating the dependence of dynamical behaviour
with the dimensionality d. However, with the rise of the interest in complex networks
new surprising results have revealed a more significant interplay between structure and
dynamics in complex networks.

It has been shown that the behaviour of many dynamical processes changes very
significantly if the network is scale-free. For instance scale-free networks are much more
robust to random damage than networks with a converging second moment 〈k2〉 of the
degree distribution [78]. Moreover, scale-free topologies also significantly favour the
spread of viruses, ideas and information within a network with relevant consequences
for containing pandemics or devising viral advertising strategies [243].

Diffusion and synchronization are instead strongly dependent on the spectral proper-
ties of the network, characterizing the relaxation time to the steady state of the diffusion
processes and the stability of the fully synchronized state in complex networks.

In this chapter we will give a brief summary of the main theoretical frameworks that
have been proposed to characterize the interplay between structure and dynamics on
single networks and of the main results achieved so far. These results constitute the
starting point for exploring the specific signatures that multiplexity has on the dynamical
processes defined in multilayer networks.

To the reader desiring to have a wider overview of the field we suggest referring
to the monographies [24, 253] and the following review articles: [106] (on general
critical phenomena), [241] (on epidemic spreading), [9] (on synchronization), [196] (on
network control).

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001
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3.2 Phase transitions and emergent phenomena

In the vast majority of real scenarios, in Network Science we aim at characterizing
dynamical processes that give rise to emergent phenomena. These are macroscopic
changes in the dynamical state of the system that cannot be predicted by considering
the dynamical system defined on a single node. The processes giving rise to these
macroscopic changes are also called critical phenomena [24, 106]. For instance, when
we want to formulate ways to contain an influenza epidemic or when our goal is to
determine the robustness of a network, we are especially interested in dynamical states
that affect the network as a whole, such as an endemic or the complete dismantling of
a network. In these contexts the statistical mechanics framework, originally proposed to
characterize the different states of matter (such as water/ice/vapour for water molecules
and diamond/graphene/graphite for carbon atoms) turns out to be very useful.

In statistical mechanics, a phase transition from one phase of matter to another
one is characterized by studying the changes of an order parameter, determining the
macroscopic properties of a large (actually infinite) system as a function of an external
control parameter. In the context of network theory we will use exactly the same procedure.
For instance, in percolation theory we will study the fraction of nodes S that are in the
giant component of a network as a function of the probability p that any given node is not
initially damaged. Similarly, in epidemic spreading we will determine for which infectivity
rates λ the network is in an endemic phase characterized by having a finite fraction of all
the nodes of the network infected. Let us call the generic order parameter M and the
generic control parameter x. The system undergoes a phase transition when there is a
critical value of x, called xc, such that for x > xc the order parameter is non-vanishing,
i.e. M > 0, and for x ≤ xc the order parameter is vanishing, i.e. M = 0.

Several phase transitions that we will encounter in this chapter can be characterized
as continuous, second-order phase transitions in which the order parameter M close to
the transition, i.e. for x � xc, takes the values

M =
{

D(x − xc)
β̂ for x ≥ xc

0 for x > xc,

where β̂ > 0 is called the dynamical critical exponent and D is a constant. In this case
as x → x+

c the order parameter approaches zero, i.e. M → 0. A major example of
continuous second-order phase transitions is percolation of single networks that will be
characterized in the next section.

However there are also discontinuous phase transitions in which as we approach the
critical value of the control parameter, x → x+

c , the order parameter approaches a non-
zero value, i.e. M → Mc > 0, and only for x = xc the order parameter abruptly takes the
value M = 0.

Among the discontinuous phase transitions, of particular interest are the hybrid
transitions which have the discontinuity of the order parameter M as a function of the
control parameter x, but, like second-order phase transitions, they are characterized by
a singular behaviour for x → x+

c . This behaviour can be described as
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M =
{

Mc + D(x − xc)
β̂ for x ≥ xc

0 for x > xc,

where β̂ > 0 is called the dynamical critical exponent and D > 0 is a constant. A major
example of a hybrid-phase transition is the percolation transition in interdependent
networks that will be characterized in chapter 11.

3.3 Robustness and percolation

3.3.1 The percolation transition

In the theory of percolation, it is assumed that a fundamental proxy for the proper
function of a given network is the existence of the giant component. In fact, as discussed
in chapter 2 (see Sec. 2.3.6), the existence of a giant component allows the propagation
of ideas, information and signals along the links of the giant component, reaching a finite
fraction of all the nodes of the network.

In node percolation the robustness of a given network is tested by assuming that some
nodes are randomly removed with probability f and monitoring the fraction of nodes
S that remains in the giant component of the network after the inflicted damage. The
parameter p = 1 − f , indicating the probability that a node is not initially damaged,
is usually used to characterize the percolation process. The percolation transition is
characterized by the behaviour of S (the order parameter of the percolation transition)
as a function of p. The percolation transition occurs for a given value of p, called the
percolation threshold pc. It is found that for p ≤ pc there is no giant component in the
network and S = 0, while for p > pc there is a giant component and S > 0. For values
of p � pc the order parameter S follows

S =
{

D(p − pc)
β̂ for p ≥ pc

0 for p < pc,

where β̂ > 0 is called the dynamical critical exponent of percolation and D > 0 is a constant.
The percolation transition is a beautiful example of a continuous second-order phase

transition; in fact, in the limit for p → p+
c S → 0, meaning that if the nodes of the network

are damaged with increasing probability the size of the giant component is continuously
reduced until reaching size zero for p = pc.

Similarly it is possible to define the bond percolation in which instead of removing
the nodes randomly we remove the links of the network randomly. Also in this case the
order parameter S undergoes a continuous second-order phase transition as a function
of p, indicating in this case the probability that a link is not randomly removed. The
critical behaviour of S also follows Eq. (3.1) in this case, but the values of the percolation
threshold pc and the dynamical critical exponent β̂ in general might be different from the
ones observed in node percolation. In sections 3.3.2 and 3.3.3 we will actually see that



50 The Dynamics on Single Networks

the epidemic threshold for node percolation and bond percolation is actually the same
on random networks, while the dynamical critical exponent for some network topologies
is different.

On locally tree-like networks both node percolation and bond percolation can be
studied on single instances of networks by message-passing algorithms. Message-passing
algorithms constitute a very efficient way to study a number of dynamical processes
on complex networks and they have been used not only for percolation [168] but also
for characterizing the behaviour of epidemic-spreading processes [5] and for predicting
network controllability [197]. Percolation is one of the major examples of the possible
application of message-passing techniques to study dynamical processes on networks. In
the following we have decided to give a synthetic but complete account of their use in
this context.

3.3.2 Node percolation

Message-passing approach

Let us consider a network where each node i is either damaged (si = 0) or not damaged
(si = 1). As long as the network is locally tree-like, it is possible to determine whether
a node belongs to the giant component of the network or not by running a message-
passing algorithm. The message-passing algorithm consists of a set of messages, σi→j ,
sent from each node i to each neighbour node j that follows a recursive set of equations.
In the stationary state the messages have performed a kind of ‘distributed computation’
revealing the large-scale properties of the network. Specifically in this case they indicate
which nodes belong or do not belong to the giant component.

For each link between node i and node j there are two distinct messages, σi→j and
σj→i . The message σi→j = 1 sent from node i to node j has the meaning ‘through
me you are connected to other nodes in the giant component’. The message σi→j = 0
instead has the meaning ‘through me you are not connected to other nodes in the giant
component’.

The messages σi→j = 0, 1 are updated locally according to the value of the messages
received by node i from neighbour nodes � �= j. Specifically σi→j = 1 if:

(a) node i is not initially damaged, i.e. si = 1;

(b) node i belongs to the giant component even if the link between node j and node
i is removed from the network, i.e. node i receives at least one positive message
σ�→i = 1 from nodes � �= j that are neighbours of node i.

If these conditions are not met, then σi→j = 0. These messages determine whether a
node i does (σi = 1) or does not (σi = 0) belong to the giant component. In fact node i
belongs to the giant component (σi = 1) if and only if:

(a) node i is not initially damaged, i.e. si = 1;
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(b) node i receives at least one positive message σ�→i = 1 from one of its
neighbours �.

This algorithm can be explicitly encoded in the following recursive equations for the
messages σi→j and for the probabilities σi :

σi→j = si

⎡
⎣1 −

∏
�∈N(i)\j

(1 − σ�→i)

⎤
⎦

σi = si

⎡
⎣1 −

∏
�∈N(i)

(1 − σ�→i)

⎤
⎦ (3.1)

where N(i) indicates the set of neighbours of node i and N(i) \ j indicates the set of all
nodes � �= j which are neighbours of node i.

In a variety of cases the exact configuration of the initial damage {si} is not known.
Instead the probability f = 1−p that a node is damaged is known. Under these conditions
the above message-passing equations can be averaged over the distribution P̂({si}) of the
initial damage configurations {si} given by

P̂({si}) =
N∏

i=1

psi (1 − p)1−si , (3.2)

where p is the probability that a node is not initially damaged (si = 1) and 1 − p is the
probability that a node is initially damaged (si = 0). By indicating with σ̂i→j and σ̂i the
average of the messages σi→j and the probabilities σi over the distribution P̂({si}) we
obtain the following message-passing equations:

σ̂i→j = p

⎡
⎣1 −

∏
�∈N(i)\j

(1 − σ̂�→i)

⎤
⎦

σ̂i = p

⎡
⎣1 −

∏
�∈N(i)

(1 − σ̂�→i)

⎤
⎦ , (3.3)

where now σ̂i→j and σ̂i take real values in the interval [0, 1]. Here σ̂i indicates the
probability that node i belongs to the giant component if the distribution P̂({si}) of the
initial damage follows Eq. (3.2).

Finally, to study the percolation properties of random uncorrelated networks with
given degree distribution P(k) we average the messages σ̂i→j over the network ensemble,
getting the probability S′ that by following a link we reach a node in the giant component.
Similarly, by averaging the probability σ̂i over the network ensemble we get the proba-
bility S that a random node is in the giant component. From Eqs (3.3) averaging over
the random network ensemble it is possible to deduce that S′ and S follow
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S′ = p

[
1 −

∑
k

k
〈k〉P(k)(1 − S′)k−1

]
,

S = p

[
1 −

∑
k

P(k)(1 − S′)k

]
. (3.4)

If we introduce the generating functions

G0(x) =
∑

k

P(k)xk,

G1(x) =
∑

k

k
〈k〉P(k)xk−1, (3.5)

Eqs (3.4) can equivalently be written as

S′ = p
[
1 − G1(1 − S′)

]
,

S = p
[
1 − G0(1 − S′)

]
. (3.6)

These equations are always satisfied for S′ = S = 0, but, depending on the properties of
the degree distribution P(k) and on the probability p, this solution might not be stable.
When this happens another non-trivial solution S′ > 0, S > 0 emerge, implying that
the network displays a giant component. Let us note that S = 0 if and only if S′ = 0.
Therefore, in order to study the stability of the solution S′ = S = 0 it is sufficient to
study the stability of the non-linear equation determining S′. If we linearize the equation
for S′ � 1 we get

S′ = p
〈k(k − 1)〉

〈k〉 S′. (3.7)

Therefore, the solution S′ = 0 becomes unstable for

p
〈k(k − 1)〉

〈k〉 > 1. (3.8)

This result implies that a random network with degree distribution P(k) has a giant
component if and only if [78, 227]

p > pc = 〈k〉
〈k(k − 1)〉 . (3.9)

Percolation in Poisson networks

For Poisson networks with average degree 〈k〉 = c and degree distribution
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P(k) = ck

k! e−c, (3.10)

the generating functions are given by

G0(x) = G1(x) = ec(x−1). (3.11)

Therefore, Eqs (3.6) imply that S = S′ and that S satisfies

S = p(1 − e−cS). (3.12)

Finally, since for Poisson networks with average degree 〈k〉 = c

〈k(k − 1)〉
〈k〉 = c, (3.13)

the condition for having a giant component reads

p > pc = 1
c

. (3.14)

Therefore, for Poisson networks the percolation threshold is determined exclusively by
the average degree of the network. In order to derive the critical exponent β̂ defined by
Eq. (3.3.1), let us expand Eq. (3.12) for p � pc implying S � 1,

S = pcS − 1
2

c2S2 + . . . (3.15)

By truncating this expansion at the second order, since S ≥ 0, we get for p � pc

S =
{

D(p − pc)
β̂ if p ≥ pc

0 if p < pc
(3.16)

where D = 2/c and β̂ = 1. Therefore the critical exponent is β̂ = 1. It can be shown
that this result extends to every random network with degree distribution P(k) having
a convergent first, second and third moment (〈k〉, 〈k(k − 1)〉 and 〈k(k − 1)(k − 2)〉). In
fact all these networks have critical exponent β̂ = 1.

Percolation in scale-free networks

Uncorrelated sparse power-law networks with degree distribution P(k) = Ck−γ and
γ > 2 have a percolation threshold given by [78, 227]

pc = 〈k〉
〈k(k − 1)〉 . (3.17)
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Therefore, as a function of γ we observe a remarkable phenomenon:

(a) For γ > 3 we have a finite average degree 〈k〉 and finite 〈k(k − 1)〉 = 〈
k2

〉 − 〈k〉
even in the limit of large network sizes N → ∞. Therefore the epidemic threshold
pc is finite and the network is dismantled when 0 < p ≤ pc.

(b) For γ ∈ (2, 3] the network is scale-free, implying that although the first moment
〈k〉 of the degree distribution remains finite in the large network limit N → ∞,
this average degree is not typical for a random node of the network. In fact the
network has nodes with very different degrees and the second moment of the
degree distribution diverges in the large network limit, i.e.

〈k(k − 1)〉 → ∞ as N → ∞.

Using this result in Eq. (3.17) we see that for scale-free networks the percolation
threshold vanishes in the infinite network limit [78], i.e.

pc → 0 as N → ∞.

The result obtained for γ ∈ (2, 3] implies that scale-free networks are much more robust
than homogeneous networks with finite second moment of the degree distribution. In
fact, a vanishing percolation threshold implies that almost all the nodes of the network
can be damaged and still the network contains a giant component. Intuitively this
phenomenon is related to the fact that scale-free networks have hub nodes that, having
a large degree, are able to keep the network together even when the system is strongly
damaged. This is one of the pivotal results of Network Science showing that actually the
scale-free network universality observed in technological as well as social and biological
networks can be rooted in the fact that scale-free network topologies are particularly
robust to random damage.

The dynamical critical exponent β̂ for percolation on power-law networks depends
on the power-law exponent γ (see Table 3.1) and acquires the mean-field value β̂ = 1
only for γ > 4.

3.3.3 Bond percolation

Bond percolation (also called link percolation) refers to the case in which the initial
damage inflicted on the network removes some of its links. As in node percolation,
the robustness of the network can be monitored by determining the size of the giant
component resulting after the initial damage. In bond percolation the initial configuration
of the damage can be characterized by the variables sij = 0, 1, indicating for every link
(i, j) of the network whether it has been initially damaged (sij = 0) or not (sij = 1).
As long as the network is locally tree-like, it is possible to determine if a node belongs
(σi = 1) or does not belong (σi = 0) to the giant component of the network using a
message-passing algorithm. Let us indicate with σi→j = 0, 1 the messages sent from node
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Table 3.1 Dynamical critical exponent β̂ for node
percolation on power-law networks with degree distri-
bution P(k) = Ck−γ [106]. For values of the power-
law exponent γ = 3, 4, logarithmic corrections to the
scaling behaviour defined by Eq. (3.1) are observed.

γ β̂

γ > 4 1

γ ∈ (3, 4) 1/(γ − 3)

γ ∈ (2, 3) 1/(3 − γ )

i to node j. The message-passing algorithm for bond percolation is a simple modification
of the one used for node percolation. Specifically, σi→j = 1 if node i belongs to the giant
component even if the link between node j and node i is removed from the network. This
occurs if node i receives at least one positive message σ�→i = 1 from nodes � �= j that
are neighbours of node i and are connected to node i by a non-damaged link, i.e. s�i = 1.
If this condition is not met, then σi→j = 0.

Node i belongs to the giant component (σi = 1) if and only if node i receives at least
one positive message σ�→i = 1 from a neighbour � of node i connected to node i by a
non-damaged link, i.e. s�i = 1.

This algorithm directly translates into the message-passing equations

σi→j =
⎡
⎣1 −

∏
�∈N(i)\j

(1 − s�iσ�→i)

⎤
⎦ ,

σi =
⎡
⎣1 −

∏
�∈N(i)

(1 − s�iσ�→i)

⎤
⎦ . (3.18)

As for node percolation, it can also be the case for bond percolation that only the
distribution of the initial damage is known. Specifically, we might assume that each link
is damaged with probability f = 1 − p and that therefore the distribution P̂({sij}) over all
the possible initial damage configurations is given by

P̂({sij}) =
∏

<i,j>

psij (1 − p)1−sij , (3.19)

where < i, j > indicate the set of all the links of the network.
Let us indicate with σ̂i→j the average of the messages σi→j over the distribution P̂({sij})

and let us indicate with σ̂i the average of σi , where σi→j and σi satisfy the message-passing
equations (3.18) for bond percolation. It can be shown easily that σ̂i→j and σ̂i satisfy the
recursive equations
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σ̂i→j =
⎡
⎣1 −

∏
�∈N(i)\j

(1 − pσ̂�→i),

⎤
⎦

σ̂i =
⎡
⎣1 −

∏
�∈N(i)

(1 − pσ̂�→i)

⎤
⎦ . (3.20)

Finally, let us assume that the specific network topology is unknown and the only
accessible information is that the network is generated by a random uncorrelated network
ensemble with degree distribution P(k). In this case the average message S′ indicating the
probability that by following a non-damaged link we reach a node in the giant component
and the probability S that a random node is in the giant component satisfy

S′ = 1 − G1(1 − pS′),
S = 1 − G0(1 − pS′), (3.21)

where the generating functions G0(x) and G1(x) are given by Eqs (3.5).
Eqs (3.21) determine whether (S > 0) or not (S = 0) the random network is expected

to have a giant component. As in the case of node percolation for values of p < pc, where pc
indicates the percolation threshold, there is no giant component in the network, i.e. S = 0,
while for p > pc the giant component is expected to be S > 0. The emergence of the giant
component is determined by the onset of the instability of the solution S = S′ = 0 of Eqs
(3.21). Therefore, in order to find the percolation threshold we can linearize the equation
for S′ (given by (3.21)) for S′ � 1, getting

S′ = p
〈k(k − 1)〉

〈k〉 S′. (3.22)

This equation indicates that the solution S′ = 0 is unstable for

p
〈k(k − 1)〉

〈k〉 > 1. (3.23)

It follows that the percolation threshold for bond percolation is the same as the
percolation threshold for node percolation and that the network has a giant component
if and only if

p > pc = 〈k〉
〈k(k − 1)〉 . (3.24)

This implies that scale-free networks have a vanishing percolation threshold also in bond
percolation and are therefore very robust to random damage of the links. For Poisson
networks and for networks with finite first, second and third moment of the degree
distribution the dynamical exponent β̂ for bond percolation takes the mean-field value
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Table 3.2 Dynamical critical exponent β̂ for bond per-
colation on power-law networks with degree distribution
P(k) = Ck−γ [106]. For values of the power-law expo-
nent γ = 3, 4, logarithmic corrections to the scaling
behaviour defined by Eq. (3.3.1) are observed.

γ β̂

γ > 4 1

γ ∈ (3, 4) 1/(γ − 3)

γ ∈ (2, 3) (γ − 2)/(3 − γ )

β̂ = 1. However the dynamical critical exponent β̂ for bond percolation on scale-free
networks is different from the one of node percolation (see Table 3.2 for the dynamical
exponents of bond percolation on power-law networks).

3.3.4 Targeted attack

In percolation it is also possible to consider the case in which nodes or links are not
randomly damaged but instead damaged according to a non-random strategy (targeted
attack) [79]. For instance, one strategy could be to target the fraction f of nodes with
highest degree or in general with the highest value of a centrality measure of interest. In
particular, let us assume that nodes of degree k are initially damaged with probability
φ(k). Then, following the same steps as described in the previous paragraphs, it can be
shown that the network has a giant component if and only if [79]

〈k(k − 1)φ(k)〉
〈k〉 > 1. (3.25)

When a fraction f of nodes of highest degree is targeted by the attack strategy we have

φ(k) = θ(k − kc), (3.26)

where θ(x) is the step function and kc is determined by the condition

∑
k≥kc

P(k) = f . (3.27)

Interestingly, it has been observed that scale-free networks become fragile when the
nodes of highest degree are targeted by the attack strategy. In fact, by targeting the high-
degree nodes first, scale-free networks rapidly acquire a finite cutoff and behave like
homogeneous networks displaying a finite percolation threshold [79].
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3.4 Epidemic spreading

3.4.1 The relevance of epidemic spreading

Epidemic spreading processes are among the most studied dynamical processes in
Network Science [24, 241]. In fact, they have many applications in biological, social
and technological networks. Epidemic spreading models can be used to model diffusion
of infectious diseases, diffusion of computer viruses across the Internet, diffusion of
adoption of behaviour, rumour spreading and so on. A general problem in the context of
infectious diseases relates to the prediction of the occurrence of an epidemic outbreak and
its prevalence and relates to the design of efficient methods of immunization of the pop-
ulation. In the context of social networks and diffusion of rumours or behaviour, the pre-
diction of the virality of news, or a product, is attracting large interest. Moreover, the iden-
tification of the influential spreaders can be central for marketing strategies of products.

Despite the large interest in the topic, epidemic spreading models can be very
challenging, and predicting the size of an outbreak is a problem that requires large
computer simulations and detailed information about the microstructure of the problem.

However, at the theoretical level it is possible to gain important insights on the
mechanism, determining the properties of the epidemic spreading by considering the
Susceptible-Infected-Susceptible (SIS) model and the Susceptible-Infected-Removed
(SIR) model and characterizing their non-equilibrium behaviour with simulations and
analytical approaches.

3.4.2 SIS and SIR models

The two major models of epidemic spreading are the Susceptible-Infected-Susceptible
(SIS) model and the Susceptible-Infected-Removed (SIR) model. These models can be
used to study the spreading process within a population in which the interaction pattern
is dictated by an underlying network.

In the SIS model on a network we consider N individuals, each one associated to a
different node i = 1, 2, . . . N of the network. Each individual i can be either susceptible
(indicated with Si) or infected (indicated with Ii). When an infected individual and
a susceptible individual are on nearest neighbour nodes, the susceptible individual
becomes infected at rate ξ . We indicate this process with

Si + Ij
ξ−→ Ii + Ij . (3.28)

An infected individual becomes a susceptible individual at rate μ. We indicate this process
with

Ii
μ−→ Si . (3.29)

This model is adopted in cases where the infected individuals are not removed from the
population and can become eventually susceptible again. For instance, this model can be
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adopted as a stylized model of the spread of influenza where individuals can get influenza
multiple times in the course of several years. Other situations in which the adoption of
the SIS model could be appropriate are the infection of computers by electronic viruses,
or the case of the shopping behaviour of some consumer who might decide to buy a
product from a given brand repeatedly over time.

A different scenario leads to the definition of the SIR model where instead nodes
can be infected only once, and after a certain period they are effectively removed from
the population. This modelling framework is adopted in the case in which biological
viruses either induce an immunization or are lethal. In social sciences the SIR model
should be considered when the adoption of a given behaviour can occur only once. In
the SIR model on a network we consider N individuals i = 1, 2, . . . , N . Each individual
is associated with a node i = 1, 2, . . . N of the network and can be in three possible
states: susceptible, infected or removed. A susceptible individual (indicated by Si) is an
individual that is not infected but can get the infection. An infected individual (indicated
by Ii) is an individual that has the infection and can spread it to neighbour nodes that
are susceptible. Finally, a removed individual (indicated by Ri) is an individual that has
had the infection but cannot spread it any longer.

The SIR dynamics on a complex network is defined as follows. When an infected
individual and a susceptible individual are nearest neighbour nodes, the susceptible
individual becomes infected at rate ξ . We indicate this process with

Si + Ij
ξ−→ Ii + Ij . (3.30)

An infected individual becomes removed at rate μ. We indicate this process with

Ii
μ−→ Ri . (3.31)

Both the SIS and the SIR models display a phase transition between an absorbing state
in which the epidemic affects only an infinitesimal fraction of the nodes of the network
and a phase consistent with epidemic outbreaks involving a finite fraction of nodes of the
network.

3.4.3 Phase transitions in epidemic spreading

All epidemic spreading processes are non-equilibrium dynamical models in which there
is an absorbing state. The absorbing state is the state in which the number of infected
individuals eventually reaches the value zero and the epidemics cannot spread any longer.
The SIS and SIR epidemic models have a phase transition as a function of the infectivity
λ. The infectivity λ is the control parameter of the phase transition in both the SIS and
the SIR and is given by

λ = ξ

μ
. (3.32)
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For low infection rates

λ ≤ λc

the epidemic quickly reaches the absorbing phase involving a negligible fraction of the
network nodes. However, for infection rates

λ > λc,

there is an epidemic outbreak in the network and a finite fraction of nodes are infected
by the epidemics.

Epidemic spreading has different characteristics depending on the type of dynamics
that takes place. For example, a significant difference can be observed in the typical
profile of the number of infected individuals as a function of time in the case of the SIS
model or in the case of the SIR model.

In the case of the SIS model, for λ > λc we observe for large network sizes N → ∞
an endemic state in which the fraction of infected individuals is greater than zero at all
times, and therefore the epidemic never dies. In the case of the SIR model, for any values
λ > λc we observe that the epidemic will affect a finite fraction of the nodes, but will
always eventually die out asymptotically in time.

The order parameter of the epidemic transition in both the SIS and SIR models is
given by the fraction of nodes ρ that are not susceptible in the limit t → ∞, and in the
limit of infinite population N → ∞, i.e.

ρ̃ = lim
t→∞ lim

N→∞
NI (t) + NR(t)

N
, (3.33)

where NI (t) is the number of infected nodes at time t, NR(t) is the number of removed
nodes at time t and N is the total number of nodes. The order parameter has the following
behaviour for λ � λc:

ρ̃ ∝
{

D(λ − λc)
β̂ for λ > λc

0 for λ ≤ λc
,

where λc is called the epidemic threshold, β̂ is the dynamical critical exponent and D > 0 is
a constant.

3.4.4 SIS model

The behaviour of the SIS epidemic spreading can be studied using a number of
approximations showing the rich interplay between the network structure and the
dynamics for the SIS epidemic spreading.

Let us consider a discrete time version of the SIS model and let us indicate with
Xi(t) = 1 that node i is infected and with Xi(t) = 0 that node i is susceptible at time t.
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A node i susceptible at time t becomes infected at time t+1 if at least one of its neighbours
has infected it at time t. A node i, infected at time t, becomes susceptible at time t + 1
with constant probability μ. Therefore, SIS dynamics can explicitly be written as

Xi(t) = 0 → Xi(t + 1) = 1 with probability

⎡
⎣1 −

∏
j∈N(i)

(
1 − ξXj(t)

)⎤⎦
Xi(t) = 1 → Xi(t + 1) = 0 with probability μ. (3.34)

Therefore, the probability pi = 〈Xi〉 that node i is infected satisfies

pi(t + 1) = 〈Xi(t + 1)〉 =
〈
(1 − Xi(t))

⎡
⎣1 −

∏
j∈N(i)

(
1 − ξXj(t)

)
⎤
⎦

〉

+ (1 − μ) 〈Xi(t)〉 . (3.35)

The above equations are not closed over the variables pi . In fact, the value of pi = 〈Xi〉
depends on the average of the products of more than one variable Xi . To solve Eqs
(3.35) exactly one would need to couple them with other equations for the average
of the products between several stochastic variables Xi . Unfortunately, this approach
yields a hierarchy of equations that do not close, so inevitably it is necessary to make an
approximation to close a finite set of such equations. The most drastic approximation
is called the individual mean-field approximation. Essentially the individual mean-field
approximation neglects fluctuations and assumes that

〈
Xn(1)Xn(2) . . . Xn(r)

〉 � 〈
Xn(1)

〉 〈
Xn(2)

〉
. . .

〈
Xn(r)

〉
(3.36)

for any sequence of indices n(1), n(2), . . . n(r). In this approximation Eqs (3.35) close
over the variables pi(t) and read

pi(t + 1) = (1 − pi(t))

⎡
⎣1 −

∏
j∈N(i)

(
1 − ξpj(t)

)⎤⎦ + (1 − μ)pi(t). (3.37)

The steady-state solution of this equation

pi(t) = pi(t + 1) = p�
i , (3.38)

achieved by the system for t � 1 satisfies

0 = −μp�
i + (1 − p�

i )

⎡
⎣1 −

∏
j∈N(i)

(
1 − ξp�

j

)⎤
⎦. (3.39)
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This equation always admits an epidemic-free solution p�
i = 0, but this solution can

become unstable for infectivities

λ = ξ

μ
> λc (3.40)

where λc is called the epidemic threshold. In order to study the onset of this instability
we linearize Eq. (3.39) for p�

i � 1, obtaining

μp�
i = ξ

N∑
j=1

aijp�
j . (3.41)

This equation reveals that small perturbations of the epidemic-free state p�
i are enhanced,

leading to an instability of the epidemic-free state for

ξ

μ
� > 1, (3.42)

where � is the maximum eigenvalue of the adjacency matrix a. Therefore, the epidemics
become endemic for

λ > λc = 1
�

. (3.43)

A closer look at this derivation reveals that this result obtained within the mean-field
approximation is restricted to networks in which the eigenvector associated with the
maximum eigenvalue � is delocalized on the network.

Assuming that the SIS dynamics takes place over infinitesimal intervals of time
t � 1, we rescale the parameter of the dynamics as

ξ → ξt

μ → μt (3.44)

obtaining

⎡
⎣1 −

∏
j∈N(i)

(
1 − ξpj(t)

)
⎤
⎦ →

⎡
⎣1 −

∏
j∈N(i)

(
1 − ξpj(t)t

)
⎤
⎦. (3.45)

For t � 1 we can approximate

⎡
⎣1 −

∏
j∈N(i)

(
1 − ξpj(t)t

)⎤⎦ ∼ ξ

N∑
j=1

aijpj(t)t. (3.46)
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Inserting this expression into Eqs (3.37), in the limit t → 0 we obtain the continuous
time equation

dpi

dt
= −pi + λ(1 − pi)

N∑
j=1

aijpj , (3.47)

where, without loss of generality, we have rescaled the time according to t → t/μ. The
stability of the epidemic-free stationary state can be studied directly from this equation,
yielding exactly the same epidemic threshold as derived from the discrete time mean-
field dynamics. Additionally, this equation can be studied in the framework of the so-
called annealed approximation. In the annealed approximation one assumes that each
node rewires its connections on the same temporal scale at which the epidemic spreads,
while keeping the number of its connections constant. In this scenario it is allowed to
substitute the adjacency matrix elements aij with their average value over an ensemble of
graphs, aij → pij . For uncorrelated networks with a given degree sequence, one makes
the approximation

aij → kikj

〈k〉N . (3.48)

Therefore, in the annealed network approximation pi only depends on the degree of the
node i and we have

pi|ki=k = ρk. (3.49)

By using the annealed approximation in Eq. (3.47) it can be derived that the probability
ρk that a node of degree k is infected follows the equation [243]

dρk

dt
= −ρk + λk(1 − ρk)

∑
k′

k′

〈k〉P(k′)ρk′ . (3.50)

At stationarity we have

ρk = λk
�(λ)

1 + λk�(λ)
, (3.51)

where

�(λ) =
∑

k

k
〈k〉P(k)ρk. (3.52)

The epidemic-free solution ρk = 0 can become unstable for infection rate λ greater
than the epidemic threshold λc. In order to derive λc in this annealed approximation
framework we linearize Eq. (3.51) for ρk � 1, obtaining
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ρk = λk
∑

k

k′

〈k〉P(k′)ρ′
k. (3.53)

This eigenvalue problem determines the condition for the instability of the epidemic-free
stationary solution ρk = 0. Specifically, the system will display an epidemic outbreak for

λ
〈k2〉
〈k〉 > 1. (3.54)

Therefore the epidemic threshold λc is given by [243]

λc = 〈k〉
〈k2〉 . (3.55)

This relevant result is signalling that also in this case scale-free network topologies have
dramatic effects on the network dynamics. In fact, while for homogenous network with
finite first and second moment of the degree distribution the epidemic threshold λc is
finite, for scale-free networks the epidemic threshold vanishes, i.e.

λc → 0 as N → ∞.

This implies that every epidemic, regardless of its infection rate, becomes endemic in
infinite scale-free networks.

3.4.5 SIR model

The SIR dynamics admits a mapping to the bond-percolation problem and an exact
solution on locally tree-like networks.

Let us define the transmissibility T as the probability that an infected node transmits
the infection to a neighbour susceptible node while it is infected. The mapping of the SIR
dynamics to bond percolation can be performed as follows. The cluster of removed nodes
generated by an SIR epidemic outbreak starting from a single infected node is mapped
to the percolation cluster of the network connected to the initial seed of the infection, in
which the probability p that each link is initially retained (not removed from the network)
is given by p = T . Therefore, an SIR epidemic outbreak affecting a finite fraction of the
nodes of the network corresponds to the percolating phase of bond percolation. Given
the mapping of the SIR to bond percolation with an epidemic threshold determined by
Eq. (3.24), putting p = T we have that the epidemic outbreak is predicted to occur in a
network if [223]

T > Tc = 〈k〉
〈k(k − 1)〉 . (3.56)

Let us now relate the transmissibility T with the infection rate λ following the steps
outlined in Ref. [223]. To this end, let us first notice that since each infected node is
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removed at constant rate μ, the distribution P(τ ) of the time τ that an infected node
remains infected is a Poisson distribution with mean 〈τ 〉 = 1

μ
, i.e.

P(τ ) = μe−μτ . (3.57)

Secondly, let us define the τ -transmissibility Tτ as the probability that an infected node
spreads the infection to a neighbour susceptible node over time τ . The τ -transmissibility
Tτ is given by

Tτ = 1 − lim
δt→0

(1 − ξδt)τ/δt = 1 − e−ξτ . (3.58)

The transmissibility T that any infected node transmits the infection is given by the
average of Tτ over the distribution P(τ ) describing the distribution of times that a random
infected node remains infected, i.e.

T = 1 −
∫ ∞

0
dτP(τ )e−ξτ = λ

λ + 1
. (3.59)

Using Eq. (3.56) together with Eq. (3.59), we get that a network will sustain an epidemic
outbreak when the infection rate λ satisfies

λ > λc = 〈k〉
〈k2〉 − 2〈k〉 . (3.60)

It follows that if the SIR dynamics takes place on a network having a finite second
moment of the degree distribution, the epidemic threshold is finite. If, however, the net-
work is scale free, the epidemic threshold goes to zero, i.e. λc → 0 as N → ∞. Therefore,
independently of the value of λ, every SIR epidemic process generates an outbreak.

In some cases, the SIR dynamics is modified by fixing τ the duration of an infection
(the time required by an infected individual to be removed) to a constant. In this case
the transmissibility T is simply given by

T = 1 − e−ξτ (3.61)

and the epidemic threshold is determined by Eq. (3.56).

3.4.6 Immunization strategies

Both in the framework of the SIS and the SIR model we have shown that scale-
free topology appears to be very advantageous for epidemic spreading. In fact, the
vanishing epidemic threshold implies that even the smaller infectivity gives rise to an
epidemic outbreak. This phenomenon is particularly relevant for the worldwide spread
of infectious diseases, because in the modern world long-distance travel is dominated by
the scale-free topology of the airport networks. In the context of electronic viruses this
phenomenon is also very important, and can explain the long lifetime of computer viruses
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spreading on the Internet despite the prompt availability of anti-virus software. A major
question in this context is how can we tame epidemic spreading? Are there more specific
immunization strategies that are more efficient? In percolation theory we have seen that
targeting nodes of high degree is a strategy that dismantles scale-free graphs quickly.
This phenomenon has positive consequences in the SIR dynamics when we consider
targeted immunization of high-degree nodes. In fact, under targeted immunization scale-
free networks also acquire a finite epidemic threshold and the spread of the epidemics
can actually be contained [244].

In the following, we give the expression for the epidemic thresholds of the SIS and SIR
models when each node i is immunized with probability ri . To this end, let us assume
both in the SIS model and in the SIR model that a susceptible node i in contact with
a neighbour infected node gets the infection with probability ξ(1 − ri). By following
derivations similar to the ones of the precedent paragraphs for the SIS model treated
with the individual mean-field approximation, the epidemic threshold λc becomes

λc = 1
�g

, (3.62)

where �g is the largest eigenvalue of the matrix g of elements gij = (1−ri)aij . If we assume
that the probability ri that node i is immunized depends only on its degree ki = k, and
therefore ri = rki , we can perform the annealed approximation that gives for the SIS
model the epidemic threshold

λc = 〈k〉〈
k2(1 − rk)

〉 . (3.63)

Finally for the SIR model, assuming that ri is only a function of the degree of node i, i.e.
ri = rki , by performing the mapping with bond percolation the critical value Tc for the
transmissibility T is given by

Tc = 〈k〉
〈k(k − 1)(1 − rk)〉 . (3.64)

From these equations it emerges that if a fraction of about 10% of nodes with highest
degree is immunized, typically scale-free networks develop a finite epidemic threshold.
Therefore, this is a strategy that allows us to tame the epidemic spreading [244].

3.5 Diffusion and random walks

3.5.1 Diffusion

One of the most fundamental dynamical processes on networks is diffusion described by
the transport of a continuous quantity along the links of a network. Diffusion on random
networks is described by the equation
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dxi

dt
=

N∑
j=1

aij(xj − xi) (3.65)

where xi is a continuous variable assigned to the generic node i = 1, 2, . . . N of the
network. This equation extends the famous heat equation defined for a continuous
medium to discrete networks. It can be written in matrix form as

dx
dt

= −Lx (3.66)

where x is the vector describing the dynamical state of each node, i.e. x = (x1, x2, . . .
xN )T , and L is the Laplacian matrix of the network having elements

Lij = kiδij − aij . (3.67)

The dynamical Eq. (3.66) given the initial condition x(0) = x0 has the solution

x(t) = e−Ltx0. (3.68)

This implies that the Laplacian matrix fully determines the properties of diffusion on a
network. Since the spectral properties of a given Laplacian codify important structural
aspects of the corresponding network, the Laplacian plays a key role in establishing the
interplay between the structure of the network and the dynamics of the diffusion process.
Let us briefly summarize a few major spectral characteristics of the Laplacian for a simple
network.

(i) The Laplacian is semidefinite positive, implying that all the eigenvalues satisfy
λn ≥ 0. Here and in the following we order the eigenvalues in non-decreasing
order: λ1 ≤ λ2 ≤ . . . λN .

(ii) The Laplacian always admits a zero eigenvalue λ1 = 0 whose corresponding
eigenvector, as long as the network is connected, is uniform over all the nodes of
the network.

(iii) The degeneracy of the zero eigenvalue is exactly equal to the number of
connected components in the network. Therefore, any connected network has a
single zero eigenvalue.

Large connected networks (with N � 1) can be distinguished according to their
spectral properties, as in the following:

(a) If the smallest non-zero eigenvalue λ2 is well separated from the zero eigenvalue
λ1, we say that the network has a spectral gap.

(b) If the smallest non-zero eigenvalue is very close to zero, λ2 � 1, we say that the
network does not have a spectral gap. In this scenario, if the density of eigenvalues
for small values of λ scales like
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ρ(λ) � λds/2−1, (3.69)

we say that the network has spectral dimension ds. Notably lattices in d dimen-
sions have spectral dimension ds = d.

Diffusion on a complex network is strongly affected by the presence or absence of a
spectral gap. In fact, if we decompose the initial condition x0 into the basis of eigenvectors
u(n) of the Laplacian as

x0 =
∑

n

cnu(n), (3.70)

Eq. (3.68) reads

x(t) =
∑

n

e−λntcnu(n). (3.71)

Now in the presence of a spectral gap we can approximate this expression as

x(t) � u(1) + e−λ2tu(2), (3.72)

where u(1) is the homogeneous eigenvector of the zero eigenvalue λ1 = 0 representing
the steady state of the diffusion dynamics, and u(2) is the eigenvector associated with the
first non-zero eigenvalue λ2. It follows that in the presence of a spectral gap, the typical
relaxation timescale τ of the diffusion dynamics is

τ = 1
λ2

. (3.73)

On the contrary, if there is no spectral gap, the relaxation dynamics might not be
exponential anymore but can instead be power-law.

3.5.2 Random walk

The random walk describes the diffusion of a particle on a complex network. According
to an unbiased random walk, the particle located at node i moves with equal probability to
every neighbour node j of node i. In an undirected, unweighted and connected network,
assuming that each node of the network has non-zero degree, the rate Pij at which the
particle hops from node i to node j is given by

Pij = aij

ki
. (3.74)

Assuming that the random walker starts at time t = 0 from node i0, the probability πi(t)
that the random walk is on node i at time t follows the master equation
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dπi(t)
dt

=
N∑

j=1

Pjiπj(t) −
⎛
⎝ N∑

j=1

Pij

⎞
⎠ πi(t), (3.75)

with initial condition πi(0) = δ (i, i0), where δ(x, y) is the Kronecker delta. Given that∑N
j=1 Pij = 1, the above equation can be equivalently written as

dπ

dt
= − L̃π(t) (3.76)

where the vector π is given by π = (π1, π2, . . . πN )T and L̃ is the normalized Laplacian
with elements

L̃ij = δij − aij

kj
. (3.77)

Therefore Eq. (3.76) has the solution

π(t) = e− L̃tπ(0). (3.78)

The stationary state of the unbiased random walk is given by πi(t) = μi satisfying

0 =
N∑

j=1

L̃ijμj = μi −
N∑

j=1

μjPji , (3.79)

i.e. μi is the right eigenvector associated with the zero eigenvalue of the normalized
Laplacian. Since μi is the probability that asymptotically in time the random walk is
on node i, the set of all μi is normalized, i.e.

N∑
i=1

μi = 1, (3.80)

which yields together with Eq. (3.79)

μi = ki

〈k〉N . (3.81)

This implies that asymptotically in time the probability that the random walk is at node
i is proportional to its degree ki independently of the network structure and the initial
condition of the random walk as long as the network is connected.

The relaxation dynamics that describes the transient regime on the contrary depends
significantly on the spectral properties of the normalized Laplacian. It is to be noted that
the spectrum of the normalized Laplacian reduces to the spectrum of the Laplacian only
in the case of networks with constant degree of the nodes. Therefore the two spectra are
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typically distinct. Let us briefly summarize a few major spectral characteristics of the
normalized Laplacian.

(i) The normalized Laplacian is semidefinite positive, having all the eigenvalues
real and positive satisfying λ̃n ≥ 0. Here and in the following, we order the
eigenvalues in non-decreasing order λ̃1 ≤ λ̃2 ≤ . . . ≤ λ̃N .

(ii) The matrix is asymmetric, therefore for every eigenvalue λ̃n there are corre-
sponding right (ũ(n)

R ) and left (ũ(n)
L ) eigenvectors normalized according to

∑
i

ũ(n)
i,Rũ(n′)

i,L = δ(n, n′). (3.82)

The right and left eigenvectors related to the same eigenvalue have elements that
satisfy

ũ(n)
i,R = kiũ

(n)
i,L . (3.83)

(iii) The Laplacian always admits a zero eigenvalue λ̃1 = 0 whose corresponding
left eigenvector is uniform over all the nodes of the network, and whose
corresponding right eigenvector is given by

ũ(n)
R = √〈k〉N(μ1, μ2, . . . μN )T , (3.84)

with μi given by Eq. (3.81) and the left eigenvector

ũ(n)
L = 1√〈k〉N (1, 1, . . . , 1)T . (3.85)

(iv) The degeneracy of the zero eigenvalue is exactly equal to the number of
connected components of the network. Therefore, any connected network has a
single zero eigenvalue.

Large connected networks (with N � 1) can be distinguished according to their
spectral properties as in the following:

(a) If the first non-zero eigenvalue λ̃2 is well separated from the zero eigenvalue
λ̃1 = 0 we say that the network has a spectral gap.

(b) If the first non-zero eigenvalue is very close to zero, λ̃2 � 1 we say that the
network does not have a spectral gap. In this scenario, it is said that the network
has spectral dimension d̃S if the density of eigenvalues ρ̃(λ̃) follows

ρ̃(λ̃) � λ̃d̃s/2−1 (3.86)

for λ̃ � 1.
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In the presence of the spectral gap, Eq. (3.78) reveals that λ̃2 characterizes the typical
scale of the relaxation dynamics. In fact, by projecting the equation on the eigenvector
of the normalized Laplacian we get

πi(t) =
N∑

n=1

e−λ̃ntũ(n)
i,Rũ(n)

i0,L . (3.87)

By observing that the right eigenvector and the left eigenvector associated with the
eigenvalue λ̃1 = 0 have elements given by Eq. (3.84) and by Eq. (3.85) respectively,
the above expression for πi(t) indicates that the typical timescale τ of the random walk
relaxation dynamics to the stationary state πi(t) = μi is given by

τ = 1

λ̃2
. (3.88)

The relaxation in the presence of a finite spectral dimension can be much slower. Let
us consider for instance the probability p0(t) that a random walker initially at a random
node of the network returns to this node at time t. This probability is given by

p0(t) = 1
N

N∑
i0=1

N∑
n=1

e−λ̃ntũ(n)
i0,Rũ(n)

i0,L ,

= 1
N

N∑
n=1

e−λ̃nt. (3.89)

For networks without a spectral gap we have

p0(t) =
∫

dλ̃ρ̃(λ̃)e−λ̃t, (3.90)

yielding in the presence of a finite spectral dimension d̃S slow dynamics of the random
walk characterized by having

p0(t) � t−d̃s/2. (3.91)

This result implies that for d̃S > 2 the random walk is transient and there is a non-zero
probability that the random walk never returns to its origin.

Until now, we have characterized the properties of the unbiased random walk
exclusively. However, sometimes it is important to study the dynamics of a particle that
hops from a node to any of its neighbours according to some predefined preference
or bias. For instance, a random walk could prefer to hop to nodes of high degree or
low degree or to nodes having a high centrality measure. In these cases we will call the
random walk a biased random walk.
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Let us indicate with fi the property determining the bias of the random walk, then the
probability that the particle hops from node i to node j is taken to be

Pij = aij fj∑
r air fr

. (3.92)

If the random walk is biased toward nodes of high degree we could for instance take
fi = kβ

i with β > 0. If it is biased toward nodes of high centrality xi we could take
fi = xi . The analysis of the biased random walk can be conducted along the same lines as
for characterizing the unbiased random walk. It is worth mentioning that the stationary
state of the unbiased random walk is given by μi satisfying

μi =
N∑

j=1

μj
aji fi∑
r ajr fr

. (3.93)

3.6 Synchronization

3.6.1 Master Stability Function

Given a generic dynamical system of coupled differential equations defined on a network
structure, the Master Stability Function [246, 17] establishes under which conditions the
fully synchronized state is stable. The success of this approach is rooted in the very nature
of its results that provide reliable stability conditions independently of the details of the
dynamical process under consideration.

Here the structural properties of a network will be shown to have profound impli-
cations on the dynamics taking place on it. In particular, the Master Stability Function
determining the stability of the fully synchronized state will be directly dependent on the
spectral properties of the Laplacian of the network.

Let us assume that each node i of the network is assigned a dynamical variable xi ∈ R,
the dynamics of which is dictated by the differential equation

dxi

dt
= f (xi) + σ

N∑
j=1

aij
[
H(xj) − H(xi)

]
, (3.94)

where f (x) and H(x) are continuous and differentiable functions and σ > 0 is a
tunable parameter modulating the intensity of the coupling between the dynamical states
of neighbour nodes. This dynamical system always admits a fully synchronized state
xi(t) = s(t), where s(t) is the solution of the differential equation

ds
dt

= f (s). (3.95)
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In order to study the stability of this solution we assume that xi = s(t)+ξi(t) with ξi(t) � 1
and we linearize the dynamical system obtaining for ξ = (ξ1, ξ2, . . . , ξN )T

dξ

dt
=

⎡
⎣f ′(s)δij + σ

N∑
j=1

LijH ′(s)

⎤
⎦ ξ , (3.96)

where Lij indicates the elements of the Laplacian matrix given by Eq. (3.67). By
projecting the vector ξ into the basis of eigenvectors of the Laplacian we get the system
of equations

dηn

dt
= [

f ′(s) + σλnH ′(s)
]
ηn, (3.97)

where λn with n = 1, 2, . . . , N indicates the eigenvalues of the Laplacian in non-
increasing order and ηn indicates the component of the vector ξ along the direction of the
nth eigenvector of the Laplacian. For n = 1, Eq. (3.97) characterizes the dynamics of the
fully synchronized state. In fact, the eigenvector associated with the eigenvalue λ1 = 0
is uniform over all the nodes of the network. For n > 1, Eq. (3.97) instead characterizes
the evolution of small perturbations from the fully synchronized state.

Requiring that the fully synchronized state is stable implies that for every value of
s the perturbation is not exponentially enhanced by the dynamics. By defining �(σλn)

given by

�(σλn) = max
s

[
f ′(s) + σλnH ′(s)

]
(3.98)

where the maximum is taken over the trajectory ṡ(t) = f (s(t)), we derive that the condition
for the stability of the synchronized state reads

�(σλn) ≤ 0 ∀n = 2, 3, . . . , N . (3.99)

3.6.2 The Kuramoto model

The Kuramoto model [9, 266] is a stylized model which describes the onset of a
synchronized state when a set of oscillators, each having a different internal frequency,
are coupled to each other. The coupling can be assumed to be weak but all-to-all,
or to take place between oscillators that are on neighbour nodes of a given network.
Here we consider the latter scenario and we assume that each node i of the network is
associated with the dynamical variable θi of a given oscillator. The internal frequency
ωi of each node i is assumed to be drawn from a distribution g(ω) that is unimodal and
symmetric around the mean frequency � = 0. Nearby nodes on the network are coupled
dynamically according to the equations
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dθi

dt
= ωi + σ

N∑
j=1

aij sin(θj − θi), (3.100)

where σ indicates the coupling constant. The dynamical state of the network can be
monitored by considering the global variable

reiψ = 1
N

N∑
j=1

eiθj(t). (3.101)

In fact, if the system is in a synchronized state, all the oscillators have the same phase
θi(t) = θ�(t), resulting in r = 1. On the contrary, if the dynamical system is not in the
synchronized state the phases of the oscillators will be incoherent, resulting in a value of
r � 0.

As a function of the coupling constant σ the system displays a continuous phase
transition from an incoherent phase (for σ < σc) to a synchronized phase (for σ ≥ σc).
Specifically, in the limit of infinite network sizes N → ∞ the order parameter r for σ � σc
takes values

r =
{

A(σ − σc)
β̂ for σ ≥ σc,

0 for σ < σc,
(3.102)

with β̂ > 0 indicating the critical exponent of the transition and A > 0 being a constant.
In the annealed network approximation the critical value σc of the coupling constant

can be evaluated to be dependent on the degree distribution of the network and is
given by

σc = 2
πg(0)

〈k〉
〈k2〉 . (3.103)

In this approximation scale-free networks have σc → 0 as N → ∞ and therefore are
easier to synchronize than networks with homogeneous degree distributions. However
the validity of this result is only guaranteed if the network continuously rewires its links by
keeping the same degree sequence. Interestingly, we observe additional signs of the rich
interplay between structure and dynamics. In fact, significant differences are observed
between random Erdös and Rényi (ER) networks and the BA scale-free network when
one focuses on the pattern to synchronization [137]. Here by pattern to synchronization
we mean the organization process that occurs in the network as the coupling constant σ

is increased, ultimately giving rise to the synchronized state. For ER networks we observe
that the clusters of synchronized nodes are disconnected for low values of the coupling
constant σ , and as the coupling constant is increased they aggregate according to a
percolation-like process. For scale-free networks, instead hubs play the role of catalysts
for the formation of a large synchronization cluster and therefore a single synchronization
cluster including the hubs forms the core of the synchronized region of the network and
aggregates progressively other small synchronized clusters.
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Interestingly, it has recently been shown that the synchronization transition can
become discontinuous when the internal frequencies of the nodes are dependent on their
degrees. In particular, in [136] it has been shown both numerically and analytically that
when the internal frequency ωi of node i depends on the node degree ki as

ωi ∝ kθ
i (3.104)

with θ > 0, the synchronization is abrupt and discontinuous. As a consequence
of this phenomenon, this interesting phase transition has been called ‘explosive
synchronization’.

3.7 Network control

Network control [196] determines the conditions under which, by applying a set of
external signals to some of the nodes of a network (the driver nodes), it is possible to
drive the network to any desired dynamical state in finite time [274, 197, 207]. This
problem is of fundamental importance for biological networks, where a major goal is,
for instance, to reprogram cancer cells or understand brain function, but also has wider
applications in social, technological and financial networks.

We will indicate with the P-dimensional vector u the number of external signals.
Assuming that the internal dynamics of the network is linear, the dynamical state of
the network is described by a linear differential equation for the N-dimensional vector x
whose element xi indicates the state of the node i. This differential equation reads

dx
dt

= ax + bu, (3.105)

where a is the N ×N-weighted and -directed adjacency matrix of the network describing
the coupling between different dynamical variables linked by the network, and b is the
N × P matrix determining the action of the external signals u on the dynamical state of
the network. In particular, the matrix b indicates which nodes are the driver nodes, i.e.
directly receive the external signals.

A network is controllable when its dynamical state can be determined by suitably
choosing the external signals. According to the Kalman’s controllability rank condition
theorem [166], a network is controllable if the matrix

c = (b, ab, a2, b, . . . , aN−1b)

has full rank.
This condition depends non-trivially on the entries of the weighted adjacency

matrix a. However, in a number of cases the values of the internal couplings between the
dynamical variables of the network are not known and the accessible information is only
topological, i.e. the available information only indicates which pairs of nodes interact
with each other.
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Under these conditions it is appropriate to consider the framework of structural
controllability, which guarantees the controllability of a network for a random choice
of the non-zero and real-valued entries of the matrices a and b with probability one.
Specifically, in a number of applications the minimum number of driver nodes that
ensures the network’s structural controllability is the major parameter to evaluate how
challenging it is to control a given network.

Using the framework of structural controllability, Liu et al. [197] showed that the
minimum set of driver nodes can be found by mapping the problem into a Maximum
Matching Problem.

The Maximum Matching Problem is a combinatorial optimization problem that
assumes that every link of the network is either matched or unmatched. Additionally,
it imposes that every node must have at most one incoming and one outgoing matched
link. Nodes are matched if they have one matched incoming link, otherwise they are
unmatched. The Maximum Matching Problem finds the matching configuration of the
links for which the set of unmatched nodes is minimal.

The link between the Maximum Matching Problem and network controllability
is established by the Minimum Input Theorem [197]. This theorem states that the
minimum set of driver nodes that guarantees the full structural controllability of a
single network is the set of unmatched nodes in a maximum matching of the same
directed network. Therefore, the network controllability can be recast into the Maximum
Matching Problem which can be studied using the Hopcroft–Karp maximum matching
optimization algorithm or using the statistical mechanics message-passing algorithm
called Belief Propagation.

Interestingly, for network controllability we see that the key structural properties that
determine the network’s structural controllability are not the scale-free distribution and
the presence of big hubs in the network like in percolation or epidemic spreading. Rather,
it can be shown that in locally tree-like networks the factor that determines the number
of driver nodes is the density of nodes with low in- and out-degree, specifically with
in-degree or out-degree less or equal than two [207]. For these networks, the larger the
fraction of nodes with low in- or out-degree, the larger the number of driver nodes. When
all the nodes of the network have an in- and out-degree greater than two, it is possible to
structurally control the network with just one external signal [207].
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Multilayer Networks in Nature,
Society and Infrastructures

4.1 Multilayer networks: the general multidisciplinary
framework

As the vast majority of complex systems, from the brain to the Internet, are formed
by interacting elements, networks are ubiquitous. As a result, Network Science can be
considered as one of the most prosperous scientific fields of current times. The multilayer
network approach constitutes a very recent development of the field, where the focus
is characterizing the interactions of several interconnected networks. In fact, complex
systems are rarely formed by single, isolated networks with links of equivalent meaning
and connotation. For instance, in social networks we can distinguish between several
types of social ties (friends, colleagues, acquaintances, family ties, etc.), in transportation
networks we can distinguish between different means of transportation (bus, metro, train,
etc.). Also in molecular biology and brain networks the interactions can have different
valences and it is important to study these systems with a comprehensive multilayer
framework that allows us to treat the differences existing between different types of
interactions.

Multilayer networks have been first introduced in the context of social science to
characterize the different types of social ties existing between the nodes of a social
network [120, 308, 245]. However, only recently the relevance of considering multilayer
network structures has been recognized more widely. Currently multilayer networks are
investigated in many fields, including neuroscience, molecular biology, ecology, economy,
transportation networks, infrastructures and climate. In this chapter we provide an
overview of the different contexts where the multilayer network has been proven to
provide a much more comprehensive view of complex systems than the single network
framework. The research in this field is growing at a very intense pace, therefore we
would like to stress that our account of the possible multilayer network applications is
only partial, and we apologize if we are unable to cover the entire growing literature in
the field.

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001
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4.2 Multilayer networks: a gentle introduction

In this section, we give a first, informal definition of multilayer networks that will allow
the reader to appreciate the differences between the large variety of possible applications
of this framework better.

A multilayer network is formed by several interacting networks. A given multilayer
formed by distinct M layers is formed by a set of M networks describing the interactions
within each layer and M(M − 1)/2 networks describing the interactions between nodes
in every pair of different layers. This general scenario can be simplified in multiple ways.
Here we mention three particular classes of multilayer networks: multiplex networks,
multi-slice networks and networks of networks.

Multiplex networks constitute the simplest example of multilayer networks. Multiplex
networks are often used in a case in which the same set of nodes is connected by links indi-
cating the different types of interactions. By associating a different colour with each type
of link, multiplex networks can be represented as a single coloured network. However, it
is possible also to assume that links of the same type form the layers of the multiplex net-
work. For example, a social network can be represented by a multiplex in which the same
set of people might interact via email (first layer) or via mobile phone (second layer).
Similarly, transportation networks within a city (let us say London) can be represented
by a multiplex with, for instance, one layer indicating bus connections and another layer
indicating tube/metro connections. The links within each layer represent different types
of interactions (email/phone-call contacts; bus/tube connections). The links across differ-
ent layers are placed exclusively between corresponding (replica) nodes in the different
layers. For example, in the previous example a given link across the two layers might con-
nect the node representing John Smith in the email network with the node representing
John Smith in the mobile-phone network, or in the transportation network of London we
can connect Oxford Circus tube station with Oxford Circus bus station. We note here that
since multiplex networks have a well-defined structure, they can be used also to model
multilayer networks where the nodes in different layers are distinct as long as there is a
one-to-one mapping between the nodes of different layers and the corresponding nodes
of each pair of layers are interacting. For example, a multiplex network can be formed by
one layer indicating gene correlations and another indicating protein interaction networks
as long as there is a one-to-one mapping between genes and proteins.

The second class of multilayer networks are multi-slice networks describing temporal
networks, i.e. networks in which links are present only for a given amount of time.
Given a set of nodes in which interactions are time-dependent, a multi-slice network
is a multilayer network in which each layer is formed by the network of interactions
occurring in a time window of duration δt. Therefore, every layer is formed by the same
set of nodes as in multiplex networks. The only difference between multi-slice networks
and multiplex networks is the natural ordering between layers in a consecutive temporal
sequence. This ordering is reflected in the way the links across different layers are placed.
In fact, in multi-slice networks the links across the different layers connect only nodes
belonging to subsequent layers. Let us, for example, consider the temporal network
describing the functional, time-varying correlations across different brain regions. In this
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Fig. 4.1 Different examples of multilayer networks: a multiplex network with M = 3 layers (panel (a));
a multi-slice network with M = 3 layers (panel (b)); a network of networks with M = 4 layers (panel (c)).
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case, the multi-slice network constructed from this data will have each layer indicating
the correlations existing between different regions averaged over a given time window.
Additionally, the links across the layers will connect each given brain region at time t with
the same brain region at time t + δt.

The third class of multilayer network that we will discuss here is formed by networks
of networks. In a network of networks each layer is formed by a different set of nodes. At
the layer level there is a network of networks describing which layers interact with each
other.

In Fig. 4.1 we show examples of multiplex networks, multi-slice networks and
networks of networks. In the following chapter we will give a more formal definition
of multilayer networks, multiplex and multi-slice networks, networks of networks and
the most general multilayer networks, describing their most fundamental structural
properties in full detail.

4.3 Social networks

Social networks are the original setting where the multiplexity of networks has been
proposed. In fact, agents of a social network are related by different types of social
ties including friendship, collaboration, family ties, etc. Additionally, different means of
communication in a social network (email, mobile phone, chat, conference call, etc.)
can provide another multilayer structure. In this scenario, the same set of agents are
linked by different networks (layers) formed by interactions occurring with a different
communication technology. Although the multiplex framework was proposed in the
sociological literature several decades ago to unveil the fine-graining structure of social
networks [120, 308, 245], only recently have new large-scale data on social multilayer
networks become available.

An example of the historic datasets that have been used in social science is the
network between Florentine families during the fifteenth century [236]. In this dataset,
influential families are connected both by business and marriage alliances (see Fig. 4.2).
Specifically in Ref. [59] a measure of personal hierarchy has been proposed to create
meaningful partitions of the network. In this network the central role of the Medici family
is particularly notable.

4.3.1 Online social networks

Recently, with the extensive diffusion of online social networks, a new generation of social
datasets are becoming available, allowing us to extend the analysis of social networks to
much larger datasets. The multiplex network approach has been proposed to study most
of the online social networks including Facebook [190, 219, 152, 189], Twitter [235],
Youtube [1], Netflix [35, 158, 159], Flickr [220, 171, 62]. These datasets can be studied
as multilayer networks, given the variety of possible interactions between the users, and
as temporal multi-slice networks, given the intrinsic temporal nature of the interactions.
The general problems in this context are typical of the field of Data Science: finding
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Fig. 4.2 Business and marriage alliances between the Florentine families of the fifteenth century. Data
from [236].

the best clustering of the dataset, assessing the centrality of the nodes and developing
recommendation algorithms. In all these problems the multilayer network approach is
essential and provides the best framework for integrating at the same time the information
about the network structure and the different connotations of the interactions existing
between the nodes.

A very interesting social network of this novel generation is the one formed by the
online social networks of the virtual society of the Pardus online game [290]. In this
dataset, avatars can establish different types of interactions: friendship, collaboration,
trade, enmity, attack, bounty. This in silico social network formed by 300 000 nodes
reveals emergent properties, including a scale-free distribution of the different layers and
a relevant link overlap across the layers. The link overlap among two layers is given by the
total number of node pairs linked in both layers. Interestingly, a significant link overlap
is observed both for pairs of layers corresponding to positive types of interactions and
for pairs of layers corresponding to negative types of interactions.
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Another relevant and open-access dataset that integrates information about online
and offline social interactions is the so-called Aarhus dataset which consists of five
layers of social interactions (Facebook, Lunch, Co-authors, Leisure, Work) between the
employees of the Computer Science department of Aarhus University [199].

4.3.2 Collaboration and citation networks

A very rich social network dataset is constituted by the American Physical Society (APS)
metadata that includes the complete bibliographic information about all the papers pub-
lished in the APS journals since 1893 (see Fig. 4.3). This dataset includes for every paper
the names of the Authors, the Physics and Astronomy Classification Scheme (PACS)
numbers, the date and the journal; additionally it includes information about the citations
obtained by each paper from other APS papers. This dataset can be used to extract
different types of multilayer networks. In fact, for every journal it is possible to construct
a collaboration/citation-weighted multiplex network of Authors collaborating with each
other in one layer and citing each other in the other layer [209]. Moreover, it is possible
to build a collaboration multiplex network [230, 165] where the different layers are
collaborations on different scientific topics classified according to the PACS numbers of
the resulting publications (see Fig. 4.3). The collaboration/citation multiplex networks
provide important new insight into how scientific credit and reputation is established
in scientific social networks starting from scientific collaborations and citation rate. The
collaboration multiplex networks where the different layers are built from collaborations
in different scientific topics can contribute to the understanding of the organization
of scientific knowledge from a bottom-up perspective. In fact, the similarities existing

APS collaboration network

First level of the PACS hierarchy
(10 layers)

Each layer describes the collaboration
network in a general field of physics 

All the authors of papers of the
American Physical Society

General-0
Particles-1
Nuclear-2

Ato & Mol-3
Classical-4

Gas & Pla-5
Cond Mat I-6

Cond Mat II-7
Interd-8

Geo & Astro-9

Fig. 4.3 Schematic representation of the multiplex collaboration networks extracted from the APS dataset.
Each layer corresponds to the network of collaboration between APS Authors on one of the ten major
scientific subjects. From the multiplex network it is possible to extract the network between layers where
each node is a layer and links indicate a measure of their similarity.
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between the community structure of different layers provide information on how close
in the scientific practice different scientific subjects are [230, 165, 29]. Additionally,
this dataset can be studied as a temporal network since collaborations are established
at a given time along the wide temporal frame of the dataset [182]. This allows us to
characterize emergence of new scientific topics as it is reflected by the formation and
evolution of communities of scientists working on related subjects.

Other networks include collaborations and citations between papers published in the
arXiv and the network of citations between US patents. The first one can be studied
as a multiplex or as a multi-slice network, the latter is only studied from the multi-slice
temporal network perspective.

Collaboration networks do not only include scientific collaborations; they are ubiqui-
tous. In particular, actor collaboration datasets have also been widely explored since the
beginning of the field of Network Science. Recently, actor collaboration networks have
been explored from the multilayer network perspective. In fact, by assigning to each layer
a given film genre, it is possible to construct a multiplex network out of the Internet Movie
Database (IMDb) [230]. Distinguishing different movie genres allows us to extract more
information from the dataset exploring the versatility of actors, or, on the contrary, their
specialization and the establishment of communities of actors across different genres.

4.3.3 Temporal social networks

Social networks are also intrinsically temporal, and are currently intensively studied using
the temporal and multilayer framework. Specifically, recent technological developments
have allowed us to record the temporal nature of social networks. These technologies
include RFID (Radio-Frequency-Identification-Devices), sociopattern data [74] that are
able to record temporal face-to-face interactions (see Fig. 4.4). With this technology
it has been possible to collect data of face-to-face interactions in different settings
(conferences, schools, hospitals). It has been found that face-to-face interactions are
bursting as the duration of contacts and the inter-contact time interval are power-law
distributed, indicating that the establishment of a social interaction is not a Poisson
process but a process with memory. These datasets allow us also to investigate how the
temporal nature of networks changes the properties of dynamical systems defined on
them. By aggregating the interactions occurring in a given time window, the multi-slice
description of the dataset allows us to reconstruct the multilayer nature of the community
structure of the data. The RFID are not the only technology that is used to record face-to-
face interactions. Other datasets include most notably the Reality Mining dataset [112],
collecting human contact data recorded between 100 students of the MIT over a period
of nine months in 2004.

Other notable social networks are political networks formed by parliamentary deputies
that vote for the same laws. These networks are temporal and they can be described by
multi-slice networks. The network between US Congress members is one of the first
multilayer networks that has been used in the literature [219], and more recently a similar
political network between the Brazil Congress deputies has been analysed [247]. Both
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Fig. 4.4 Schematic illustration of the RFID sensor system (panel (a)). RFID tags are worn as badges by
the individuals participating in the deployments. A face-to-face contact is detected when two persons are
close and facing each other. The interaction signal is then sent to the antenna. The panels (b)–(d) display
the activity pattern measured in terms of the number of tagged individuals as a function of time in the
three deployments: ISI refers to the deployment in the offices of the ISI foundation in Turin, Italy, with
25 participants (panel (b)); 25C3 to the 25th Chaos Communication Congress in Berlin, Germany, with
575 participants (panel (c)); and SFHH to the congress of the Societé Francaise d’Hygiéne Hospitaliére,
Nice, France, with 405 participants (panel (d)). Dashed vertical lines indicate the beginning and end of
each day. Typical daily rhythms are observed in the office and conference settings. Reprinted figure from
Ref. [74]. ©2010 Cattuto et al.
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datasets have been used for detecting the relevance of multiplexity in determining the
mesoscale organization of the multi-slice network.

4.4 Complex infrastructures

Complex infrastructure provide a beautiful example of multilayer networks where
important questions related to the optimal design of the infrastructures and the interplay
between structure and dynamics can be tested.

4.4.1 Transportation networks

Transportation networks have a natural multilayer structure and constitute a major
example of multiplex networks. One of the first multiplex datasets that has been studied in
this context is the European Multiplex Air Transportation Network [71]. This dataset is
built by all flight connections joining European airports. The different layers are formed
by flight connections of different airline companies (see Fig. 4.5). This dataset allows
us to investigate the role of different airports in the European Airway Traffic, and can
be used to design new flight connections and establish economic partnership between
different airline companies. Additionally, it is a fully annotated dataset to test novel
multilayer network algorithms such as strategies to aggregate the information of different
layers while keeping relevant multilayer information. This network is characterized by
important correlations including a significant overlap among the links of different layers
and correlations between the degree of the same airport in different layers. It has to be
noted that similar airport multiplex network datasets are currently freely available for all
continents in multiplex network data repositories.

Multilayer transportation networks formed by layers characterizing transport over
different means of transportation [93] are fundamental to understanding diffusion of
people and diseases. If we travel to another city or another country it is the norm rather
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Fig. 4.5 Visual representation of the European Multiplex Air Transportation Network [71]. Panel (a)
represents the aggregated network of all the layers in which only links belonging to more than one layer
are displayed, panel (b) represents the layer corresponding to a major airline company.
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than the exception that we take different means of transportation, including metro, train,
taxi and airplane. Also, in large cities it is often the case that a combination of bus,
metro and regional train routes are taken by commuters daily. This type of pattern
describes what we call here diffusion in a multiplex network that reveals interesting novel
characteristics with respect to diffusion in a single layer. In this context, the properties
of the diffusion patterns can be significantly modulated by the cost associated with the
different types of transportation and by the switching cost associated with changing
means of transportation.

4.4.2 Interconnected infrastructures

If we consider the increasingly interconnected web of interactions between infrastructure
networks, we observe that actually it is fundamental to embrace a multilayer approach
and characterize global infrastructures as multilayer networks.

Multilayer global infrastructures include different services such as the power grid,
the water supply networks the gas networks, and the banking system. These different
infrastructures are related by interdependencies of different types (see Fig. 4.6). There-
fore, the resilience, the robustness and the efficiency of these structures cannot be fully
evaluated if the interdependencies between different infrastructures are not taken into
account [66]. In the infrastructures interdependencies have a different implication from
interactions occurring within each infrastructure layer. Taking into consideration the
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different nature of the links and the different role of interdependencies can significantly
enhance the understanding of the major factors determining the robustness and resilience
properties of global infrastructures. Problems related to the robustness and resilience of
multilayer networks have been central in the field. Specifically, it has been found that
interdependencies might dramatically increase the fragility of the networks, yielding large
avalanches of cascading failures.

In Ref. [63] Brummitt et al. analysed the interactions between three different power
grids in the US network corresponding respectively to three US regions: Western,
Eastern and Texas. By studying the propagation of avalanches of failures the Authors
of Ref. [63] found that adding some connectivity between the different regions is
beneficial, as it suppresses the largest cascade in each system by providing alternative
paths. However, higher levels of interconnectivity have a negative impact, both because
they open pathways for neighbouring networks to inflict large cascades and because
new interconnections increase capacity and total possible load, which fuels even larger
cascades.

4.5 Economical and financial networks

Economical and financial networks have recently been studied using the multilayer
perspective. Specifically, the multilayer network perspective has been shown to provide
an advantage in analysing the International Trade Network (ITN) also known as the
World Trade Web (WTW). This is the network of trading relations (import–export)
between different countries. The network has been extensively studied within the single
network framework by treating each trade on the same footing, independently of the
traded commodity. Nevertheless, disaggregating the information of the trade considering
a multiplex network in which each layer corresponds to a trade of a given class of
commodities reveals organization patterns of the network that remain covered when
analysing the aggregated trade network. Another class of multilayer networks attracting
large attention are the increasingly interconnected financial networks and interbank
networks. In this context the major research question is to what extent the multilayer
nature of these networks affects systemic risk. In the following we will discuss these two
major classes of economical and financial networks separately.

4.5.1 Trade multiplex networks

The International Trade Network (ITN), also known as the World Trade Web (WTW),
indicates the trade activity (export–import) between different countries of the world.
A link is placed between two countries if there is a trade activity between them and
potentially a weight can be associated with the link quantifying the amount of trading
activity. Trade networks are fundamental for studies that aim at evaluating effects of the
present globalized economy [127]. Recently, these networks have also been extensively
used for assessing the current and predicting the future economic development of
countries [153, 291]. Interestingly, trade networks have also been extensively used
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[128, 129] as datasets to test randomization algorithms using hidden variables and
randomized network ensembles (exponential random graphs).

While most of the works discussed so far treat the trading of different commodities
on the same footing, the multilayer network provides a natural framework to include
the information about which commodities are traded in the network description. In
Refs [20, 21], a multiplex trade network composed of 162 countries (nodes) and 97
layers evolving yearly from 1992 to 2003, has been analysed. Specifically, in the first
work the Authors have characterized the specific properties of each separate layer, while
in the latter work they have shown that the community structure within each layer can be
lost by considering the aggregated layer where all the trades of different commodities are
not distinguished. Along similar lines, in Ref. [200] a multiplex network analysis has been
conducted over the UNCOMTRADE dataset, curated by the United Nations, including
94 countries starting from the year 1962.

The Authors of Ref. [202] considered another version of the UNCOMTRADE
dataset, forming a multiplex trade network with 162 countries and 97 commodities over
the period 1992–2000 including weighted links. This database has been used by the
Authors to test their reconstruction algorithm based on randomized network ensembles,
largely reproducing the main statistical properties of the network.

A more specific dataset includes exclusively trades of commodities exchanged in
maritime business: the Maritime Multiplex Trade Network. In Ref. [110] the Authors
propose the study of a Maritime Multiplex Trade Network including five layers of main
categories of commodities including liquid bulk (i.e. crude oil, oil products, chemicals,
etc.), solid bulk (like aggregates, cement, or ores), containers, passengers/vehicles and
general cargo (see Fig. 4.7). The data cover the months of October and November
2004 and the multiplex network has been extracted from Lloyd’s Voyage Records. The
multiplex network analysis of the dataset reveals that distinguishing between trade of
different commodities allows the Authors to correlate the diversification of the trade of
given ports with their traffic and the typical distance of their connections.

4.5.2 Financial multiplex networks

The rich multilayer structure of financial networks has recently been investigated as a
cause of increased systemic risk. In particular, in Ref. [252] the Authors estimated that the
single-layer approach might underestimate systemic risk by 90%. This study investigates
the banking system of Mexico as a multiplex network with four layers including: exposure
from derivatives, securities cross-holdings, foreign exchange exposure and deposits/loans
during the years 2007–13. Additionally, a multilayer measure to evaluate the expected
loss due to systemic risk in multiplex financial networks is proposed. This measure allows
the Authors to compare the systemic risk over time on a daily scale, showing that the
calculated expected loss follows several features of the market risk indicators.

In Refs [18, 19] the Italian Interbank Market during the period 2008–12 is studied
from the multiplex network perspective. The layers of the interbank network are formed
by distinguishing between three different types of transactions (overnight, short term,
long term) and two different collaterizations (unsecured and secured loans). The network
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Fig. 4.7 The Multiplex Maritime Trade Network. Nodes represent ports, pairwise connected by links
when a commodity is transported between them. Different commodities are considered, thus making this
graph a multiplex network. In order to represent this heterogeneity, links are coloured according to the
number of commodity types travelling between ports. Furthermore, both node and link sizes represent the
corresponding traffic share. Reprinted from Ref. [110] ©2013 with permission from Elsevier.

is formed by 533 banks, almost all active in three unsecured layers. The layers of the
multiplex network display strong correlations between the degrees and the strengths of
the nodes and have a highly heterogeneous degree distribution. The entity of the link
overlap across layers as measured by the Jaccard index is 17%, which is low if compared
with the similarity of the same layers across consecutive years (70%). Therefore, banks
tend to diversify their connections in different layers allowing for a faster propagation of
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contagion in the multiplex network than on single layers taken in isolation. In Ref. [19]
the centrality measures of the banks across the different layers of the Italian Interbank
Market are compared, and strong correlations of the centrality measures for large banks
are found. Finally, the results of the interbank network are compared with null models
of a randomized ensemble of multiplex networks with independent layers. Relevant
deviations of the observed centrality measures with respect to the centralities obtained
with the randomized ensemble are found.

A multilayer interbank model for assessing system risk has been proposed in Ref. [216]
based on information on capital, short-term and long-term interbank borrowings, short-
term and long-term interbank loans, aggregated securities holdings and the cash of 50
large EU banks. The multiplex network between the banks is not known, but randomly
generated using a stochastic model based on the data. On these multiplex networks
an agent-based contagion process is characterized. It is found that multiplex interbank
networks include relevant non-linearities in the propagation of shocks that can have large
effects in the contagion losses.

The stability of financial networks has also been characterized by considering the
multiplex network formed by contracts of a different level of seniority [64, 144]. In
the case of bankruptcy, debts are repaid according to the seniority of the contracts in
order of decreasing seniority. Therefore, it is possible to distinguish different types of
bankruptcy depending on the highest level of seniority at which a bank can repay all its
debts. From a selfish perspective, a single bank having all the contracts at the highest
seniority will be preferable. However, in Ref. [64] it is shown in the framework of a
stylized multiplex cascade model that an optimal ratio of senior and junior debts can be
predicted. This optimal combination of contracts with different seniorities is predicted
to make the system less prone to large financial crises.

Finally, the financial network has been investigated using exclusively financial time
series [221]. In fact, the information encoded in these datasets can be reduced to a
multiplex network between the assets where the different layers correspond to significant
statistical linear, non-linear, tail and partial correlations. The multilayer network is able
to reveal important properties of the financial market which are not detectable using a
single network approach, in particular signalling the different role of industrial sectors
during crises.

4.6 Molecular networks and the interactome

The multilayer network is a very promising framework for describing the interactome,
including all physical interactions between molecules in the cell. Network Science has
been a very natural framework that has allowed the treatment of molecular interaction
networks coming from high-throughput experiments and from large databases inte-
grating many single-molecule experiments. In the beginning of the field, the different
types of molecular interactions were studied separately, and biological networks such as
the transcription network, the protein–protein interaction networks and the metabolic
networks were studied in isolation. Network Science is now completely integrated into



Molecular networks and the interactome 93

system biology, which aims to characterize biological functions, diseases and the response
to drugs.

More recently, with the emergence of network medicine [16], it has become clear
that in order to describe the network of interactions that are involved in a single
disease it is essential to take into account the entire interactome [206] that is formed
by all the known molecular interactions of the cell at the same time (see Fig. 4.8).
The interactome integrates information coming from genomic studies such as genome-
wide associations studies (GWAS) with information about different types of biological
interactions such as regulations, signalling and protein–protein interactions coming from
different experiments. The characterization of the interactome has already allowed us to
identify the set of interactions involved in a given disease that appear to be organized
in clusters of the interactome network. This line of research is very promising, since
relevant information about the disease cluster can already be extracted from the current
version of the interactome network, which contains only a fraction of the full set of
interactions of the human cell. As new experiments are constantly expanding the set
of known interactions, it is believed that the next conceptual step will be to treat the
interactome as a multilayer network, finally considering all the interactions at the same
time but distinguishing their different biological roles. At the moment, several groups
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are working around this line of research and there is no doubt that such a development
of network medicine will provide significant new insight into the formulation of a new
personalized medicine. Along a different direction, a multiplex network analysis has been
performed in Ref. [36] over multiplex networks combining yeast molecular interactions
and gene co-expression. Since genes can be mapped one-to-one with their encoded
proteins, the multiplex network is formed on the first layer by proteins that can bind
to form larger protein complexes, on the second by the regulatory network indicating
which are the activators and repressors of any given gene and in the third by the gene
co-expression network. The Authors of Ref. [36] propose an original multi-community
detection algorithm based on the optimization of a generalized modularity measure called
SimMod (see chapter 8). The proposed algorithm is shown to identify functionally
enriched modules and to provide enhanced results in comparison with other clustering
methods without requiring training on known biological functions.

In Ref. [70] Cantini et al. propose an algorithm to find cancer drivers from mul-
tiplex networks constructed by integrating gene expression correlation networks for
cancer tissues (gastric, lung, pancreas, colorectal) with transcription factor co-targeting,
microRNA co-targeting and protein interaction networks. Therefore, for each type of
cancer the Authors of Ref. [70] have considered a four-layer multiplex network in
which only the first layer (gene coregulation) is dependent on the cancer type. The
rationale for the choice of this four-layer multiplex network is that gene co-expression
and protein interactions are known to require tight coregulation of the partners, involving
fine-tuning of the translational and post-translational layers of the regulation. The gene
multilayer communities in the resulting multiplex network are then studied by using
the consensus clustering proposed in Ref. [182] (see chapter 8). It is found that the
multilayer communities have small overlap with the communities of individual layers
and that multilayer communities are more informative than the communities detected
taking into account only the co-expression layer of cancer tissues. Finally, by comparing
the multi-communities of cancer tissue with the multilayer communities of healthy
cells, the Authors of Ref. [70] have been able to identify communities involved in the
oncogenic process, finding several already known oncogenes and some new candidate
cancer drivers.

A different research direction is currently being developed for applying multilayer
network tools to provide a comprehensive view of given biological experiments across
different biological conditions. For example, the multilayer network perspective can be
adopted to study in parallel results coming from different biological tissues. This is
particularly useful in the context of gene expression data where already a large dataset
of gene expression has been analysed using a multiplex network approach. In particular,
by considering the set of M = 130 gene expression correlation matrices as a tensor the
Authors of Ref. [195, 194] have been able to simultaneously cluster a set of genes and
a set of specific tissues, forming recurrent heavy subgraphs (see chapter 8). The detected
RHS have been shown to correlate with clusters of genes with similar biological function
(see Fig. 4.9).

Finally, the multilayer network perspective has been used to find conserved modules
across the protein interaction networks of different species in Ref. [210]. The general
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theoretical challenge addressed by this paper is the network alignment problem that aims
at finding the best matching between communities of two different networks by taking
into account the many-to-many mapping existing between the nodes of two networks.
In Ref. [210] the Authors propose a novel spectral-clustering algorithm for aligning
communities across the network. This method is especially tailored to treat hypergraphs
and is based on a generalization of the Perron–Frobenius theorem. This algorithm is
then applied to a duplex multilayer network formed by the yeast and the human protein
interaction networks. The results show that there is a high level of conservation on a
global scale.

4.7 Brain networks

Recently the characterization of brain networks using multilayer networks has been
gaining momentum, as multilayer networks allow a more detailed representation of brain
networks than single networks. This important multilayer nature of brain networks has
been recognized both at the neuronal level and at the macroscopic level of brain regions.

At the neuronal level, most of the interest has been focusing on the connectome of the
nematode C.elegans. The brain of the worm C.elegans comprises 302 neurons connected
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by a fully annotated set of synaptic (chemical) connections and gap junctions (electrically
connected). The resulting structure of the connectome is therefore a multiplex network
with two layers (see Fig. 4.10). Note that sometimes synaptic connections are distin-
guished between Chemical Monoadic and Chemical Polyadic connections, forming a
multiplex network with three layers. This multiplex network reveals positive correlations
between the degrees of the neurons in the different layers, indicating for instance that
hub neurons in one layer tend to be hub neurons also in the other layer [230]. Recently
the novel centrality measure called Functional Multiplex PageRank has been shown to
characterize, starting from the multiplex network structure, the different functions (cell
types) of the neurons [164]. Interestingly, a recent paper has revealed that the wiring
diagram of the brain of C.elegans only partially describes the connectome of interactions
between its neurons. In fact, the neurons communicate also through extra-synaptic vol-
ume transmission, occurring especially via monoamines (including serotonin, dopamine,
octopamine, tyramine) and neuropeptides (including 16 layers) (see Fig. 4.11). These
‘wireless’ networks, due to the diffusion of molecules such as the monoamides and
the neuropeptides, can be inferred from gene expression data indicating whether the
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Fig. 4.11 Multilayer connectome of C. elegans including the synaptic layer (Syn), the gap junction layer
(Gap), the aggregated monoamine signalling layer (MA) and the aggregated neuropeptide signalling layer
(NP). Node positions are the same in all layers. Reprinted figure from Ref. [37]. ©2016 Bentley et al.

neurons express the corresponding receptors. It is found that the monoamide layers
do not significantly overlap with the synaptic layers and that they are characterized
by a hub-and-spoke structure with a few nodes forming a well-connected subgraph.
The analysis of the multiplex network using multilinks (see Sec. 7.3) reveals locations
in the network where aminergic and neuropeptide signalling modulate synaptic activity.
The connectome of C. elegans, including also the novel addition of the extra-synaptic
layers, is likely to become the gold standard in the study of brain multiplex networks.

At the other end of the spatial scale of brain networks are the brain functional networks
investigated through fMRI experiments. These non-invasive experiments allow us to
characterize brain function during resting states or during the performance of single
tasks in healthy individuals and in individuals with mental disorders.

Recently, a large body of works emphasized the relevance of investigating the relation
between functional brain networks and structural brain networks using tools of network
theory [68]. These studies address a veritable multilayer problem, as the brain can
be interpreted as a multiplex network in which different macroscopic regions of the
brain interact structurally, thanks to brain fibres, and functionally, as detected by their
correlated activity.

A recent paper [100] proposes a clustering of brain regions which corresponds to a
graph alignment between the two networks. The proposed method allows us to detect a
common skeleton shared by structure and function from which a new brain partition
can be extracted which is rather distinct from the commonly employed anatomical
or functional parcelations. These results underline the strong correspondence between
brain structure and resting-state dynamics, as well as the emerging coherent organization
of the human brain.
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Functional brain networks have been studied quite extensively from the temporal
multi-slice network perspective. Interestingly, a careful detection of multilayer commu-
nities allows for the evaluation of the network flexibility, a measure that evaluates the
persistence of multilayer communities [219] across different time slices (see Sec. 8.2.1).
It is found that a moderately high flexibility of brain functional networks recorded during
a simple motor task correlates with learning [28].

Finally, from functional brain networks extracted from fMRI data multilayer networks
have also been extracted [261] by distinguishing between layers formed by strongly
correlated brain regions interacting through weaker links. Interestingly, the structure
of these networks has been found to display a set of degree correlations that ensures
improved robustness properties with respect to random multilayer networks.

4.8 Ecological networks

In these last two decades, food webs have emerged as a poweful tool to combine
ecosystem ecology focusing on fluxes of matter and energy and community ecology
focusing on the biodiversity of the ecological networks [111, 311]. In food webs in which
the strength of the trophic interactions determines the weights of the links, network
analysis provides an estimate of the energy flow in the web and reveals the rich interplay
between the structure of food webs and their function. Since species of an ecological
community can interact in different ways, ecological networks are not formed exclusively
by food webs. Particular attention has been drawn to the study of mutualistic plant–
pollinator interactions [26] which are bipartite networks characterized by a structural
property called nestedness.

Ecological networks provide multiple opportunities for conducting an informative
multilayer network analysis [250]. In the multilayer network framework it is possible
to characterize several types of interactions occurring between the species of a given
ecological community at the same time. In Ref. [205] mutualistic and antagonistic
interactions are combined and the role of multiplexity in determining the stability of
the multilayer ecological network is analysed. In Ref. [172] a multiplex network between
trophic and different non-trophic interactions of a marine rocky intertidal community
in Chile has been studied. The work has focused on a structural study of the typical
interaction patterns between the species and on the characterization of the ecological
stability of the community. In this context it is suggested that multiplexity can enhance
the stability of the entire ecosystem.

Studies conducted over a given interval of time allow the modelling of ecological
networks as multi-slice networks. In Ref. [234] the characterization of a plants–pollinator
network over 12 years reveals that the variability in the ecological network depends on two
different processes: (i) the ecological network can change over time because the species
composition of the community changes; (ii) the ecological network can change because
the interactions between existing species change in time. This study shows in particular
that an ecological network structure is determined not exclusively by the presence of a
given set of species in the ecosystem. Additionally, this study shows that different species
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can have a different behaviour in temporal networks; in fact, some species can be much
more persistent than others in a time-varying ecosystem. This implies that typically the
species turnover in an ecosystem might affect a subset of species only.

Finally, the multilayer network framework can be used to study the effect of biogeog-
raphy on ecological networks. In fact, to each ecological patch it is possible to attribute
a layer of the multilayer network structure. In this way it is possible [251] to compare
different species interaction networks and analyse their diversity in terms of species
composition and species interactions.

This field is rapidly expanding using methods and techniques of multilayer network
analysis; for further details on the results achieved so far and future perspectives we refer
the reader to Ref. [250].

4.9 Climate networks

In recent years, climate networks have been successfully used to analyse climate data
[103, 102]. The nodes of these networks are isobaric locations identified by their
latitude, longitude and pressure. Pairs of geographical locations constituting the nodes
of the network can be linked according to the zero-lag linear correlations between
different time series of climatological data, or according to their mutual information
[103, 102]. Links corresponding to long-range interactions between different locations,
called teleconnections, have attracted great interest among the climatologists. Additionally,
the analysis of the topology of climate networks, using local measures (such as the degree
and the clustering coefficient) and global measures (such as the betweenness centrality
and the average distance) have been shown to be very useful to characterize the flow of
matter and energy in the climate system.

The analysis of climatological data can be further enriched by using the multilayer
network framework, opening new venues for understanding the function of this complex
system. Relevant results have already been obtained by performing these multilayer
network studies. On the one side, the temporal nature of the climatological data allows
for a multi-slice network analysis [312]. Using the multi-slice network framework to
analyse the temporal variation of climate networks, in Ref. [312] the Authors have shown
evidence that El Niño–Southern Oscillation has a strong impact on the stability of the
climate system. On the other hand, climate networks corresponding to different isobaric
surfaces can be coupled together forming a large multilayer network [101] quantifying
the effect of large-scale convection processes in the troposhere and in the stratosphere.

These results provide great evidence of the relevance of multilayer network analysis
for characterizing the properties of climate networks.
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The Mathematical Definition

5.1 General multilayer networks and more specific
topologies

In this chapter we give the mathematical definitions of general multilayer networks,
multiplex networks, multi-slice networks and networks of networks. We will highlight the
differences between the different types of multilayer networks and we will present the
different mathematical tools that are used for their representation, including adjacency
matrices, supra-adjacency matrices and tensors.

As in any young field, in the field of multilayer networks there is still no general
agreement on the correct terminology to use for different types of multilayer networks.
This general tendency of fast-developing fields is even exacerbated in this case by the
large degree of freedom in defining multilayer network structures. Therefore, several
different terms have been used in the past to indicate the same type of structure. Here,
we aim at defining the minimal number of terms that is sufficient to describe and classify
the vast majority of different multilayer networks.

5.2 The most general multilayer network

A multilayer network M is given by the triple

M = (Y , �G,G).

Here Y indicates the set of layers

Y = {α|α ∈ {1, 2, . . . , M}}, (5.1)

of the multilayer network and M indicates the total number of layers, i.e. the cardinality
of Y

M = |Y |.

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001
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Additionally, �G indicates the ordered list of networks characterizing the interactions
within each layer α = 1, 2, . . . , M, i.e.

�G = (G1, G2, . . . , Gα, . . . , GM) (5.2)

where

Gα = (Vα, Eα)

is the network in layer α. The set of nodes of layer α is indicated by Vα and the set of
links connecting nodes within layer α is indicated by Eα. The links belonging to the sets
Eα with α = 1, 2, . . . , M are also called intralinks. The total number of nodes in layer α

will be indicated by Nα, i.e. Nα is the cardinality of the Vα node set,

Nα = |Vα|.

Finally, the M × M list G of bipartite networks G characterizes the interactions across
pairs of different layers and has elements Gα,β given by

Gα,β = (Vα, Vβ , Eα,β) (5.3)

for each α < β and α, β ∈ {1, 2 . . . M}. Here Gα,β indicates the bipartite network with
node sets Vα and Vβ and link set Eα,β . The links of the networks Gα,β are called interlinks
and connect the nodes of layer α to the nodes of a different layer β.

Please note that both �G and G are defined as lists of sets and not as sets of sets. This
is a necessary choice because the layers are typically labelled, and therefore the labels of
the different layers are not exchangeable. For instance, in a duplex layer α = 1 might
indicate the mobile-phone contact network and layer α = 2 might indicate the email
contact network. It follows that the order of the graphs in the lists is relevant for the
interpretation of the results. For example,

�G = (GA, GB) (5.4)

indicates that GA is the mobile-phone contact network and GB is the email contact
network where

�G = (GB, GA) (5.5)

indicates that GB is the mobile-phone contact network and GA is the email contact
network.



102 The Mathematical Definition

5.3 Multiplex networks

5.3.1 General properties

A multiplex network structure constitutes a simplified multilayer network with the
following properties:

(a) Multiplex networks are multilayer networks in which there is a one-to-one mapping of
the nodes in different layers, also called replica nodes.

(b) Interlinks can exclusively connect to corresponding replica nodes.

Very often a multiplex network is used to describe the interactions between the same
set of nodes, with each layer characterizing a different type of interaction. Examples of
multiplex networks are notably social networks, where the same set of people can be
related by different sets of interactions (friendship, common hobby, collaboration) or
can interact through several means of communication (phone, email, chat, conference
call, online social networks). Other examples range from transportation networks to brain
networks. For example, airports are connected by flights of different airline companies,
two stations of a city can be connected by a bus route or a train and metro route and in
the brain neurons are connected both by synapses and gap junctions.

Sometimes, however, multiplex networks can be used also for representing interac-
tions between different sets of nodes as long as the nodes are mapped one-to-one. For
instance, in the study of robustness of multilayer networks such as coupled infrastruc-
tures it is sometimes assumed that the nodes in different networks are connected pairwise
by interlinks. In the case of interdependent power grid and communication infrastruc-
tures, it is often assumed that each power plant is interdependent on a single node of the
communication network that is monitoring its dynamics [66]. Therefore, in this context a
multiplex network structure is adopted to characterize the entire interdependent system
also if the replica nodes indicate two distinct entities (see chapter 11).

A multiplex network admits two different representations. In the first representation
there is no distinction between the identity of corresponding replica nodes and there is
no explicit use of interlinks. In the second representation corresponding replica nodes
are treated as distinguishable entities and there is an explicit description of interlinks. In
the following, we will discuss the two types of description separately.

5.3.2 Multiplex networks without interlinks

The first representation of multiplex networks refers to the case where there is no explicit
treatment of the interlinks, and in which corresponding nodes in different layers indicate
the same identity (see Fig. 5.1 panel (a)).

In this case a multiplex network can be viewed as a multilayer network M where there
are no interlinks, i.e.

M = (Y , �G)
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Fig. 5.1 Different representations of a multiplex network formed by M = 2 networks. Every layer is
formed by a network determined by a different type of interaction (panel (a)),the replica nodes are connected
by interlinks (panel (b)), the multiplex network is represented as a single network with links of different
types (panel (c)). In panel (c) the dot-dashed links and the solid line links represent the two layers of the
multiplex network.

with

�G = (G1, G2, . . . , Gα, . . . , GM).

Each network Gα = (Vα, Eα) is formed by the same set of nodes, i.e.

Vα = V = {i|i ∈ {1, 2, . . . , N}}, (5.6)

and by the set of links Eα. In this case, the full information about the multiplex network
is encoded in M distinct adjacency matrices a[α] indicating the network in layer α. The
adjacency matrices a[α] of undirected, unweighted multiplex networks are N×N matrices
of elements

a[α]
ij =

{
1 if node i is linked to node j in layer α,
0 otherwise.

(5.7)

This definition can immediately be adapted to take into account the directionality or the
weights of the links. Therefore, in the directed multiplex network case we have

a[α]
ij =

{
1 if node i points to node j in layer α,
0 otherwise.

(5.8)

For weighted, undirected multiplex networks elements a[α]
ij are given by

a[α]
ij =

{
w[α]

ij if node i is linked to node j in layer α with weight w[α]
ij ,

0 otherwise.
(5.9)
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In the most general case of the weighted and directed multiplex network the matrix
elements a[α]

ij are given by

a[α]
ij =

{
w[α]

ij if node i points to node j in layer α with weight w[α]
ij ,

0 otherwise.
(5.10)

Given the simplicity of the multiplex network structures, when we neglect interlinks
multiplex networks can also be represented as single networks in which links have a
different ‘colour’ indicating the different types of interaction. In this description, the set
of links of the same colour identifies each layer of the multiplex network (see Fig. 5.1
panel (c)).

5.3.3 Multiplex networks with interlinks

Although in a multiplex network the nodes of different layers are mapped one-to-one,
usually indicating the same identity, in practice in some cases it might still be useful
to distinguish the identity of nodes in each layer. For example, in air transportation
networks two airline companies might use two different airport terminals, or in a public
transportation system within a city like London it might be relevant to distinguish
between the bus station and the tube station of the same location. Corresponding
nodes belonging to different layers are called replica nodes. When distinguishing between
different replica nodes, it is also possible to treat explicitly interlinks linking each pair
of replica nodes (see Fig. 5.1 panel (b)). This allows us, for instance, to associate a cost
for switching between different means of transportation such as transit between bus and
tube transportation networks. Additionally, this representation is also suitable for treating
the case in which the nodes of different layers are distinct entities as in Ref. [66]. In this
second representation, a multiplex network is formed by N nodes i = 1, 2, . . . N and
M layers, each node i admits M ‘replica nodes’ (i, α) with α = 1, 2, . . . , M indicating
the identity of node i in layer α. As a consequence of this notation, in a social network
formed by the mobile phone, the email and the Facebook layers, a given person will be
represented as three replica nodes representing his/her identity on each of the three layers.

Starting from the set of nodes V of the multiplex network

V = {i|i ∈ {1, 2, . . . , N}} (5.11)

we construct M sets of nodes Vα, each one representing the replicas of the nodes in V
in layer α, i.e.

Vα = {
(i, α)|i ∈ {

1, 2, . . . N
}}

. (5.12)

Note here that the labelling of the nodes within each layer is not arbitrary, indicating the
fact that all the nodes (i, α) with the same label i but belonging to different layers α are
‘replica nodes’.
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If one distinguishes between different replica nodes, the multiplex network can be
represented as a multilayer network M comprising the pair

M = (Y , �G,G)

where both �G given by Eq. (5.2) and G (formed by bipartite networks Gα,β given by
Eq. (5.4)) are non-empty.

Specifically, each network Gα in layer α is formed by the interactions between the set
Vα of the replica nodes in layer α, i.e. Gα = (Vα, Eα).

The network Gα = (Vα, Eα) is determined by the N × N adjacency matrix a[α] of
elements given by Eqs (5.8) − (5.11) for undirected/directed and unweighted/weighted
multiplex networks.

The networks Gα,β = (Vα, Vβ , Eα,β) across different layers have a trivial structure. In
fact, the interlinks in the set Eα,β connecting the replica nodes in layer α with the replica
nodes in layer β are exclusively of the type [(i, α), (i, β)], i.e. they connect each replica
node (i, α) on layer α with its replica node (i, β) on layer β,

Eα,β = {[
(i, α), (i, β)

]|i ∈ {
1, 2, . . . , N

}}
. (5.13)

In this multiplex network representation both the intralinks and the interlinks can be
indicated by the N · M × N · M supra-adjacency matrix A [133] of elements Aiα,jβ
given by

Aiα,jβ =
{

a[α]
ij if α = β

δ(i, j) if α �= β
(5.14)

where δ(x, y) indicates the Kronecker delta. Therefore, the supra-adjacency matrix A
takes a block structure form

A =

⎛
⎜⎜⎜⎝

a[1] I · · · I
I a[2] · · · I
...

...
. . .

...
I I · · · a[M]

⎞
⎟⎟⎟⎠ , (5.15)

where I indicates the N × N identity matrix.
Note that the supra-adjacency matrix can be considered as an adjacency matrix

between replica nodes (i, α), but all replica nodes (i, α) with α = 1, 2, . . . , M indicate
the same node (for example, an individual in a social network, a station or an airport in
a transportation network and so on). The procedure of describing a multiplex network
using the supra-adjacency matrix is also called flattening, unfolding or matricisation.

Given the trivial structure of the non-diagonal blocks of the supra-adjacency matrix,
using a supra-adjacency matrix to describe the structure of a multiplex network is a
redundant operation that does not encode more information than the adjacency matrices
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{a[α]}α=1,2,...,M . Nevertheless, when considering dynamical processes on multiplex net-
works it is often convenient to use a supra-adjacency matrix in order to associate a
different type of dynamics to the interlinks. For example, in multilayer transportation
networks there might be an incentive to diffuse on the same layer (metro, bus, etc.) with
respect to changing from one means of transportation to another. In this case it is often
useful to describe the multiplex network with a supra-adjacency matrix and to attribute
a different diffusion constant to the interlinks mimicking the cost of shifting from one
transportation layer to another.

5.3.4 Multiplex edge list and multiplex data

Since most multiplex network data are sparse, a usual representation of the data consists
of a multiplex edge list.

The multiplex edge list of an undirected, unweighted multiplex network is the list of
triples (α, i, j) indicating that node i and node j are linked in layer α.

The multiplex edge list of an undirected and weighted multiplex network is the list of
quadruples (α, i, j, w[α]

ij ) indicating that node i and node j are connected in layer α with

weight w[α]
ij .

The multiplex edge list of an unweighted, directed multiplex network is a list of triples
(α, i, j) indicating a link from node i to node j in layer α.

The multiplex edge list of a weighted, directed multiplex network is a list of quadruples
(α, i, j, w[α]

ij ) indicating a link from i to node j in layer α with weight w[α]
ij .

5.3.5 Aggregated network

The aggregated network of a multiplex network is the network that results from all the
interactions of the multiplex network when the differences between the different types
of interaction are neglected. The aggregated network G̃ =

(
V , Ẽ

)
is formed by the set of

nodes V of the multiplex network and has a set of links Ẽ. The aggregated network can
be assigned an (unweighted) adjacency matrix ã. The adjacency matrix ã has elements
ãij equal to one only if the link (i, j) exists at least in one layer, i.e.

ãij =
{

1 if
∑M

α=1 a[α]
ij > 0,

0 otherwise.
(5.16)

5.4 Multi-slice networks

5.4.1 General properties

A multi-slice network is a special type of multilayer network with the following
properties:
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(a) Multi-slice temporal networks are multilayer networks in which there is a one-to-one
mapping of the nodes in different layers also called replica nodes. Every layer indicates
a different snapshot of a temporal network.

(b) The interlinks can exclusively connect the replica nodes of pairs of layers in temporal
succession.

Temporal networks are networks in which the links can appear and disappear in time
[156, 157, 204]. They describe a large variety of complex systems ranging from social
contact networks to functional brain networks. Recently we have gained new insights
into temporal networks thanks to the availability of time-resolved network data. It is now
possible to have high-quality data on the dynamics of face-to-face contacts, phone calls
or online social interactions that constitute the microscopic structure of social networks.
Similarly, in brain research functional brain networks describing the correlated activity
of different regions of the brain have an inherently temporal nature.

Temporal networks are represented by a sequence of events (interactions) occurring
over a period of time T . The interactions can be either instantaneous or practically
instantaneous, like sending a text message or an email, or can be characterized by a
duration like for example a phone call, or a face-to-face interaction. In both cases the
information encoded in a temporal network can be aggregated in multi-slice networks
formed by a set of networks, each one indicating all the interactions occurring during a
given time-window δt.

Given a temporal network formed by N nodes interacting over a period of time T and
the time-window δt that is chosen to aggregate the data, the multi-slice network can be
interpreted as (a variation of) a multiplex network formed by M = T/δt layers in which
every layer α = 1, 2 . . . , M encodes all the interactions occurring during the interval of
time [(α − 1)δt, αδt]. As a consequence of the similarities between multi-slice networks
and multiplex networks, there are also two representations for multi-slice temporal
networks: the first one does not make explicit use of interlinks, the second one does.

5.4.2 Multi-slice networks without interlinks

If we neglect the information about the interlinks, a multi-slice network can be reduced
to a multiplex network

M = (Y , �G)

with

�G = (G1, G2, . . . , Gα, . . . , GM).

Each network Gα = (Vα, Eα) indicates the interactions occurring between the nodes in
the same set V , i.e.

Vα = V = {i|i ∈ {1, 2, . . . , N}}
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Fig. 5.2 A multi-slice network. Every layer corresponds to the network of interactions occurring in a
temporal window t. The replica nodes (i, α) characterize a node i in the time-slice α. Interlinks only
connect subsequent replica nodes.

during a given temporal window indicated by α ∈ {1, 2, . . . , M}. Each of these networks
is fully characterized by the N × N adjacency matrix a[α] with α = 1, 2, . . . , M. In the
case of an unweighted and undirected multi-slice network, the generic adjacency matrix
a[α]

ij has elements

a[α]
ij =

{
1 if node i is linked to node j in the time interval [(α − 1)δt, αδt),
0 otherwise.

(5.17)

In the case in which the interactions are directed and unweighted, instead we will have

a[α]
ij =

{
1 if node i points to node j in the time interval [(α − 1)δt, αδt),
0 otherwise.

(5.18)

The extension to a multi-slice network with weighted layers is straightforward, as it
is obtained by allowing the non-zero entries of all the adjacency matrices a[α] to take
arbitrary positive values w[α]

ij > 0 indicating the weight of the link.

5.4.3 Multi-slice networks with interlinks

Interestingly, in multi-slice networks different replica nodes (i, α) representing the same
node i in a different temporal slice α can be distinguished and interlinks can be
included in the description of the multi-slice network. Although interlinks only connect
corresponding nodes (replica nodes) in the different layers, the way in which interlinks
are assigned is not the same as the one used for assigning interlinks to multiplex networks.
In fact, it reflects the temporal sequence of the layers. In particular, interlinks of multi-
slice networks connect each node in one layer to the same node in the consecutive layer
(see Fig. 5.2).

Starting from the set of nodes V of the temporal network

V = {
i|i ∈ {

1, 2, . . . , N
}}

(5.19)
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we construct M sets of nodes Vα, each one representing the replicas of the nodes in V
in the temporal slice α, i.e.

Vα = {
(i, α)|i ∈ {

1, 2, . . . N
}}

. (5.20)

In this representation a multi-slice network M comprises a triplet of sets

M = (Y , �G,G)

where �G and G are both non-empty. Each network Gα in layer α is formed by the set Vα

of the replica nodes in layer α and by their interactions, i.e. Gα = (Vα, Eα). The network
Gα = (Vα, Eα) is determined by the N × N adjacency matrix a[α] which has the same
definition as in Eqs (5.17), (5.18).

The networks G across different layers include exclusively interactions between
subsequent replica nodes, i.e. links [(i, α), (i, α + 1)] connecting each replica node (i, α)

with its replica node (i, α + 1) in the subsequent time-slice. Therefore, the set of links
Eα,α+1 with α = 1, 2, . . . (M − 1) is given by

Eα,α+1 = {[
(i, α), (i, α + 1)

]|i ∈ {
1, 2, . . . , N

}}
, (5.21)

while the set of links Eα,β with β �= α + 1 is empty, i.e.

Eα,β = ∅. (5.22)

In this case, the supra-adjacency matrix A of the multi-slice network is given by the
(N · M) × (N · M) matrix A with the block structure form

A =

⎛
⎜⎜⎜⎜⎜⎝

a[1] I 0 · · · 0 0
0 a[2] I · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · a[M−1] I
0 0 0 · · · 0 a[M]

⎞
⎟⎟⎟⎟⎟⎠

. (5.23)

5.4.4 Multi-slice edge list

Multi-slice datasets can be efficiently stored as multiplex networks using a multi-slice
edge list consisting in the weighted and directed case of a list of quadruples (α, i, j, w[α]

ij )

indicating the existence of a link from node i to node j in the temporal slice α with
weight w[α]

ij . The multi-slice edge list for undirected or unweighted multi-slice networks
is similarly obtained by a straightforward extension of the definition of the multiplex edge
list (see Sec. 5.3.4).
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5.4.5 Aggregated network

The aggregated network of a multi-slice network is constructed by neglecting the temporal
nature of the interactions. It is therefore defined, as in the case of the multiplex network,
by G̃ =

(
V , Ẽ

)
where V is the set of nodes of the multi-slice network and Ẽ is the

set of edges of the aggregated network. The aggregated network can be assigned an
(unweighted) adjacency matrix ã with matrix elements ãij equal to one only if the link
(i, j) exists at least in one layer, and is given by Eq. (5.16).

5.5 Other types of multilayer network

5.5.1 Formalism

Several different types of multilayer networks M = (Y , �G,G), with Y , �G and G defined
by Eqs (5.1), (5.2), and (5.4), can be treated using the same formalism.

In this formalism every node of layer α is indicated by two indices (i, α). The index
α determines the layer of the node. The index i identifies the particular node under
consideration among all the nodes of layer α. Therefore, the set Vα of nodes of layer α

is defined as

Vα = {
(i, α)|i ∈ {

1, 2, . . . Nα

}}
. (5.24)

Each network Gα is fully determined by the Nα × Nα adjacency matrix a[α,α]. The
bipartite network Gα,β of interactions between nodes in layer α and nodes in layer β < α

is instead described by the Nα × Nβ incidence matrix a[α,β] and the Nβ × Nα incidence
matrix a[β,α]. For the case of an undirected multilayer network, the matrices a[α,β] with
α, β ∈ {1, 2 . . . , M} have elements

a[α,β]
ij =

{
1 if (i, α) is linked to (j, β),
0 otherwise.

(5.25)

It follows that in this case the matrix a[β,α] is the transpose of the matrix a[α,β]. The
treatment of directed and weighted multilayer networks is straightforward. For the
directed networks we will have

a[α,β]
ij =

{
1 if (i, α) points to (j, β)

0 otherwise.
(5.26)

The extension to weighted adjacency matrices is straightfoward. For example, in the
general weighted and directed case we will have

a[α,β]
ij =

{
w[α,β]

ij if (i, α) points to (j, β) with weight w[α]
ij ,

0 otherwise.
(5.27)
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The global set of interactions of a multilayer network can be described by a single
supra-adjacency matrix A [133] including all the information carried by the matrices
{a[α,β]}α=1,2...,M;β=1,2...,M . To this end we indicate each node of the multilayer network
with a pair of indices (i, α) with α = 1, 2, . . . , M indicating the layer to which the node
belongs and i = 1, 2, . . . , Nα indicating the label of the node within the layer α. The total
number N̂ of nodes across all the layers of the multilayer network is given by

N̂ =
M∑

α=1

Nα. (5.28)

The supra-adjacency matrix A is an N̂ × N̂ matrix of elements

Aiα,jβ = a[α,β]
ij . (5.29)

Therefore, the supra-adjacency matrix A takes the block structure form

A =

⎛
⎜⎜⎜⎜⎜⎝

a[1,1] a[1,2] · · · a[1,M]

a[2,1] a[2,2] · · · a[2,M]

...
...

. . .
...

a[M,1] a[M,2] · · · a[M,M]

⎞
⎟⎟⎟⎟⎟⎠

, (5.30)

when the nodes (i, α) are ordered according to their index n = i + ∑
β<α Nβ . The

description of a multilayer network in terms of the supra-adjacency matrix somewhat
hides the multiplicity of the systems because the full multilayer network is described by
a single large (supra-)adjacency matrix. The reader should nevertheless be aware that a
multilayer network is not just a larger network including all the layers. In fact, the networks
within each layer and across the different layers describe different types of interaction.
This additional information and its coupling with the dynamical processes allows for a
very different dynamical behaviour with respect to the single network scenario.

We note that the supra-adjacency matrix A is a major example of the general class of
N̂ × N̂ matrices C called supra-matrices that are characterized by having elements Ciα,jβ
and a block structure of the type

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

c[1,1] c[1,2] · · · c[1,M]

c[2,1] c[2,2] · · · c[2,M]

...
...

. . .
...

c[M,1] c[M,2] · · · c[M,M]

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.31)

where c[α,β] are Nα × Nβ matrices. Beside the supra-adjacency matrix A, another major
example of such a supra-matrix is the supra-Laplacian matrix L [133] that will be defined
in chapter 14.
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In general, in the multilayer networks following this description there is no restriction
on the way the interlinks are placed across different layers. Every node of a given layer
can be connected to multiple nodes of another layer and nodes of a given layer might be
connected to nodes of any other layer.

However, some of these multilayer networks can be classified depending on the pres-
ence or absence of the replica nodes and the presence or absence of the supernetwork,
as discussed in the next paragraphs.

5.5.2 Replica nodes

In a multilayer network with replica nodes there is a one-to-one mapping of the nodes
in different layers and corresponding nodes are called replica nodes. Since there is a one-
to-one mapping between the nodes in different layers, every layer is formed by the same
number of nodes

Nα = N ,

for every α = 1, 2, . . . , M. The nodes (i, α) with the same label i belonging to different
layers are called the replica nodes. Note that this property implies that the labels of the
nodes within the same layer α cannot be freely reshuffled.

On the contrary, in multilayer networks without replica nodes, since there is no one-to-
one map between the nodes of different layers the number of nodes in each layer can be
different. Therefore, in this case nodes in different layers usually indicate different node
entities which are not in a one-to-one relation. Additionally, in the absence of replica
nodes there is no preferred ordering for labelling nodes in any given layer.

5.5.3 Networks of networks

Multilayer networks with a supernetwork are also called networks of networks. The
supernetwork GL = (VL , EL) is formed by the supernetwork node set

VL = {
α|α ∈ {

1, 2, . . . , M
}}

, (5.32)

where the set VL indicates the set of all the layers α of the network of networks, and by the
set EL indicates the connections between different layers. The links of the supernetwork
are fully characterized by the M × M adjacency matrix A of elements

Aαβ =
{

1 if layer α is connected to layer β,
0 otherwise.

(5.33)

The supernetwork of a network of networks determines uniquely which set of layers
can be connected by interlinks. In particular, interlinks only join nodes belonging to layers
that are connected in the supernetwork. It is important to note, however, that in multilayer
networks without a supernetwork interlinks can join nodes belonging to any pair of
different layers.
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Fig. 5.3 A network of networks with replica nodes (panel (a)) and a network of networks without replica
nodes (panel (b)) are here schematically shown together with their corresponding supernetworks.

Networks of networks can be classified according to the presence or absence of replica
nodes. We will therefore consider the following two classes of networks of networks:

(a) Networks of networks with replica nodes
The interlinks of these networks of networks connect replica nodes of different
layers only if the layers are connected in the supernetwork. It follows that the
matrix a[α,β] with α �= β has elements

a[α,β]
ij = Aαβδ(i, j) (5.34)

for unweighted networks of networks and

a[α,β]
ij = Aαβδ(i, j)w[α,β]

ij (5.35)

for weighted networks of networks. An example of a network of networks with
replica nodes is shown in Fig. 5.3 (panel (a)).
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We note that multiplex networks with interlinks belong to this class of networks
of networks where the supernetwork is formed by a fully connected network of
M layers. Similarly, the multi-slice networks with interlinks belong to this class
of networks of networks where the supernetwork is a chain of layers in temporal
sequence.

(b) Networks of networks without replica nodes
In networks of networks without replica nodes the interlinks only connect nodes
that belong to layers that are connected in the supernetwork. It follows that the
adjacency matrix a[α,β] with α �= β has elements that satisfy the constraint

a[α,β]
ij = 0 if Aαβ = 0,∑

i,j a[α,β]
ij > 0 if Aαβ = 1.

An example of a network of networks without replica nodes is shown in Fig. 5.3
(panel (b)).

5.5.4 Multilayer edge list

The multilayer edge list of an undirected, unweighted multilayer network including both
interlinks and intralinks is the list of quadruples (α, i, β, j) indicating a link between node
(i, α) and node (j, β).

The multilayer edge list of an undirected and weighted multilayer network is the list
of quintuples (α, i, β, j, w[α,β]

ij ) indicating that node (i, α) and node (j, β) are connected

with weight w[α,β]
ij .

The multilayer edge list of an unweighted, directed multilayer network is a list of
quadruples (α, i, β, j) indicating a link from node (i, α) to node (j, β).

The multilayer edge list of a weighted, directed multilayer network is a list of
quintuples (α, i, β, j, w[α,β]

ij ) indicating a link from (i, α) to node (j, β) with weight w[α,β]
ij .

5.6 Tensorial formalism for multilayer networks

In the previous sections we have seen that the information encoded in the interactions of
a multilayer network goes beyond the information that it is possible to include in a single
matrix. In fact, multilayer networks are described by a set of adjacency matrices indicating
the interactions existing within and between the layers of the multilayer network. The
supra-adjacency matrix apparently encodes all these interactions in a single matrix, but
the supra-adjacency matrix cannot be fully interpreted if we do not have information
about its block structure (i.e. how many nodes form each layer of the network). In order to
fully address these issues, a tensorial formalism has been proposed in Refs [130, 195, 92].
This framework is able to describe rather efficiently the multilayer nature of multiplex
networks, multi-slice networks and general multilayer networks in which there is a one-
to-one mapping between the nodes.
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Two main tensorial approaches have been considered. The first approach [130, 195]
applies to multiplex networks and multi-slice networks and does not make use of
interlinks. The second approach [92] applies to multilayer networks as long as there are
replica nodes and allows for the explicit use of interlinks.

The idea common to both approaches is to proceed formally and introduce an
N-dimensional vector space V associated with the nodes of the multiplex or multi-slice
network and an M-dimensional vector space V̂ associated with the layers of the multiplex
or multi-slice network. The vector space V is spanned by the N-dimensional canonical
covariant i-th vectors ei of elements

ei(j) = δ(i, j)

with i, j ∈ {1, 2 . . . , N}. The vector space V̂ is spanned by the M-dimensional canonical
covariant vectors êα of elements

êα(β) = δ(α, β)

with α, β ∈ {1, 2, . . . , M}. The dual spaces V� and V̂� have canonical bases indicated by
θ i and θ̂ α respectively.

In the first approach [130, 195] the tensor T that characterizes formally the multiplex
or the multi-slice network in the absence of multilinks is the 3-contravariant tensor
belonging to the tensor product space

T : V� ⊗ V� ⊗ V̂� (5.36)

with

T =
∑

i,j=1,...N

∑
α=1,...M

Tijαθ i ⊗ θ j ⊗ θ̂ α. (5.37)

This tensor identifies a multiplex network or a multi-slice network if we associate with
the tensor elements Tijα the same numerical values of the adjacency matrix elements a[α]

ij .
This tensorial formalism has been used both on temporal social networks [130] and on

molecular networks [195] to extract valuable information from multiplex datasets. The
algorithmic techniques used in these papers include non-negative tensor factorization
analysis and combinatorial optimization problems.

In the second approach [92], aimed at representing a multiplex network with inter-
links, the tensor T that characterizes formally the multilayer network with replica nodes
is the 2-covariant, 2-contravariant tensor belonging to the tensor product space

T : V ⊗ V̂ ⊗ V� ⊗ V̂� (5.38)

with

T =
∑

i,j=1,...N

∑
α,β=1,...M

Tjβ
iαej ⊗ êβ ⊗ θ i ⊗ θ̂ α. (5.39)
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This tensor can be interpreted as a map T

T : V ⊗ V̂ → V ⊗ V̂ (5.40)

such that

T ei ⊗ êα =
N∑

j=1

M∑
β=1

Tjβ
iαej ⊗ êβ . (5.41)

The relation between this map and the multiplex (multi-slice) network is simply stated.
To each canonical base ei ⊗ êα of the tensor product space V ⊗ V̂ we attribute a replica
node (i, α). The map T associates with each replica node the set of the replica nodes
connected to it.

The tensor elements Tjβ
iα indicate the weight of the (eventually directed) interaction

between the replica node (i, α) and the replica node (j, β). Therefore, the tensor elements
Tjβ

iα have the same numerical values of the elements of the supra-adjacency matrix
Aiα,jβ . The relation between the tensor T and the supra-adjacency matrix A corresponds
to the so-called flattening of the tensor.

Although this representation of multilayer networks in terms of tensors is formal, this
formalism can provide advantages and can be a convenient way to express multilayer
measures when the Einstein summation convention is adopted for the contraction of
the indices. The convention is applied to repeated covariant and contravariant indices
that are considered as dummy and summed indices. Therefore, we have for the generic
tensors T , T̃ of the multiplex (multi-slice) tensor space

Tiβ
iα =

N∑
i=1

Tiβ
iα,

Tjα
iα =

M∑
α=1

Tjα
iα,

Tjβ
i′γ T̃

i′γ
iα =

N∑
i′=1

M∑
γ=1

Tjβ
i′γ T̃

i′γ
iα. (5.42)

For example, consider an undirected multiplex network. The number of layers in
which node i is connected to node j, i.e. the multiplicity of the overlap, is given by Tjα

iα.
Similarly, the number of paths of length two connecting replica nodes (i, α) and (j, β) is
given by Tjβ

j′γ Tj′γ
iα.

Although this formalism can provide a shortcut to characterize multilayer networks,
in this book we have chosen to use the more intuitive matrix formalism where possible.
The matrix formalism is more familiar to the interdisciplinary community of network
scientists. Additionally, it is also more generic as it extends also to networks of networks
and multilayer networks where the nodes in different layers are not mapped one-to-one.
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Basic Structural Properties

6.1 The effect of multiplexity on network structure

Since the links of a multilayer network indicate different types of interaction, it is
important not to make oversimplifications and to distinguish links of different nature.
As a result, for multilayer networks the most fundamental structural properties of single
networks must also be modified to take into account the multilayer nature of these
structures. Here we give an account of the basic structural properties of multilayer
networks including the degree, the clustering coefficient and the distance-dependent
properties such as the average distance, the cross-betweenness and the interdependence.

6.2 Degree

When defining the degree of the nodes in multilayer networks it is important to
distinguish the case of multiplex and multi-slice networks from the other types of
multilayer network. Therefore, in the following we will define the degree of the nodes
in these two different scenarios.

6.2.1 Multiplex degree

Let us first discuss the generalization of the degree of a node to undirected and
unweighted multiplex and multi-slice networks with M layers. In these networks the
multiplex degree ki of node i is a vector and not a scalar. Specifically, the degree ki of
node i is an M-dimensional vector,

ki =
(

k[1]
i , k[2]

i , . . . k[M]
i

)
(6.1)

with the element k[α]
i indicating the degree of the node i within layer α = 1, 2, . . . , M, i.e.

k[α]
i =

N∑
j=1

a[α]
ij . (6.2)

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001
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For directed and unweighted multiplex and multi-slice networks we distinguish between
the multiplex in-degree ki,in and the multiplex out-degree ki,out of each node i = 1, 2 . . . , N .
In particular, we have

ki,in =
(

k[1]
i,in, k[2]

i,in, . . . k[M]
i,in

)
,

ki,out =
(

k[1]
i,out, k[2]

i,out, . . . k[M]
i,out

)
, (6.3)

with the elements k[α]
i,in, k[α]

i,out indicating the in/out-degree of the node i within layer α, i.e.

k[α]
i,in =

N∑
j=1

a[α]
ji ,

k[α]
i,out =

N∑
j=1

a[α]
ij . (6.4)

The expression for the degree of the nodes in weighted multiplex or multi-slice networks
can be obtained from the weighted adjacency matrices of elements a[α]

ij by neglecting the
weights of the links. Therefore, the multiplex degree ki of a node i in a weighted multiplex
or multi-slice network is given by Eq. (6.1) with the element k[α]

i indicating the degree of
the node i within layer α, i.e.

k[α]
i =

N∑
j=1

θ(a[α]
ij ), (6.5)

where here a[α]
ij can take real or integer-positive values and θ(x) is the Heaviside function.

Similarly, the multiplex in-degree and the out-degree of a node i in a directed, weighted
multiplex or multi-slice network are given by Eq. (6.3), with the elements k[α]

i,in, k[α]
i,out

indicating the in/out-degree of the node i within layer α, i.e.

k[α]
i,in =

N∑
j=1

θ(a[α]
ji ),

k[α]
i,out =

N∑
j=1

θ(a[α]
ij ). (6.6)

6.2.2 Degree distributions of multiplex and multi-slice
networks

In an undirected multiplex and multi-slice network we define the multiplex degree
distribution P(k) as the probability that a random node has multiplex degree ki = k.
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By indicating with N(k) the number of nodes of multiplex degree k the multiplex
degree distribution P(k) is given by

P(k) = N(k)

N
. (6.7)

The degree distributions in each layer α are instead indicated by P[α]
(
k[α]

)
.

For directed multiplex or multi-slice networks we distinguish between the multiplex
in-degree distribution Pin(k) and the out-degree distribution Pout(k), indicating the
probability that a random node has multiplex in-degree ki,in = k and the probability that
it has multiplex out-degree ki,out = k respectively. The multiplex in-degree distribution
Pin(k) and the multiplex out-degree distribution Pout(k) of a directed network are given by

Pin(k) = Nin(k)

N
,

Pout(k) = Nout(k)

N
, (6.8)

where Nin(k) and Nout(k) indicate the total number of nodes of the network with
multiplex in-degree k and multiplex out-degree k respectively.

6.2.3 Aggregated degree and aggregated strength

It is sometimes useful to consider the node properties in the aggregated network. The
aggregated network of a multiplex network has been defined in Sec. 5.3.5 and is a single
network between the nodes of the multiplex where all the interactions are considered
on the same footing. The aggregated network has an adjacency matrix ã of elements ãij
given by Eq. (5.16) indicating whether the link (i, j) exists at least in one layer. It is also
useful to associate with each link (i, j) in the projection network a weight called the link
multiplicity νij indicating, in the case of an unweighted multiplex network, in how many
layers the link (i, j) is present

νij =
M∑

α=1

a[α]
ij . (6.9)

In the case of an undirected multiplex or multi-slice network the aggregated degree Ki
of node i is given by

Ki =
N∑

j=1

ãij . (6.10)

Therefore, the aggregated degree Ki of the node i is the degree of the node i in the
network where we neglect the attributes of the links (the type of link for a multiplex
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network or the time at which the interaction occurs in the multi-slice networks). Similarly,
in the undirected case the aggregated strength Si (also called overlapping degree) [30] is
the strength of node i in the projection network and is given by

Si =
N∑

j=1

νij . (6.11)

It can be shown that if the original multiplex or multi-slice network is unweighted, the
aggregated strength is given by the sum of the degrees of node i across all the layers of
the multiplex network,

Si =
N∑

j=1

M∑
α=1

a[α]
ij =

M∑
α=1

k[α]
i . (6.12)

We note here that the sum of the degrees of a node across each layer is in general not
equivalent to the aggregated degrees because some of the links in different layers might
connect the same nodes. Instead, it is the aggregated strength that is equal to the sum of
the degrees of nodes across different layers. The two quantities Ki and Si are the same
only if the links of each layer do not overlap with the links of any other layer, i.e. if every
pair of nodes is at most linked in a single layer.

In the directed case, we distinguish between the aggregated in-degree and the aggregated
out-degree of node i, given respectively by

Ki,in =
N∑

j=1

ãji ,

Ki,out =
N∑

j=1

ãij . (6.13)

Similarly, it is possible to define the aggregated in-strength and the aggregated out-
strength of node i, given respectively as

Si,in =
N∑

j=1

νji ,

Si,out =
N∑

j=1

νij . (6.14)

6.2.4 Multilayer degree

In general multilayer networks each node i of layer α is assigned the multilayer degree kiα
given by
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kiα =
(

k[α,1]
i , k[α,2]

i , . . . , k[α,M]
i

)
(6.15)

with k[α,β]
i indicating the sum of links connecting node (i, α) to other nodes in layer β,

i.e. for an unweighted multilayer network

k[α,β]
i =

N∑
j=1

a[α,β]
ij . (6.16)

Given this definition, we note that k[α,α]
i plays a special role since it indicates the degree

of node (i, α) within layer α.
In the case of a directed network of networks we distinguish between the multilayer

in-degree kiα,in and the multilayer out-degree kiα,out of node i in layer α. These are given by

kiα,in =
(

k[α,1]
i,in , k[α,2]

i,in . . . , k[α,M]
i,in

)

kiα,out =
(

k[α,1]
i,out , k[α,2]

i,out , . . . , k[α,M]
i,out

)
,

(6.17)

with k[α,β]
i,in/out indicating the sum of in-/outcoming links connecting node (i, α) to nodes

in layer β, i.e. for an unweighted multilayer network

k[α,β]
i,in =

N∑
j=1

a[α,β]
ji ,

k[α,β]
i,out =

N∑
j=1

a[α,β]
ij . (6.18)

The generalization of the definition of the multilayer degree for weighted multilayer
networks is straightforward.

6.2.5 Multilayer degree distributions

For a general undirected multilayer network we define the multilayer degree distribution
P[α](k) as the probability that a random node of layer α has multilayer degree kiα = k.
By indicating with N [α](k) the number of nodes of layer α with multilayer degree kiα = k
the multilayer degree distribution P[α](k) is given by

P[α](k) = N [α](k)

Nα

. (6.19)
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Similarly, for a directed multilayer network it is possible to define the multilayer in-degree
and out-degree distributions Pin,[α](k) and Pout,[α](k) given by

Pin,[α](k) = Nin,[α](k)

Nα

,

Pout,[α](k) = Nout,[α](k)

Nα

, (6.20)

where Nin,[α](k), kiα,in and Nout,[α](k) indicate kiα,out the number of nodes of layer α that
have multilayer in-degree or multilayer out-degree given by k respectively.

6.3 Clustering coefficient

6.3.1 General remarks and definitions for multiplex networks

In a multiplex network the clustering coefficient can be generalized in several different
ways. The major challenge in choosing an appropriate definition of the clustering
coefficient in multiplex networks is that in these structures triangles (cycles of length 3)
can include links belonging to different layers. In the majority of cases, this feature of
the multiplex networks is exactly the property that we aim at capturing. For example,
we might ask what is the probability that two of our colleagues do some sportive activity
together, or we might ask what is the probability that our new acquaintance from the
foreign language class knows one of our schoolmates. In one case we are asking if a
triangle closes across two layers (work, sport), in the other case we are asking if a triangle
closes across three layers (language course, common school, unknown situation). If we
are interested in generalizing the clustering coefficient of a node i in an undirected
multiplex network the first approach is to consider only triangles formed by three links, in
the layers α, β, γ respectively. In this case, the definition of the local clustering coefficient
C[α,β,γ ]

i is straightforward and given by

C[α,β,γ ]
i =

∑
r,s a[α]

ir a[β]
rs a[γ ]

si

Nα,γ
, (6.21)

where Nα,γ is the number of ordered pairs of neighbours of node i belonging respectively
to layer α and layer γ , i.e.

Nα,γ =
{

k[α]
i k[γ ]

i for α �= γ

k[α]
i (k[α]

i − 1) for α = γ .
(6.22)

The above definition is valid as long as the normalization sum Nα,γ is greater than zero.
When Nα,γ vanishes the local clustering coefficient C[α,β,γ ]

i is set to zero.
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Although this definition is very immediate, it cannot account for situations in which
one of the considered layers is unknown or undetermined. Moreover, this definition is
restricted to given triplets of layers and as such it does not provide a unique estimation
of the local organization of the triangles passing through node i across all the layers of
the multiplex network.

In Ref. [30] the definitions of the local clustering coefficients Ci,1, Ci,2 of node i in an
undirected multiplex network are given as

Ci,1 =
∑M

α=1
∑

β|β �=α

∑
r,s a[α]

ir a[β]
rs a[α]

si

(M − 1)
∑M

α=1 k[α]
i (k[α]

i − 1)
,

Ci,2 =
∑M

α=1
∑

γ |γ �=α

∑
β|β �=α,γ

∑
r,s a[α]

ir a[β]
rs a[γ ]

si

(M − 2)
∑M

α=1
∑

γ �=α k[α]
i k[γ ]

i

, (6.23)

where Ci,1(Ci,2) evaluates the normalized number of triangles spanning two (three)
layers and including node i. Note that also in this case, if the denominator of the above
expressions vanishes the local clustering coefficient is assumed to be null. The local
clustering coefficient can be averaged across the total number of nodes of the multiplex
network, obtaining

C1 = 1
N

N∑
i=1

Ci,1,

C2 = 1
N

N∑
i=1

Ci,2. (6.24)

Finally, the transitivity T1 is defined as the ratio between the total number of 2-triangles
and M−1 times the total number of 1-triads, and the transitivity T2 is defined as the ratio
between the total number of 3-triangles and M − 2 times the total number of 2-triads in
the multiplex network, i.e.

T1 =
∑M

α=1
∑

β|β �=α

∑
i,r,s a[α]

ir a[β]
rs a[α]

si

(M − 1)
∑M

α=1
∑N

i=1 k[α]
i (k[α]

i − 1)
,

T2 =
∑M

α=1
∑

γ |γ �=α

∑
β|β �=α,γ

∑
i,r,s a[α]

ir a[β]
rs a[γ ]

si

(M − 2)
∑M

α=1
∑

γ �=α

∑N
i=1 k[α]

i k[γ ]
i

. (6.25)

6.3.2 Parametrized clustering coefficient in multiplex networks

A series of alternative definitions of the clustering coefficient proposed in Ref. [83] uses
a parametrization of the clustering coefficient in terms of two parameters describing the
cost associated with a jump from one layer to the other (δ) and with a hop from a link to
another one on the same layer (η) respectively. Let us define the weighted sum t	iα and q	

iα
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respectively as the weighted sum of close triadic paths and the weighted sum of paths of
length 2 passing through the replica node (i, α). The quantities t	iα and q	

iα have a quite
elegant expression in terms of (N · M) × (N · M) supra-matrices Â and Ĉ defined as

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a[1] 0 0 · · · 0 0

0 a[2] 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · a[M−1] 0

0 0 0 · · · 0 a[M]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.26)

and

Ĉ = ηI + δC (6.27)

with

I =

⎛
⎜⎜⎜⎜⎜⎝

I 0 0 · · · 0 0
0 I 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I 0
0 0 0 · · · 0 I

⎞
⎟⎟⎟⎟⎟⎠

, C =

⎛
⎜⎜⎜⎜⎜⎝

0 I I · · · I I
I 0 I · · · I I
...

...
...

. . .
...

...
I I I · · · 0 I
I I I · · · I 0

⎞
⎟⎟⎟⎟⎟⎠

. (6.28)

The supra-matrix Â fully characterizes the intralinks and the matrix C fully characterizes
the interlinks of the multiplex network. Therefore, the weighted sum of closed triadic
paths passing through replica node (i, α) is given by

t	iα = 2
[(

ÂĈ
)3

]
iα,iα

. (6.29)

This expression can be derived by observing that the number of closed triadic paths
passing through a replica node (i, α) and belonging to a single layer can be expressed as

[
ÂÂÂ

]
iα,iα

,

the number of closed triadic paths passing through node (i, α) having two links in layer
α and one link in another layer is given by

[
ÂÂCÂC

]
iα,iα

,

and so on (see Fig. 6.1). By performing a weighted sum over all these types of triadic
paths, when we associate a cost δ with every hop from one layer to another one and a
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ÂÂÂ ÂÂCÂC ÂCÂÂC ÂCÂCÂ ÂCÂCÂC

Fig. 6.1 Sketch of the closed triadic paths including different layers.The intralinks are the solid lines and
the interlinks are the dotted lines.

cost η with every pair of consecutive links belonging to the same layer, we obtain the
expression in Eq. (6.29).

Similarly, by defining the supra-matrix F = ⊕αF[α] where F[α] is the adjacency matrix
of a complete graph on layer α, it is possible to express q	

i,α as

q	
iα = 2

(
AĈFĈAĈ

)
iα,iα

. (6.30)

We note that, thanks to their weights, t	iα and q	
iα can be decomposed in contributions

coming from closed triadic paths that belong to one, two and three layers respectively. In
fact, by denoting by tiα,n the total number of closed triadic paths belonging to n layers
and by qiα,n the total number of pairs of nodes belonging to n layers we have

t	iα = η3tiα,1 + ηδ2tiα,2 + δ3tiα,3,

q	
iα = η3qiα,1 + ηδ2qiα,2 + δ3qiα,3. (6.31)

Using t	iα, q	
iα in Ref. [83] the following local parametrized clustering coefficients have been

defined as

c	
iα = t	iα

q	
iα

C	
i =

∑
α t	iα∑
α q	

iα
, (6.32)

where it is assumed that c	
iα = 0 if q	

iα = 0 and C	
i = 0 if

∑
α q	

iα = 0. Note that
while c	

iα characterizes the local loop structure associated with the replica node (i, α), C	
i

characterizes the local loop structure of node i across all layers. If we choose δ = 0 the
parametrized local clustering coefficients only depend on the triangles belonging to the
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same triangle. If we take η = 0 instead, only the triangles belonging to three different
layers contribute. Finally, the parametric transitivity is given by

T	 =
∑

i
∑

α t	iα∑
i
∑

α q	
iα

. (6.33)

We observe that the definitions of the local parametrized clustering coefficients and
the parametrized transitivity are invariant under the transformation (η, δ) → (η′, δ′) as
long as η′/η = δ′/δ. Therefore, without loss of generality, as long as η �= 0 we can
always set η′ = 1 and parametrize the clustering coefficient with the single parameter
δ′ = δ/η.

6.3.3 Cross-clustering coefficient in general multilayer
networks

In a general multilayer network the clustering coefficient can also evaluate the density
of triangles formed by two interlinks and one intralink. To this end, in Ref. [101] three
structural measures have been defined: the local cross-clustering coefficient, the global
cross-clustering coefficient and the cross-transitivity. The local cross-clustering coefficient
C̃[α,β]

i of a node (i, α) with respect to the layer β measures the density of links within
any two neighbours of node (i, α) belonging to layer β. Therefore, it is a measure of the
tendency of a node (i, α) to connect to nodes of layer β that belong to a close community.
Mathematically, for any node (i, α) with k[α,β]

i > 1 the local cross-clustering coefficient
is given by

C̃[α,β]
i = 1

k[α,β]
i (k[α,β]

i − 1)

∑
r,s,α,β

a[α,β]
ir a[β,β]

rs a[β,α]
si , (6.34)

where it is assumed that if k[α,β]
i = 0 or k[α,β]

i = 1 the local cross-clustering coefficient is

zero, i.e. C̃[α,β]
i = 0. The global cross-clustering coefficient C̃[α,β] estimates the probability

for a node of layer α to have pairs of mutually connected neighbours in layer β and it is
given by

C̃[α,β] = 1
Nα

∑
i

C̃[α,β]
i . (6.35)

Finally, the cross-transitivity T̃ [α,β] indicates the probability that two nodes in layer β are
connected if they are both connected to a common neighbour in layer α,

T̃ [α,β] =
∑

i,r,s
∑

α,β a[α,β]
ir a[β,β]

rs a[β,α]
si∑

i,r,s
∑

α,β a[α,β]
ir a[β,α]

si

. (6.36)
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6.4 Distance-dependent measures

6.4.1 Interdependence of a multiplex network

Multiplexity has a strong influence on the properties of shortest paths in a multiplex
network. In fact, if we build a multiplex network starting from a single isolated layer,
the inclusion of more layers can only reduce the shortest distance between any pair of
two nodes. As a consequence, an important fraction of shortest paths between pairs of
nodes includes links coming from different layers. In this context it is relevant to evaluate
the added value that multiplexity has on the reachability of each node i of the multiplex
network. In Ref. [217] the Authors introduced the interdependence which for every node
is defined as λi ∈ [0, 1] given by

λi =
∑
i �=j

ψij

σij
(6.37)

where ψij is the number of shortest paths between node i and node j including links
from more than a layer and σij is the number of shortest paths between node i and node j
including both paths travelling exclusively in a layer and paths including links from more
than a layer. The average multiplex interdependence λ is computed as

λ = 1
N

N∑
i=1

λi . (6.38)

For λ = 0 all the shortest paths lie on just one layer, and for λ = 1 all the shortest paths
include links of more than one layer.

6.4.2 Distance properties of general multilayer networks

In a general multilayer network it is important to evaluate the topological closeness of
different layers. By indicating with diα,jβ the shortest distance between node (i, α) and
node (j, β), the cross-average distance ̃[α,β] [101] between layer α and layer β is given by

̃[α,β] = 〈
diα,jβ

〉
i,j , (6.39)

where the average is performed over pairs of nodes (i, α) and (j, β), which are mutually
reachable. The cross-average distance is large for two closely interwoven networks,
indicating functional interdependence, while it can become low for two topologically
distant layers that are likely to be functionally and dynamically independent.

Finally, the cross-betweenness centrality [101] of node (i, α) with respect to two layers
β and γ indicates its role in mediating and controlling the communication between two
layers β and γ . It is given by
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B[β,γ ]
i,α =

∑
r �=s

σrβ,sγ (i, α)

σrβ,sγ
(6.40)

where σrβ,sγ indicates the total number of shortest paths from (r, β) to (s, γ ) and
σrβ,sγ (i, α) counts the number of such paths that pass through node (i, α). The cross-
betweenness B[β,γ ]

i,α evaluates the role of node (i, α) for the transmission of information
between layer β and layer γ . A hub that has high cross-betweenness between two layers is
more vulnerable with respect to damage of the interlinks between the two layers; a node of
low cross-betweenness instead has high redundancy. From the cross-betweenness B[β,γ ]

i,α
it is possible to obtain the betweenness centrality Bi,α simply by summing over all pairs
of layers β, γ , i.e.

Bi,α =
∑
β,γ

B[β,γ ]
i,α . (6.41)

Although all these measures have been proposed for a general network of networks,
they can also be applied to a multiplex network in which the interlinks are explicitly taken
into account.
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Structural Correlations of
Multiplex Networks

7.1 Correlations in multiplex networks

In the vast majority of real cases multiplex networks have a highly correlated structure
from which it is possible to extract more information than from the study of their layers
taken in isolation. The correlations are typically induced by the identification (or the
one-to-one mapping) among nodes in different layers, so it would be very misleading to
consider a multiplex network as a single large network.

These correlations include:

• Interlayer degree correlations
For every two layers, these correlations are able to indicate whether the hubs in one
layer are also the hubs in the other layer, or whether, instead, they are the low-degree
nodes.

• Link overlap and multilinks
A multiplex network displays significant link overlap when a finite fraction of pairs
of nodes are linked in multiple layers. For instance, typically we use different means
of communication to interact with our social friends such as mobile phone, email
and instant messaging, implying a significant overlap among the three layers. The
different patterns of connections between two nodes, eventually including link
overlap, are exhaustively characterized by the multilinks that extend the concept
of links between two nodes in the multiplex network scenario.

• Correlations in weighted multiplex networks
In weighted multiplex networks, weights might not be distributed homogeneously.
For example, in a multiplex network formed by scientists that collaborate and cite
each other, it is possible to observe that scientists tend to cite their collaborators in
a significantly different way than other scientists with whom they have not collabo-
rated. Weight–topology correlations existing in multiplex networks are revealed by
the multistrengths and inverse multiparticipation ratio.

• Node pairwise multiplexity
When the nodes are not all active (i.e. connected) in all layers, two nodes can have
correlated activity patterns. For example, they can be active on the same or on
different layers. These correlations are captured by the node pairwise multiplexity.

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001
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• Layer pairwise multiplexity
When the nodes are not all active (i.e. connected) in all layers, two layers can
have correlated activity patterns. For example, they can contain the same active
nodes or different active nodes. These correlations are captured by the layer pairwise
multiplexity.

7.2 Interlayer degree correlations in multiplex networks

The degrees of the same node in different layers can be correlated. Given any two
layers, it is possible to distinguish between positive degree correlations, indicating that a
node tends to have either high degree or low degree in both layers, and negative degree
correlations, describing the tendency of high-degree nodes of one layer to have low
degree in the other. For instance, the citation/collaboration multiplex network formed
by nodes representing scientists that cite each other and collaborate with each other
displays positive degree correlations, indicating that typically a hub of the citation
network is also a scientist with many collaborations. On the contrary, the multiplex
networks between airports connected by low-cost airline companies display negative
degree correlations because, due to their competition, low-cost airlines tend to have
different hub airports.

From a theoretical perspective, valid, for instance, when discussing network models,
multiplex networks do not display degree correlations if the multiplex degree distribution
P(k) can be expressed in terms of the degree distributions P[α]

(
k[α]

)
of each single

layer α as

P(k) =
M∏

α=1

P[α]
(

k[α]
)

. (7.1)

On the contrary, when this relation does not hold, the multiplex network displays degree
correlations.

When we need to characterize real multiplex network data different measures can
be useful for evaluating the degree correlations between a layer α and a layer β. These
measures describe the correlations by performing a different level of coarse graining.
Here we describe exhaustively these measures, highlighting the pros and cons of each of
them.

• Full characterization of the degree correlations across the two layers
Given a multiplex network, the probability that a node has degree k[α] in layer α

and degree k[β] in layer β is given by

P
(

k[α], k[β]
)

= N
(
k[α], k[β]

)
N

, (7.2)
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where N
(
k[α], k[β]

)
is the number of nodes that have degree k[α] in layer α and

degree k[β] in layer β. From this matrix, the full pattern of interlayer degree
correlations between layer α and layer β can be determined. Specifically, by
plotting this two-dimensional function it is possible to investigate whether there
are assortative or disassortative correlations between the two layers, mainly if the
degrees of the same node in the two layers are positively or negatively correlated.
Moreover, it is possible to calculate the Mutual Information I[α,β] given by

I[α,β] =
∑

k[α],k[β]

P(k[α], k[β]) ln
P(k[α], k[β])

P[α](k[α])P[β](k[β])
. (7.3)

The Mutual Information is zero if there are no degree correlations, and typically
higher values of the mutual information indicate more correlated degree sequences
in the two layers. This technique aims at fully characterizing the correlations
between the two layers, however the network might be in some cases too small
to provide a solid statistic for all the matrix entries P(k[α], k[β]). In these cases the
values of the degrees k[α] and k[β] can be binned, or else a more coarse-grained
measure of correlations can be used.

• Average degree in layer α conditioned on the degree of the node in layer β

A more coarse-grained measure of correlation is
〈
k[α]|k[β]

〉
, i.e. the average degree

of a node in layer α conditioned on the degree of the same node in layer β:

〈
k[α]|k[β]

〉
=

∑
k[α]

k[α]P(k[α]|k[β]) =
∑

k[α] k[α]P(k[α], k[β])∑
k[α] P(k[α], k[β])

. (7.4)

If this function does not depend on k[β], the degrees in the two layers are
uncorrelated. If this function is increasing (decreasing) in k[β], the degrees of the
nodes in the two layers are positively (negatively) correlated. When this function is
not monotonically increasing or monotonically decreasing, the interpretation is less
straightforward. This method of calculating the degree correlations is particularly
useful for scale-free networks where the possible values of the degree of each node
can span over a wide range, while it is less efficient if the degree distribution is more
homogeneous.

• Pearson, Spearman and Kendall correlation coefficients
Even more coarse-grained correlation measures are the Pearson, the Spearman and
the Kendall correlation coefficients. These measures provide a single scalar number
to evaluate the interlayer degree correlations between two layers globally across the
entire set of nodes of the multiplex network.
The Pearson correlation coefficient rαβ is given by

rαβ =
〈
k[α]k[β]

〉 − 〈
k[α]

〉 〈
k[β]

〉
,

σασβ

(7.5)
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where

〈
k[α]

〉
= 1

N

N∑
i=1

k[α]
i ,

〈
k[α]k[β]

〉
= 1

N

N∑
i=1

k[α]
i k[β]

i ,

σα = 1
N

N∑
i=1

[(
k[α]

i −
〈
k[α]

〉)2
]

.

The Pearson correlation coefficient can be dominated by the correlations of the
high-degree nodes if the degree distribution of the network is broad.

The Spearman correlation coefficient ραβ between the degree sequences {k[α]
i }

and {k[β]
i } in the two layers α and β is given by

ραβ =
〈
x[α]x[β]

〉 − 〈
x[α]

〉 〈
x[β]

〉
σ̂ασ̂β

, (7.6)

where x[α]
i is the rank of the degree k[α]

i in the sequence {k[α]
i }, x[β]

i is the rank of the

degree k[β]
i in the sequence {k[β]

i } and σ̂α is given by

〈
x[α]

〉
= 1

N

N∑
i=1

x[α]
i ,

〈
x[α]x[β]

〉
= 1

N

N∑
i=1

x[α]
i x[β]

i ,

σ̂α = 1
N

N∑
i=1

[(
x[α]

i −
〈
x[α]

〉)2
]

. (7.7)

The Spearman coefficient has the problem that the ranks of the nodes according to
their degree in a given layer are not uniquely defined because degree sequences
typically include some degeneracy (not all the nodes have different degree).
Therefore, the Spearman correlation coefficient is not a uniquely defined number.

The Kendall τ correlation coefficient between the degree sequences {k[α]
i } and

{k[β]
i } is a measure that takes into account possible degeneracy of the ranks. A pair of

nodes i and j is concordant if their degrees have the same order in the two sequences,
i.e. (k[α]

i − k[α]
j )(k[β]

i − k[β]
j ) > 0, and discordant if (k[α]

i − k[α]
j )(k[β]

i − k[β]
j ) < 0.

The Kendall’s τ is defined in terms of the number nc of concordant pairs and the
number nd of discordant pairs and is given by
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τ = nc − nd√
(n0 − n1)(n0 − n2)

. (7.8)

In the equation above, n0 = N(N − 1)/2 and the terms n1 and n2 account for the
degeneracy of the ranks and are given by

n1 = 1
2

∑
k[1]

P[1]
(

k[1]
) [

P[1]
(

k[1]
)

− 1
]
,

n2 = 1
2

∑
k[2]

P[2]
(

k[2]
) [

P[2]
(

k[2]
)

− 1
]
. (7.9)

The degree correlations between two layers of a multiplex network can be tuned
by modifying the one-to-one mapping between their nodes. This can be achieved by
reshuffling the interlinks and changing the identity of the connected replica nodes among
the different layers as suggested in Ref. [213]. This tuning of the degree correlations can
be used to generate either Maximally Positively correlated (MP) multiplex networks or
Maximally Negatively correlated (MN) multiplex networks. Given a duplex network
having two layers with degree sequence given by

{
k[1]

i

}
i=1,2,...,N

and
{

k[2]
i

}
i=1,2,...,N

respectively, let us rank the degrees of each layer in descending order. The Maximally
Positively correlated (MP) multiplex network has the same two layers of the original
duplex network, but the pairs of replica nodes are different from the ones of the original
network. In fact, replica nodes are nodes having the same rank in the two degree

MP

UC

MN

+

Fig. 7.1 Schematic illustration of three kinds of correlated multiplex network,Maximally Positive (MP),
Uncorrelated (UC) and Maximally Negative (MN).Each layer of the networks has different types of links,
indicated by solid and dashed links, respectively. Reprinted figure with permission from [213] ©2014 by
the American Physical Society.
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sequences (see Fig. 7.1). In this way, the Maximally Positively correlated (MP) multiplex
network acquires the maximal positive degree correlation among all the multiplex
networks having the same layers.

Conversely, if the first-degree sequence is ordered in ascending order and the second-
degree sequence is sorted in descending order, by forming pairs of replica nodes
associating nodes of the same rank in the two sequences we generate a Maximally
Negatively correlated (MN) multiplex network (see Fig. 7.1). In fact, the Maximally
Negatively correlated (MN) multiplex network is the one with the largest negative degree
correlations among all the multiplex networks with the same layers.

Uncorrelated (UC) multiplex networks are typically generated by randomly associat-
ing pairs of nodes of the two layers for forming replica nodes (see Fig. 7.1).

7.2.1 Other measures to evaluate the heterogeneity of
the degrees of the nodes

A different set of measures has been introduced to evaluate the correlations existing
between the degree of the same node across more than two layers [30]. These quantities
are intended to measure the heterogeneity between the degrees k[α]

i of the same node
i across the different layers α. The first one is the entropy Hi associated with the
distribution of the degree of each node across different layers defined as

Hi = −
∑
α

k[α]
i

Si
ln

(
k[α]

i

Si

)
, (7.10)

where Si = ∑
α k[α]

i is the aggregated strength of node i. Therefore, Hi evaluates the
heterogeneity of the degrees of node i across the different layers α. It is minimal (Hi = 0)
if node i is connected only in one layer (maximum heterogeneity) and is maximal (Hi =
ln M) if node i has the same degree in all the layers (minimum heterogeneity). The
second measure proposed to evaluate the heterogeneity between the degrees of the same
node across all the layers of the multiplex network is the participation coefficient Pi
given by

Pi = M
M − 1

⎡
⎣1 −

M∑
α=1

(
k[α]

i

Si

)2
⎤
⎦. (7.11)

The participation coefficient takes values in the interval [0, 1]. If all the links of node i
are distributed uniformly across the layers we have Pi = 1. If the links of node i belong
to a single layer we have Pi = 0.

The third measure that can be considered, the inverse participation ratio yi of the
degrees of a node i, is a traditional measure used in statistical mechanics. The partici-
pation yi is defined as
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yi =
⎡
⎣ M∑

α=1

(
k[α]

i

Si

)2
⎤
⎦

−1

(7.12)

and indicates the effective number of layers where node i is connected. The quantity yi
spans the interval [1, M]. If node i is connected in one layer only yi = 1, whereas if i has
the same degree in all M layers yi = M.

7.3 Overlap, multilinks and multidegrees

A relevant feature of many multiplex networks is their link overlap. This means that a
significant number of pairs of nodes are connected in multiple layers. Multiplex networks
with significant link overlap are ubiquitous and include multiplex airport networks, on-
line social games, collaboration and citation networks [290, 71, 209]. Take, for example,
the airport network where the different layers are the flight connections of different airline
companies [71]. As most of the airline companies aim at providing the most popular
flight connections, the multiplex network displays a significant link overlap (see Fig. 4.5).
Another example of a multiplex network with significant overlap is the duplex network
between scientists connected in one layer by a citation network (who cites whom) and
in the other layer by the collaboration network (who collaborates with whom) [209].
The two layers in this dataset display significant overlap because two coauthors are
also usually citing each other in their papers. Finally also in the in silico social network
constituted by the Pardus online game [290], where avatars have different types of
interactions, a significant overlap is observed between different layers (see Fig. 7.2).
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Fig. 7.2 In the Pardus online game the layers indicate friendship (F), communication (C), trade (T),
enmity (E), attack (A) and bounty (B). Here the correlations encoded in the multiplex network structure
are shown: the layers display a significant overlap of the links, correlations between the degrees of the nodes
and correlation between their ranks. Reprinted figure from Ref. [290].
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7.3.1 Overlap

Two measures [41, 290] of overlap have been recently proposed to characterize the link
overlap across two layers: the total overlap and the local overlap. The total overlap O[α,β]

between two layers α and β [41, 290] is defined as the total number of links that are in
common between layer α and layer β, i.e. for an undirected network

O[α,β] =
∑
i<j

a[α]
ij a[β]

ij , (7.13)

where α �= β.
The local overlap o[α,β]

i between two layers α and β [41] is defined as the total number
of neighbours of node i that are neighbours in both layer α and layer β:

o[α,β]
i =

N∑
j=1

a[α]
ij a[β]

ij . (7.14)

These quantities are sometimes also normalized in order to obtain a measure of the
significance of the overlap in the multiplex network. The normalized total overlap Ô[α,β]

and the normalized local overlap ô[α,β]
i are the Jaccard indices given by

Ô[α,β] =
∑

i<j a[α]
ij a[β]

ij∑
i<j

(
a[α]

ij + a[β]
ij − a[α]

ij a[β]
ij

) ,

ô[α,β]
i =

∑N
j=1 a[α]

ij a[β]
ij∑N

j=1

(
a[α]

ij + a[β]
ij − a[α]

ij a[β]
ij

) . (7.15)

7.3.2 Multilinks and multidegrees

In a multiplex network with M layers a significant link overlap can be achieved in multiple
ways, since any two nodes can be linked across the different layers of the multiplex
network in multiple ways.

Multilinks [41, 209] are a comprehensive way to characterize the pattern of connec-
tions between any two nodes. A multilink between any given two nodes i and j indicates
in which layers of the multiplex network nodes i and j are connected. Consider, for
example, the multiplex with M = 2 layers, i.e. the network shown in Fig. 7.3. Nodes 1
and 2 are connected by one link in the first layer and one link in the second. Thus, we say
that the nodes are connected by a multilink (1, 1). Similarly, nodes 2 and 3 are connected
by one link in the first layer and no link in layer 2. Therefore, they are connected by a
multilink (1, 0).
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Fig. 7.3 Example of all possible multilinks in a multiplex network with M = 2 layers and N = 5 nodes.
Nodes i and j are linked by one multilink �m = (m[1], m[2]). Reprinted figure from Ref. [209] ©2014
Menichetti et al.

In general, for a multiplex network formed by M layers we can define multilinks in the
following way. Let us consider the vector

�m =
(

m[1], m[2], . . . , m[α], . . . m[M]
)

(7.16)

of elements m[α] ∈ {0, 1}. Any pairs of nodes i and j are connected by a multilink �m if and
only if they are connected in every layer α in which m[α] = 1 and they are disconnected
in every layer α in which m[α] = 0.

It follows that for an unweighted multiplex network every two nodes i and j are
connected by a multilink �mij given by

�mij =
(

a[1]
ij , a[2]

ij , . . . , a[M]
ij

)
, (7.17)

while for a weighted multiplex network

�mij =
(
θ

(
a[1]

ij

)
, θ

(
a[2]

ij

)
, . . . , θ

(
a[M]

ij

))
. (7.18)

Therefore, every pair of nodes is connected by a single multilink. Note that the trivial
multilink �m = �0 indicates that there is no layer connecting the two considered nodes.
All the other multilinks with �m �= �0 indicate the different patterns of connections that
can exist between any two nodes of a multiplex network and are therefore called the
non-trivial multilinks.

In a single network any two nodes can be either connected or non-connected. In a
general multiplex network of M layers, there are many more possibilities accounted for by
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the multilinks. Since in each layer the two nodes are either connected or non-connected,
the overall number of possible multilinks is 2M .

Let us now introduce the multi-adjacency matrices A �m with elements A �m
ij equal to 1 if

there is a multilink �m between node i and node j, and 0 otherwise:

A �m
ij =

{
1 if �mij = �m
0 otherwise.

The multi-adjacency matrices can be expressed in terms of the adjacency matrices of
the unweighted multiplex networks as

A �m
ij =

M∏
α=1

[
a[α]

ij m[α] +
(

1 − a[α]
ij

) (
1 − m[α]

)]
. (7.19)

For weighted multiplex networks we have instead

A �m
ij =

M∏
α=1

[
θ

(
a[α]

ij

)
m[α] +

(
1 − θ

(
a[α]

ij

)) (
1 − m[α]

)]
. (7.20)

Thus, multi-adjacency matrices satisfy the condition

∑
�m

A �m
ij = 1 (7.21)

for every fixed pair of nodes (i, j). Multi-adjacency matrices are a way to describe
the same information encoded in the M adjacency matrices of each layer, and while
they do not encode more information, they can be useful auxiliary tools to derive the
general expression of the multidegrees as a function of the adjacency matrices a[α]. The
multidegree k �m

i of a node i is the total number of multilinks �m incident to node i,

k �m
i =

∑
j|j �=i

δ( �m, �mij), (7.22)

where δ( �m, �mij) = 1 for �m = �mij and δ( �m, �mij) = 0 otherwise. Considering the fact that
every pair of nodes is connected by a given multilink �m, we have that the multidegrees �m
of each node satisfy

∑
�m

k �m
i = N − 1 (7.23)

where this expression is derived in the absence of tadpoles, i.e. in each layer there are no
links connecting a node with itself.
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In terms of the multi-adjacency matrices we can express the multidegree k �m
i as

k �m
i =

N∑
j=1

A �m
ij (7.24)

and consequently using Eq. (7.19) we obtain for the unweighted multiplex network

k �m
i =

N∑
j=1

M∏
α=1

[
a[α]

ij m[α] +
(

1 − a[α]
ij

) (
1 − m[α]

)]
, (7.25)

while for weighted multiplex networks we have

k �m
i =

N∑
j=1

M∏
α=1

[
θ

(
a[α]

ij

)
m[α] +

(
1 − θ

(
a[α]

ij

)) (
1 − m[α]

)]
. (7.26)

As an example, here we list the non-trivial multidegrees �m, with �m �= �0, for a given duplex
network in terms of the adjacency matrix a[1] of layer 1 and a[2] of layer 2 given by

k(1,0)
i =

N∑
j=1

a[1]
ij

(
1 − a[2]

ij

)
,

k(0,1)
i =

N∑
j=1

(
1 − a[1]

ij

)
a[2]

ij ,

k(1,1)
i =

N∑
j=1

a[1]
ij a[2]

ij . (7.27)

The trivial multidegree k(0,0)
i can be found by using Eq. (7.23). Considering the example

of a social duplex, formed by the same set of agents interacting by mobile phone in layer
1 and by email in layer 2, k(1,0)

i indicates the number of acquaintances of node i that

only communicate with it via mobile phone, k(0,1)
i indicates the number of acquaintances

of node i that only communicate with it via email and k(1,1)
i indicates the number of

acquaintances of node i that communicate with it via both mobile phone and email.
Sometimes it might be convenient to represent the type of multilink �m with an integer

number q ∈ {0, 1, 2, . . . , 2M − 1} whose binary representation is �m, i.e.

q =
M∑

α=1

2α−1m[α]. (7.28)
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Using this notation we can construct a weighted aggregated multi-adjacency matrix a of
elements

aij = qij =
M∑

α=1

2α−1m[α]
ij . (7.29)

The weighted aggregated multi-adjacency matrix is encoding all the information of the
multi-adjacency matrices as we have

A �m
ij = δ

(
aij ,

M∑
α=1

2α−1m[α]

)
(7.30)

where δ(x, y) is the Kronecker delta. Finally, the multidegree k �m
i can be also expressed in

terms of the weighted aggregated multi-adjacency matrix a as

k �m
i =

N∑
j=1

δ

(
aij ,

M∑
α=1

2α−1m[α]

)
. (7.31)

When the number of layers M is very large, the classification into multilinks can
become computationally demanding. In this case, a partial information about the overlap
of the links across different layers is given by the link multiplicity νij defined in Sec. 6.2.3.
This quantity can be related to the multilinks as

νij =
M∑

α=1

m[α]
ij , (7.32)

where the nodes i and j are linked by a multilink �mij .
In the context of financial networks it has been shown that the multidegree can be

an extremely powerful tool. Specifically, in a recent study [218] a multiplex network
between assets has been constructed by considering four layers, each one formed by
the network of significant correlations between the assets as indicated respectively by
the Pearson, Kendall, Tail and Partial dependencies. While the Pearson dependence
evaluates the linear correlations, the other measures go beyond the linear correlations.
By analysing the financial market during the 2007–8 crisis, the Authors show evidence
that the multidegree corresponding to links existing simultaneously in the Kendall, Tail
and Partial layers but not existing in the Pearson layers reveals the roles of different
industrial sectors in financial crises.

Recently, multilinks have also been used as motifs in order to characterize the
connectome of the nematode C. elegans. In Ref. [37] the identity of the over- and under-
represented multilinks are shown in the multiplex network with M = 3 layers formed
by the monoamide extra-synaptic layer (directed), electric gap junction connections
(bidirectional) and synaptic connections (directed). The analysis reveals the location of
the network where aminergic signalling modulates synaptic activity.
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7.3.3 Multidegree distribution

The multidegree distribution P({k �m}) indicates the probability that a random node of a
multiplex network has multidegrees k �m

i = k �m for every non-trivial multidegree �m �= �0
and is given by

P({k �m}) = N({k �m})
N

, (7.33)

where N({k �m}) indicates the number of nodes with non-trivial multidegrees {k �m}. The
multidegrees can be either uncorrelated or correlated. For uncorrelated multidegree
distributions we have

P({k �m}) =
∏
�m�=�0

P �m(k �m) (7.34)

where P �m(k �m) is the distribution of the multidegrees k �m, i.e.

P �m(k �m) = N �m(k �m)

N
(7.35)

where N �m(k �m) is the number of nodes with k �m
i = k �m. If the relation defined in Eq. (7.34)

does not hold, the multidegrees are correlated. For a duplex network, having correlated
multidegree can indicate that nodes having many multilinks (1, 1) characterizing interac-
tions occuring on both layers might also have many multilinks of the type (1, 0) or (0, 1)

characterizing single-layer interactions. In this case, the nodes with high multidegree
k(1,1) will also tend to have high multidegree k(1,0) and k(0,1).

7.4 Correlations in weighted multiplex networks

In single networks the interplay between weights and topology is revealed by studying the
strength and the inverse participation ratio as a function of the node degrees (see Sec.
2.5.3). In weighted multiplex networks the statistical properties of the weights can be
strongly affected by link overlap. In order to capture this phenomenon the multistrengths
and the inverse multiparticipation ratio have been introduced in Ref. [209]. For every
layer α the multistrength s �m,[α]

i and the inverse multiparticipation ratio Y �m,[α]
i of node i

are defined as

s �m,[α]
i =

N∑
j=1

a[α]
ij A �m

ij ,

Y �m,[α]
i =

N∑
j=1

(
a[α]

ij A �m
ij∑

r a[α]
ir A �m

ir

)2

. (7.36)
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The multistrength s �m,[α]
i indicates the total weights of the links incident to node i in layer

α that participate in a multilink of type �m. The inverse multiparticipation ratio Y �m,[α]
i is

a measure of the inhomogeneity of the weights of the nodes that are incident to node i
in layer α and at the same time are part of a multilink �m.

The average multistrength of nodes with a given multidegree, i.e. s �m,[α](k �m) =〈
s �m,[α]
i δ(k �m

i , k �m)
〉
, and the average inverse multiparticipation ratio of nodes with a given

multidegree, Y �m,[α](k �m) =
〈
Y �m,[α]

i δ(k �m
i , k �m)

〉
, are typically scaling as

s �m,[α](k �m) ∝ (k �m)β̂ �m,α

Y �m,[α](k �m) ∝ (k �m)−λ̂ �m,α , (7.37)

with exponents β̂ �m,α ≥ 1 and λ̂ �m,α ≤ 1. In Ref. [209] the weighted multilink properties of
multiplex networks between scientists collaborating (in layer 1) and citing each other (in
layer 2) have been analysed starting from the APS data set. In Fig. 7.4, the multistrength
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Fig. 7.4 Properties of multilinks in the weighted collaboration (layer 1)/citation (layer 2) multiplex
network based on the PRE publications analysed in Ref. [209]. In the case of the collaboration network,
the distributions of multistrengths versus multidegrees always have the same exponent, but the average
weight of multilinks (1,1) is larger than the average weight of multilinks (1,0). Moreover, the exponents
λ(1,0),col,in, λ(1,0),col,out are larger than exponents λ(1,1),col,in, λ(1,1),col,out. In the case of the citation layer,
both the incoming multistrengths and the outgoing multistrengths have a functional behaviour that varies
depending on the type of multilink.Conversely, the average inverse multiparticipation ratio in the citation
layer does not show any significant change of behaviour when compared across different multilinks.
Reprinted figure from Ref. [209] ©Menichetti et al.
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and inverse multiparticipation ratio for the collaboration and citation networks of PRE
Authors are shown.

In this case the citation network is also directed, and the multistrength s(1,0),[2],in
i,1

indicates the number of times Author i is cited by scientists that are not his coauthors,
while s(1,1),[2],in

i,1 indicates the number of times he is cited by his coauthors. Similarly,

s(1,0),[2],out
i,1 indicates the number of times Author i cites scientists that are not his

coauthors while s(1,1),[2],in
i,1 indicates the number of times he cites his coauthors. These

multistrengths display a non-linear scaling with β̂ �m,α,in > 1 and β̂ �m,α,in > 1. Interestingly,
this analysis shows that the statistical properties of the weights belonging to multilinks
�m = (0, 1) and �m = (1, 1) are distinct (the exponent β̂(1,0),α,in/out is significantly
smaller than the exponent β̂(1,1),α,in/out). In this way it is possible to reveal a pattern that
cannot be inferred by looking at the single layer taken in isolation, quantifying the
trend according to which authors tend to cite significantly more the hub authors with
whom they have collaborated than the authors with whom they have not collaborated.

7.5 The activities of the nodes and pairwise multiplexity

Any multiplex network of N nodes and M layers has an underlying bipartite network
describing which nodes are active (connected) in which layer (see Fig. 7.5). Let us
indicate by b the incidence matrices of this undirected bipartite network. For an
undirected multiplex network, the incidence matrix b of the bipartite network has the
generic element biα indicating whether node i is connected in layer α, i.e.

biα = 1 − δ
(

0, k[α]
i

)
. (7.38)
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Fig. 7.5 Schematic representation of the bipartite network between nodes and layers characterizing the
activity of the nodes in a multiplex network.
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For a directed multiplex network, node i is inactive in layer α if both its in-degree and
its out-degree in layer α are zero. Therefore, we can define the matrix elements biα as

biα = 1 − δ
(

0, k[α]
i,in

)
δ
(

0, k[α]
i,out

)
. (7.39)

Note that for directed multiplex networks it is also possible to extract a directed bipartite
network indicating whether a given node has positive in-degree and/or positive out-
degree in any given layer (see its use in the context of centrality measure discussed in
Sec. 9.5). The activity Bi of a node i has been defined in Ref. [230] and is given by the
number of layers in which node i is active:

Bi =
M∑

α=1

biα. (7.40)

In Ref. [230] several real multiplex networks were analysed, showing that the activity of
the nodes has a broad distribution with unbounded fluctuations in most cases.

The layer activity N [α] has been defined in Ref. [230] and is given by the number of
nodes active in layer α:

N [α] =
N∑

i=1

biα. (7.41)

Scandinavian

easyjet

Ryanair

Wizz Air

Flybee

British Airways

Air France

Alitalia

Lufthansa

KLM

Norwegian

Swiss
Aer Lingus

Siberian
Aeroflot

Austrian

Iberia

Air berlin

Finnair Russian

Fig. 7.6 The network between 20 European airline companies in which each link is weighted with its layer
pairwise multiplexity. This method can reveal non-trivial correlations between the activities of the nodes
in the different layers. Reprinted figure with permission from [230] ©(2015) by the American Physical
Society.
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In Ref. [230] the Authors studied the layer pairwise multiplexity Qαβ , measuring the
correlation between the layers. The layer pairwise multiplexity is defined as

Qαβ = 1
N

N∑
i=1

biαbiβ , (7.42)

and quantifies the fraction of nodes that are active in layer α as well as in layer β. Similarly,
one can use the node pairwise multiplexity Qij measuring the correlation of activities
between two nodes. The node pairwise multiplexity, introduced in Ref. [84], is defined as

Qij = 1
M

M∑
α=1

biαbiβ (7.43)

and quantifies the fraction of layers in which both node i and node j are active.
In Fig. 7.6 the network of European airline companies is plotted, where the links

between two different companies are weighted with the layer pairwise multiplexity. This
method can reveal non-trivial correlations between the activities of the nodes in different
layers.
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Communities

8.1 The relevance of communities in multilayer networks

Communities of multilayer networks might span across different layers. For example,
in scientific collaboration networks communities might form around similar scientific
topics. Therefore, the communities detected in the different layers of the scientific
collaboration networks can be correlated. Similarly, in multi-slice networks, political
coalitions identified by politicians having similar voting behaviours in the US Congress
might have a continuity over time that spans several legislatures. Interestingly, com-
munities in multi-slice networks might also be recurrent. For example, if we con-
sider the communities formed by contact networks of children in primary school it
can be observed that the communities depend on the time of the day, and that the
communities forming during class activities can form in the morning, dissolve during
lunch and playground activities and form again in the afternoon. In this scenario we
will indicate the communities spanning different layers (which might have a temporal
connotation or not) as multilayer communities. In order to evaluate the multilayer nature
of communities, different methods have been explored. A wide class of algorithms
deals directly with the problem of multilayer community detection. Another series of
studies instead evaluates the similarity between the mesoscale structure of different
layers. Finally, some works are starting to address the related question of whether or
not the information of a multilayer network can be compressed by aggregating different
layers.

8.2 Multilayer community detection

In this section we will describe several approaches proposed for community detection in
multilayer networks. These approaches can be classified in five major classes: maximiza-
tion of multilayer modularity; consensus clustering; clustering based on the properties
of multilayer random walks; multilink community detection; and approaches based on
tensor decomposition and tensor computation.

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001
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8.2.1 Community detection algorithms using
a generalized modularity measure

The first paper that has proposed a multilayer community detection algorithm is Ref.
[219]. The proposed algorithm applies to multilayer networks in which there is a
one-to-one map between the nodes in each layer and interlinks are placed between
corresponding nodes. Therefore, this algorithm applies to multiplex networks and to
multi-slice temporal networks (see Fig. 4.1 panels (a) and (b)). A central element of this
algorithm is the explicit treatment of the interlinks among replica nodes that are used to
favour the persistence of the communities across different layers.

Specifically, in Ref. [219] the multilayer communities are detected by a greedy
algorithm based on the optimization of the generalized modularity QM . The generalized
modularity QM aims at quantifying how significant the multilayer communities are with
respect to a random hypothesis. A suitable random hypothesis for the multilayer network
structure is that the generic layer α is an uncorrelated random network. In this case, the
probability p[α]

ij that node i and node j are connected by a link in layer α is given by

p[α]
ij = k[α]

i k[α]
j〈

k[α]
〉
N

, (8.1)

where k[α]
i indicates the degree of node i in layer α. The multilayer community

assignment is determined when each replica node (i, α) is associated with the community
g[α]

i ∈ {1, 2, . . . , P}. The generalized modularity quantifies the quality of this multilayer
community assignment by measuring how tightly connected the multilayer communities
are with respect to the random hypothesis given by Eq. (8.1). Specifically, the generalized
modularity QM is taken to be

QM = 1
μ

∑
i,j,α,β

{(
Aiα,jβ − γ [α]

k[α]
i k[α]

j〈
k[α]

〉
N

)
δα,β + ωAiα,jβδij

}
δ
(

g[α]
i , g[β]

j

)
, (8.2)

where Aiα,jβ is the supra-adjacency matrix, μ = ∑
i,j,α Aiα,jα +ω

∑
i,α,β Aiα,iβ and δ(x, y)

indicates the Kronecker delta. The multilayer modularity can be optimized for finding the
optimal community assignment of the multilayer network as a function of the parameters
ω and γ [α], also called the resolution parameters. Specifically, the generalized modularity
QM is maximized according to a greedy optimization which follows similar steps to those
used by the Louvain algorithm [53].

For ω = 0 and γ [α] = 1, the generalized modularity QM is proportional to the average
of the modularities Q[α] of any given layer α, i.e.

QM = 1
μ

M∑
α=1

Q[α] (8.3)
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where

Q[α] = 1〈
k[α]

〉
N

∑
ij

(
Aiα,jα − k[α]

i k[α]
j〈

k[α]
〉
N

)
δ
(

g[α]
i , g[α]

j

)
. (8.4)

Interestingly, in biological applications when considering a multiplex network formed by
the protein–protein interaction network and the regulatory network one might just use
this measure to find the multilayer communities [36].

By setting the parameter ω to a non-zero value ω �= 0, in the definition of QM

(Eq. (8.2)) it is possible to favour the persistence of the communities involving the same
node in different layers. Finally, the parameter γ [α] can also be tuned to bias the algorithm
toward bigger or smaller communities. In fact, by taking γ [α] = 1, ∀α ∈ {1, 2 . . . , M}, the
resulting partition may not reflect the true community structure of the network. In fact,
the method might favour the detection of smaller communities. By setting γ [α] < 1 larger
communities are resolved, whereas for γ [α] > 1 more communities containing fewer
nodes are detected. Therefore, exploring the communities detected by the algorithm for
different values of the resolution parameters might provide important additional insights
into the mesoscale structure of the multilayer dataset under consideration.

This community detection algorithm has been successfully used [219] for character-
izing a variety of datasets including the temporal network between US Senators with
similar voting profiles from the first to the 110th US Congresses, covering the years
1789–2008.

Interesting results are obtained in Ref. [28] where this algorithm is applied to multi-
slice brain functional networks. In particular, the Authors show that the flexibility of the
brain functional network correlates to the learning activity. The flexibility fi of a node i
evaluates the fraction of times that a node changes multilayer community assignment in
a given experimental session of length M. The flexibility F is the average of the flexibility
of the nodes i, i.e.

F = 1
N

N∑
i=1

fi . (8.5)

In Ref. [28] brain functional networks of individuals performing simple motor tasks are
considered. It is found that the flexibility measured at a given session of the experiment
is correlated with the amount of learning in the subsequent session (see Fig. 8.1).

8.2.2 Consensus clustering

A large number of community detection algorithms used for single networks provides
results that are not deterministic, that depend on random seeds and other contingencies.
In Ref. [182] consensus clustering has been proposed to generate stable, accurate results
from the stochastic partitions provided by this class of community detection algorithms.



Multilayer community detection 149

0.015

0.005

C
ha

ng
e 

in
 F

le
xi

bi
lit

y

–0.005

–0.015

–0.01

0

0.1

0.05

0
0 0.02 0.04

Flexibility
0.06

L
ea

rn
in

g

0.01

Session 1–2

Prediction 2–>3Prediction 1–>2

Session 2–3

(a) (b)

(c) (d)

0 0.6
r

0 0.7
r

Prediction 1–>2 Prediction 2–>3

Fig. 8.1 The flexibility of brain functional networks measured during three experimental sessions in
which a given pool of individuals are asked to learn a motor task. The increase in flexibility from
experimental session 1 to session 2 and the magnitude of the decrease in flexibility from session 2 to
session 3 is significantly greater than zero as shown in panel (a). Panel (b) demonstrates the significant
predictive correlations between flexibility in session 1 and learning in session 2 and between flexibility in
session 2 and learning in session 3. In panel (c) the brain regions whose flexibility in session 1 predicted
learning in session 2 are shown. In panel (d) the brain regions whose flexibility in session 2 predicted
learning in session 3 are shown. Reprinted from Ref. [28].

The method applies to single layers and multilayer networks as well, including multiplex
and temporal networks [70].

Let us first briefly discuss this algorithm on single layers and then its application
to temporal and multiplex networks. The algorithmic steps required for finding the
consensus clustering on single networks are described in the following [182]:

(i) Make a choice of a community detection algorithm that can cluster weighted
networks and that generates at each run a stochastic partition such as the Louvain
or the Infomap algorithm.

(ii) Run the algorithm nP times, obtaining nP stochastic partitions.
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(iii) Construct the weighted consensus graph with weighted adjacency matrix D with
elements

Dij = nij

nP
(8.6)

where nij is the number of partitions in which node i and node j are assigned to
the same cluster (see Fig. 8.2).

(iv) Set to zero all the entries below a certain threshold τ , as long as the network
remains connected.

(v) Apply the chosen community detection algorithm to the weighted consensus
graph nP times to yield np partitions.

(vi) If the partitions are all equal, stop, otherwise go back to point (iii).

In Ref. [182] the Authors have shown that the consensus clustering improves both the
stability and the accuracy of the detected partitions.

This method can be applied both to temporal networks and the multiplex networks.
When considering a temporal network formed by M slices, it is possible to apply the

consensus clustering to the layers belonging to a sliding window of r temporal slices
such that the first window includes the slices for 1 to r, the second window includes the
slices from 2 to r + 1 and so on. There are two sources of fluctuations: the fluctuations
generated by the stochastic community detection algorithm associated with each single
layer and the fluctuations due to the intrinsic dynamics of the temporal network. Once
the consensus clustering is determined for each different sliding window, the clusters
detected at different timeframes are identified using the Jaccard index given by the
number of replica nodes in both clusters divided by the number of replica nodes that are
in either one or the other cluster. In Ref. [182] this method has been applied to the APS
citation network studied as a function of time as a multi-slice network. This technique

Original Graph Consensus Graph

(I)

(II)

(III)

(IV)

Dij = 1

Dij = 3/4

Dij = 2/4

Dij = 1/4

Fig. 8.2 Schematic description of the construction of the consensus graph with weighted adjacency matrix
D out of four stochastic partitions of a single network.Reprinted by permission from Macmillan Publishers
Ltd: Scientific Reports [182]. ©2012.
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Fig. 8.3 The clusters detected by consensus clustering in the APS citation network that have the keyword
‘Network(s)’ among the top 15 most frequent words appearing in the title of the papers, are displayed.
A colour uniquely identifies a module, while the width of the links between clusters is proportional to the
number of papers they have in common.A rapid growth of the field ‘Complex Networks’ is observed which
eventually splits in to a number of smaller subtopics like Community Structure, Epidemic Spreading,
Robustness, etc.Adapted by permission from Macmillan Publishers Ltd:Scientific Reports [182].©2012.
Courtesy of the Authors.

has been shown to be able to characterize the temporal evolution and the emergence
of scientific topics over time. As an example of the results obtained Fig. 8.3 shows the
multilayer clusters found where only papers including the keyword ‘Network’ in the title
are considered, revealing the temporal evolution of this scientific field.

In Ref. [70], a consensus algorithm has been applied to multiplex biological networks
of M = 4 layers to detect cancer driver genes. In this case, first the consensus algorithm
was found for each single layer. Subsequently, the consensus clustering was applied to
the full multiplex network for merging the information coming from the partitions found
on the different layers.

8.2.3 Detecting mesoscale structure using random walks

Random walks on single networks are known to reveal their mesoscale structure. In fact,
the transient to the steady state is characterized by a dynamical flow that remains localized
on network clusters, revealing mesoscale communities and functional modules. One of
the most successful community detection algorithms on single networks, the Infomap,
exploits the properties of the random walk and, using information theory techniques,
determines the modular structures that capture the constraints on the random walk flow
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Fig. 8.4 Multilayer communities detected in Ref. [89] are found to span across different network layers.
The heat maps show the similarities between network layers, measured as the fraction of replica nodes in
different network layers that are assigned to the same communities. Reprinted figure from Ref. [89].

dynamics (see Sec. 2.6.4). In particular, by minimizing the length of the string encoding
the dynamics of the random walk on a network with a modular partition, the method finds
the dynamical regularities that identify the functional modules of the multiplex network
and identifies the best community structure for describing the random walk dynamics.
Recently this technique has been extended [89] to multiplex networks by allowing the
random walk to jump from one layer to another along their interlinks with a tunable
diffusion parameter.

Interestingly, this method can capture overlapping communities, i.e. the situation in
which single nodes participate in multiple communities at the same time. In fact, by
clustering replica nodes it is possible that each single node has different replica nodes
belonging to different clusters. This is a simple mechanism that can explain the rather
common appearance of community overlap as a clear manifestation of the relevance of
the multilayer nature of complex networks.

The Pierre Auger Collaboration network, including collaboration in the observatory of
ultra-high-energy cosmic rays, and the arXiv collaboration network of scientists working
on networks have been analysed in Ref. [89], finding highly overlapping modules. The
multilayer community structure can be exploited to construct a similarity between the
different layers of the two datasets. This similarity is equal to the number of scientists
whose replica nodes are assigned to the same community (see Fig. 8.4).

8.2.4 Multilink community detection

In multiplex networks it might be misleading to associate a single community to a replica
node. Consider, for instance, a multiplex network formed by several online social network
platforms, say Twitter and Facebook. It might be unrealistic to assume that an individual
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or even a single account belongs just to a single community. In fact, influential Twitter
or Facebook individuals/accounts tend to reach more than one community in both social
network platforms. It turns out that an individual can be a broker of information in
a community defined only on Twitter or in a community that extends to both social
network platforms.

The multilink community detection algorithm [215] addresses this concern and
uncovers the rich community structure of multiplex networks by clustering the multilinks
instead of nodes (or replica nodes), in this way providing a multiplex network equivalent
to the link communities of single layers (see Sec. 2.6.5). The algorithm is a hierarchical
clustering of the multilinks that operates starting from a similarity matrix between
multilinks. The similarity between two incident multilinks evaluates how clustered the
multiplex network is locally around the two multilinks, including additionally a cost for
local paths of lengths three and four that pass through multiple layers.

This community detection method reveals the rich interplay between the mesoscale
structure of the multiplex networks and their multiplexity. For instance, some nodes can
belong to many layers and few communities, while others can belong to few layers but
many communities. Moreover, the multilink communities can be formed by a different
number of relevant layers.

Let us outline the main properties of the similarity matrix between multilinks. Every
pair of multilinks connecting nodes i and r and nodes j and s is associated with the
similarity Sir,js. The similarity Sir,js is non-zero only between incident multilinks (i.e. for
s = r) and is a function of two parameters: ε and z. The parameter ε ∈ (0, 1) can be
tuned depending on the role assigned to the similarity among the two incident multilinks
(in terms of the presence of interactions in the same layers) with respect to the similarity
and the clustering of their local neighbourhood. The parameter z ∈ (0, 1) evaluates the
role of multiplexity and represents the cost attributed to incident multilinks of different
composition.

Starting from the similarity matrix between the multilinks it is possible to perform a
hierarchical clustering of clusters formed by multilinks. The resulting dendrogram can be
cut according to the selected score function. In Ref. [215] multilink community detection
has been applied to the Florentine Families Multiplex Network [236] formed by M = 2
layers, one layer describing the business dealings between N = 16 Florentine families in
the fifteenth century, the other layer their alliances due to marriages (see Fig. 8.5).

For each family the layer activity indicating in how many layers it is active is compared
with its community activity indicating in how many multilink communities it participates
(Fig. 8.5(d)). The families with high community activity emerge as the powerful brokers
between different communities, and we note that the Medici, belonging to three multilink
communities, play a pivotal role in the network.

The multilink community detection algorithm has also been applied to the European
Multiplex Air Transportation Network. The algorithm reveals that the main multilink
communities of this multiplex network have very different composition in terms of
single layers. In fact, the largest community is formed by connections existing in many
layers, while the second-largest community has a very different structure, with only
a few airlines contributing to this community. In order to capture this difference for
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Fig. 8.5 The Florentine Families Multiplex Network describing the business and marriage alliances of
the fifteenth-century Florentine families (panel (a)).A heat map displaying the multilink similarity matrix
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each community it is possible to define the layer specificity given by the fraction of
multilinks of the community having a link in the chosen layer. Fig. 8.6(a) shows the
very different composition of the two largest communities as indicated by the layer
specificities. Additionally, when comparing the airports and their community activity,
we observe (see Fig. 8.6(b)) that a large layer activity seems to be correlated with high
community activity, i.e. airports serving multiple airline companies typically belong to
many multilink communities. However, we note that there is significant variability in the
community activity of airports that are active in many layers. For example, Vienna (VIE)
and Amsterdam (AMS) have a comparable layer activity but very different community
activity. Similarly, there are airports with small layer activity but significant community
activity, for example Luton (LTN) and Bergamo (BGY) airports.
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Multilink communities reveal that the mesoscale structure of a multiplex network
can be organized via communities containing links in many different layers and, at the
same time, communities having one predominant layer. This suggests that the mesoscale
organization of multiplex networks has a rich structure that is not captured by methods
that aim at compressing the information on a few single layers.

8.2.5 Detecting mesoscale organization using tensor
computation

The tensorial description of multiplex and multi-slice networks has allowed network
scientists to extend methods coming from tensor computation to analyse the mesoscale
structure of these networks.

In Ref. [130] a non-negative tensor decomposition is used to detect the community
structure in multi-slice (multiplex) networks. Although the method proposed by the
Authors is very general, in Ref. [130] it is applied specifically to the study of tem-
poral multi-slice networks. The temporal multi-slice network is specified by a three-
dimensional tensor T ∈ R

N×N×M of elements Tijα, indicating the interaction between
node i and node j in layer α (temporal slice) with i = 1, 2, . . . , N and α = 1, 2, . . . , M.
Any such tensor can be factorized in the product of three rank-1 tensors according to
the decomposition

T =
RT∑
r=1

ar ⊗ br ⊗ cr , (8.7)

where ar , br and cr are three vectors in ∈ R
N . The smaller value of RT for which the

decomposition in Eq. (8.7) holds is the rank of the tensor. A visual representation of this
decomposition, also known as Kruskal decomposition, is shown in Fig. 8.7. The rank-1
tensors ar , br and cr are called the components of the temporal network and for each value
of r they indicate respectively two sets of interacting nodes (ar , br) and a set of typical
times (cr) at which these interactions occur.

Although the 3-rank tensor can always be decomposed exactly according to Eq. (8.7),
the exact decomposition might represent too fine a decomposition of communities. In
order to decompose the tensor into fewer and more relevant components, the so-called

= + +  ···

representation of
the temporal network

component 1 component 2

Fig. 8.7 Pictorial representation of the Kruskal decomposition.The original three-way tensor represented
in the left as a cube is decomposed into the sum of several components (rank-1 tensors) each one generated
by the outer product of three one-dimensional vectors. Reprinted figure from Ref. [130].
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PARAFAC decomposition can be used. This method minimizes the difference between
the tensor T and the sum of R outer products of three vectors

min{ar ,br ,cr}

∣∣∣∣∣
∣∣∣∣∣T −

R∑
r=1

ar ⊗ br ⊗ cr

∣∣∣∣∣
∣∣∣∣∣
2

F

, (8.8)

where ||T̃ ||F indicates the Frobenius norm ||T̃ ||2F =
√∑

ij,α |T̃ ijα|2. In Ref. [130] the
Authors focus on non-negative PARAFAC decomposition, imposing that the rank-1
tensors have non-negative elements. This is a customary condition ensuring a straight-
forward interpretation of the resulting decomposition as a purely additive representation
of the tensor. The resulting factorization of the tensor depends on the number of
components R. In order to find the best factorization, in Ref. [130] the Authors propose
a method of assessing the quality of the factorization and achieving very robust results
of this tensor-based community detection algorithm.

This procedure has been applied to temporal network data describing face-to-face
interactions between children in a primary school collected by the Sociopatterns project
[289]. The detected communities simultaneously cluster students and interaction times.
Most of the detected clusters correlate with the division of students in different classes;
nevertheless, this technique is also able to detect components corresponding to mixed
class activities such as lunch and playground activities (see Fig. 8.8). Interestingly, it has
been found that some communities such as class activities have a non-trivial temporal
pattern and during a typical day can form, dissolve and reform again.

A distinct study [195] uses the tensor representation of a multiplex network together
with a combinatorial optimization algorithm to detect the so-called recurrent heavy sub-
graphs (RHS). The recurrent heavy subgraphs represent meaningful biological modules
from a large dataset of gene co-expression networks. The experimental microarray data
about gene expression in different biological tissues is represented as a collection of co-
expression networks forming a multiplex network. The multiplex network is described
by a tensor Tijα indicating the weights of the links between gene i and gene j in tissue
α. This representation of the dataset allows the Authors of the paper to use continuous
optimization methods to analyse the entire dataset. In particular, the recurrent heavy
subgraphs (RHV) are identified by two membership vectors:

a) the gene membership vector x = (x1, x2, . . . xi , . . . , xN ) indicating whether node i
belongs to RHS (xi = 1) or not (xi = 0)

b) the network membership vector y = (y1, y2, . . . yα, . . . , yM) indicating whether the
RHS appears in layer α(yα = 1) or not (yα = 0).

The detection of the RHS is turned into a combinatorial optimization problem: the
optimization problem identifies the heaviest among all RHS. The weight of an RHS
is determined by the function H(x, y) given by the sum of the weights of the link in the
RHS, i.e.

H(x, y) = 1
2

N∑
i=1

N∑
j=1

M∑
α=1

Tijαxixjyα. (8.9)
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Fig. 8.8 The non-negative tensor decomposition algorithm proposed in Ref. [130] is applied to the
Sociopattern dataset of school children, detecting 13 temporal communities. Most of them correspond
to class-specific activities and correlate with the division of students into classes. Three of them
instead correspond to mixed class activities such as lunch and playground activities. Reprinted figure
from Ref. [130].
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Fig. 8.9 Illustration of the recurrent heavy subgraphs (RHS) (panel (a)) and its characterization in
terms of the gene membership vector x and the tissue (network) membership vector y, indicating the
relevance of the RHV respectively for the genes and the tissues (networks)(panel (b)). The reordering of
the tensor according to the descending rank of the membership vectors reveals a compact cluster of gene
and tissue (networks) involved in the RHS (panels (c), (d)). Reprinted from Ref. [195]

Nevertheless, this problem has high computational complexity as long as the vectors x, y
have binary elements taking exclusively the values 0, 1 (the problem has been proved
to be NP-hard). Therefore, in Ref. [195] the Authors have turned the problem into a
continuous optimization problem by allowing the membership vectors to take real values.
Specifically, they consider the following optimization problem to detect the RHS:

maxx∈RN+ ,y∈RM+ H(x, y)

subject to
{

f (x) = 1
g(y) = 1

(8.10)

where R+ is the non-negative real space and f (x), g(y) are vector norms. By tailoring the
choice of the vector norms to their problem and taking a combination of vector p-norms,
the Authors are able to detect the relevant RHS for the large database of gene expressions
and to relate these subgraphs to meaningful biological modules (see Fig. 8.9).

8.3 Correlations in the community structure of
multiplex networks

The communities in different layers of multiplex networks often present significant
similarities. This phenomenon has been observed in a variety of multilayer network
datasets including scientific collaboration networks and actor collaboration networks.
Importantly, the mesoscale similarity between the layers of a multiplex network can be
used to extract the network of effective interactions between layers.
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Already in the context of single layers, several measures have been proposed to
characterize the similarity between two community assignments. These include the
Normalized Mutual Information [85] and the information theory indicator function 	,
[50] based on the entropy of network ensembles. It is therefore natural to use extensions
of these measures to characterize the similarity of the communities found in different
layers of a multiplex network.

8.3.1 Normalized Mutual Information

The measure of Normalized Mutual Information (NMI) [85] between two layers α and
β quantifies to which extent groups of nodes belong to the same community in both
levels of the multiplex. Therefore, NMI is a measure of the similarity of the community
structure between two layers. A high value of NMI indicates that the community
structure of the two layers are quite similar. Conversely, a low value is attributed to
dissimilar structures. Let us consider two community assignments, {g[α]

i } and {g̃[β]
i },

indicating respectively the clusters σ = g[α]
i to which the replica node (i, α) belongs, with

σ = 1, 2 . . . P[α], and the clusters σ ′ = g̃[β]
i to which the replica node (i, β) belongs, with

σ ′ = 1, 2 . . . P[β]. The similarity in the community structure can be captured by the NMI,
which is given by

NMI({g[α]
i }, {g̃[β]

i }) =
−2

∑P[α]

σ=1
∑P[β]

σ ′=1 N [α,β]
σ ,σ ′ log

⎛
⎝ N [α,β]

σ ,σ ′ N

N [α]
σ N [β]

σ ′

⎞
⎠

∑P[α]

σ=1 N [α]
σ log

(
N [α]

σ

N

)
+ ∑P[β]

σ ′=1 N [β]
σ ′ log

(
N [β]

σ ′

N

) (8.11)

where N [α]
σ , N [β]

σ ′ are the number of nodes in the community σ in layer α and in the

community σ ′ in layer β respectively, whereas N [α,β]
σ ,σ ′ is the number of nodes that have

their replica node in layer α in the community σ and their replica node in layer β in the
community σ ′. In mathematical terms

N [α]
σ =

N∑
i=1

δ
(

g[α]
i , σ

)
,

N [β]
σ ′ =

N∑
i=1

δ
(

g̃[β]
i , σ ′),

N [α,β]
σ ,σ ′ =

N∑
i=1

δ
(

g[α]
i , σ

)
δ
(

g̃[β]
i , σ ′). (8.12)

The multilayer nature of the communities can be established by measuring the
similarities of the communities between any two layers of a multiplex network dataset.
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For a large number of multilayer network datasets it is found that communities of differ-
ent layers display significant variation of the NMI between their layers despite having
rather homogeneous structural properties, sometimes achieving significant similarity.
An example of this phenomenon is reported in Ref. [29] in the context of multiplex
scientific collaboration networks (APS datasets where scientists collaborate on different
topics) and actor collaboration networks (the IMDb dataset where actors play in movies
of different genres) (see Fig. 8.10 and Table 8.1).

APS

P

NI

CM

IMDb

0.
77

0.71

0.75

0.
75

0.72 0.
81

T

RC

A

0.
72

0.74

0.66

0.
76

0.65 0.
74

0.82

0.76

0.70

0.64

N
M

I

Fig. 8.10 Illustration of the similarity between four layers of the APS (left) and the IMDb (right)
multiplex collaboration networks.These include the Condensed Matter (CM),the Particles (P),the Nuclear
(N) and the Interdisciplinary (I) layers of the APS multiplex collaboration network and the Action (A),
Thriller (T), Romance (R) and Crime (C) layers of the IMDb multiplex collaboration network. The links
between the layers indicate the similarity of the community structures (from dark gray—most similar to
light gray—most dissimilar). Reprinted from Ref. [29].

Table 8.1 Structural properties of collaboration layers in the APS and IMDb datasets.The
number of nodes N, the average degree 〈k〉 and the clustering coefficient C are shown for each layer in a
subset of the APS and IMDb datasets. The layers are the same as in Fig. 8.10. Data from Ref. [29].

APS Code N 〈k〉 C

Nuclear N 1238 4.75 0.27

Particles P 1238 4.66 0.30

Cond. Matt. I CM 1238 10.29 0.24

Interdisciplinary I 1238 7.37 0.26

IMDb Code N 〈k〉 C

Action A 55797 83.56 0.61

Crime C 55797 82.30 0.58

Romance R 55797 86.00 0.59

Thriller T 55797 77.75 0.56
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8.3.2 Similarity index based on information theory

An alternative measure to evaluate the similarity between the mesoscale structure of
different layers of a multiplex network is the 	̃S indicator. This indicator is based on
information theory tools and specifically on the network entropy. In comparison to the
NMI this method has the advantage that it applies also to multiplex networks where nodes
have different activity, as it estimates the similarity between the layers also accounting for
the fact that eventually some nodes are present only in a few layers.

The indicator 	̃S is a variation of the 	 indicator proposed in Ref. [50] to quantify
the significance of a partition induced by a given feature of the nodes {qi} (such as a node
property or the node community assignment) with respect to the network structures in
single networks. The information theory measure 	 makes explicit use of the entropy of
network ensembles (see Sec. 2.8.5). Firstly, the block model resulting from the division
of the nodes into blocks formed by nodes of the same degree and the same community
is considered. The block model is defined by the number of links within each block and
between every pair of different blocks. The entropy of network ensembles �k,q evaluates
how many networks can be constructed with the given block structure. The smaller the
entropy of the network ensemble, the better the community structure reproduces the par-
tition of the network into blocks. To evaluate the significance of the partition with respect
to the network structure, in Ref. [50] it has been proposed to compare the obtained value
�k,q to the typical value �k,π(q) that one obtains for a random permutation π(q) of the
features of the nodes. To this end, the significance of a community with respect to the net-
work structure is given by the indicator function 	 which is the zeta-score of the entropy
of network ensemble with respect to the randomization of the features of the nodes
given by

	 = |�k,q − 〈
�k,π(q)

〉 |
σ

(
�k,π(q)

) (8.13)

with

σ
(
�k,π(q)

) =
〈
�2

k,π(q)

〉
− 〈

�k,π(q)
〉2

and 〈. . .〉 indicating the average of the permutations π(q).
Given a multiplex network, this method can be adapted to evaluate how similar the

community structures of two layers are. The technique is summarized in Fig. 8.11.
Let qα

i and qβ

i indicate the community assignment of node i in layer α and in layer β

respectively. These communities can be obtained by running a single-layer community
detection algorithm as the Louvain or the Infomap algorithm on each layer separately.

The indicator function 	kα ,qβ measures the specificity of the layer α with respect to

the particular community assignment qβ

i derived from the mesoscale structure of layer β.
This quantity can be normalized to obtain an unbiased (non-symmetric) indicator

	̃αβ which quantifies how much the community assignment of layer β is reflected in the
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Fig. 8.11 Diagram showing the method for the extraction of the similarity matrix 	S
αβ between the

mesoscale structure of the layers of a multiplex network. As a first step (panel (a)) the nodes are divided
into classes (k, q) of nodes, where k indicates their degree and q their characteristic. These classes induce a
block structure of the network indicating the number of links between the nodes of each class and the links
connecting the nodes in different classes. Subsequently (panel (b)), the entropy �k,q given by Eq. (10.15)
is calculated and compared with the entropy distribution obtained in a random hypothesis. Indeed, the
entropies �k,π(q) calculated after a uniform random permutation π(q) of the characteristics of the nodes
are calculated. The mean E(�k,π(q)) and standard deviation σ(�(k, π(q))) of the entropy distribution
P(�k,π(q)) is calculated. The indicator function 	 measures the difference between �k,q and E(�k,π(q))

in units of σ(�(k, π(q))). Finally (panel (c)), in a multiplex network 	̃α,β characterizes the similarities
between layer α and layer β. This quantity is found by normalizing with respect to a null hypothesis and
symmetrizing the indicator function 	kα ,qβ that quantifies the information about structure in layer α,
carried by the community structure in layer β. Reprinted figure from Ref. [165].
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Fig. 8.12 Optimal community structure in the network formed by the layers of the APS Collaboration
Network in which each layer represents a collaboration network in a specific area of physics,as described by
the second hierarchical level of the PACS code. The four communities using the 	̃S

α,β matrix contructed
starting from the community assignment provided by Infomap are represented by solid line ovals. The
partition obtained from the 	̃S

α,β matrix constructed starting from the Louvain communities includes
a finer division into two sub-communities indicated by dashed-line ovals. These communities form the
coarse-grained partition of the three blocks found at the first hierarchical level of the PACS code (rectangles).
Reprinted from Ref. [165].

network structure of layer α. The indicator 	̃S
α,β symmetrizes 	̃αβ and quantifies how

similar layer α and layer β are with respect to their community structures. The complete
set of similarities 	̃S

α,β forms an M × M matrix 	̃S between the layers of the multiplex
network. From this matrix it is possible to extract the network between the layers of the
multiplex structure.
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Fig. 8.13 The network between the layers of the APS Collaboration Network with layers corresponding
to the PACS code at the second level of the PACS hierarchy is shown. The network is extracted from the
	̃S similarity matrix constructed starting from the Infomap partitions of each separate layer. The colour
code indicates the four different detected communities of the network among the layers of the multiplex
collaboration network. Reprinted from Ref. [165].
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When comparing different layers of a multiplex network, the nodes that are active in
one layer might not be active in another layer. Nevertheless, the information carried by
the activity of the node might be significant. For example, if two layers have very different
activity patterns it might occur that the nodes that are inactive in one layer form a well-
defined cluster in the other layer, resulting in a very significant structural property of
the multiplex network that it is important to capture. Therefore, to distinguish between
active and inactive nodes in a layer it is very convenient to classify all the ‘inactive’ nodes
in one layer with a given common characteristic q.

The similarity matrix 	̃S has been used to analyse the American Physical Society
(APS) Collaboration Multiplex Network, in which physicists collaborate on different
scientific subjects determined by the subject classification known as PACS (Physics
and Astronomy Classification Scheme). The APS Collaboration Multiplex Network
considered in Ref. [165] is formed by M2 = 66 layers, each one describing the
collaboration network in a specific field of physics (second level of the PACS code
hierarchy).

From the similarity matrix 	̃S it is possible to propose an alternative hierarchy
between the PACS numbers. This method allows to characterize with a bottom-up
approach how the organization of knowledge in physics is effectively perceived by
scientists while shaping their collaboration network (see Fig. 8.12). We observe that
while the PACS hierarchy clearly captures main features of the collaboration network,
the analysis of Collaboration Multiplex Networks at the second level of the PACS
hierarchy clearly suggests a hierarchical organization of these PACS numbers that is
not equivalent to the first level of the PACS hierarchy. Finally, the information gained
by this analysis has been used to construct the network of networks between the layers
of the Collaboration Multiplex Networks. To this end, the weighted network determined
by imposing an opportune threshold on the similarity matrix 	̃S has been constructed
(see Fig. 8.13). The threshold is given by the minimum value of the similarity matrix
	̃S that ensures that each layer is connected to at least one other layer of its own cluster.
From these networks, it is possible to appreciate that, although the network between
the layer of the Collaboration Multiplex Networks is highly interconnected, the clusters
found correspond to layers much more similar to each other than to the layers of the
other clusters.

8.4 To aggregate or to disaggregate?

8.4.1 Reducibility of multilayer networks

When links have different connotations and indicate interactions of different types, there
are in general multiple ways to represent the raw data as a multilayer network. In fact,
different multilayer networks can be obtained by aggregating interactions of a similar
nature into single layers. Since the analysis of a multilayer network usually includes this
preprocessing step, one crucial problem is to identify for any given dataset which is the
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ideal number of layers M that allows us to find a tradeoff between keeping all the relevant
multilayer information and having an efficient representation of the dataset including
the smallest number of relevant layers. While this question has been addressed first by
studying local properties and centrality measures of multilayer networks [71], recently
this question has been tackled by looking at the mesoscale structure of networks. The
method proposed in Ref. [90] starts with a multilayer structure including a large number
of layers. At each step the most similar layers are aggregated, forming a dendrogram
describing the subsequent aggregation of layers. Finally, the best aggregation procedure
is found by cutting the dendrogram at a level corresponding to the best score function,
characterizing the best aggregation (see Fig. 8.14).

This procedure is very general, and one can imagine using several measures of
similarities between the layers to construct the dendrogram describing the aggregation
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Fig. 8.14 The figure describes the method used in Ref. [90] for determining the multiplex network
reducibility. Panel (a) displays the original multilayer (multiplex) network. Panel (b) describes the
aggregation procedure based on the similarity distance between layers and the construction of the
hierarchical dendrogram. Panel (c) describes the choice of the best aggregation according to a global
score function that is used to cut the dendrogram at a given level of the hierarchy. Panel (d) shows the
reduced multilayer (multiplex) network.Reprinted by permission from Macmillan Publishers Ltd:Nature
Communication [90] ©2015.
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procedure. In Ref. [90] the Authors consider a specific choice for these functions and
use network measures inspired by quantum information.

This method is applied to a large variety of datasets in biological, transportation
and social networks. These results suggest that multiplex networks might exhibit high
redundancy that allows the merging of up to 75% of layers with some notable exceptions
such as non-redundant efficient transportation networks.

8.4.2 Revealing the hidden multilayer structure of single
networks

Interestingly, not only has the problem of finding the best aggregation procedure
attracted the scientific interest of network scientists, but also the opposite theoretical
problem has been explored in the literature. In this case, the goal is to uncover the hidden
multilayer structure of an aggregated network that does not distinguish between links of
different types. In Ref. [298] an approximated method for detecting the best partition
of an aggregated network into two different layers is proposed using stochastic block
models. It is shown that by assuming that a given single network is the result of the
aggregation of different layers of a hidden multilayer structure, it is possible to make
more reliable predictions of missing links and more accurate predictions of spurious
interactions existing in real-world networks. The method has been applied to a large
variety of datasets including molecular, neuronal, social and transportation networks.

8.4.3 Assessing the multiplex nature of communities

In the precedent paragraphs we have discussed works that aim i) at finding the best
aggregation of multiplex networks ii) at disaggregating in an optimal way a single
network. A recent work addresses both questions using inference methods and stochastic
block models. In particular, in Ref. [247] the Author has proposed two generative
stochastic block models for layered networks and for each considered dataset has inferred
the parameters of these models using maximum likelihood. The first model considers
the layers as edge covariates. In this case, the aggregated network is generated first and
subsequently the layer membership of each edge is drawn randomly. In the second model,
each layer is generated independently of the others. These two generative models are
called edge covariates and independent layers (see Fig. 8.15). These two models represent
two opposite assumptions on the nature of communities of the multilayer network. In the
first case, the communities are essentially communities of the aggregated network; in the
second case their nature is intrinsically multilayer, as every layer has its own independent
community structure.

Performing an inference study on a real dataset allows the investigation of the intrinsic
character of its community structure. If the first model is the one that best fits the data, the
communities of the multilayer networks are the communities of the aggregated network.
On the contrary, if the second model best fits the data the communities of the dataset
have a multilayer nature.
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Fig. 8.15 Schematic representation of two processes that can be used to generate multilayer networks. In
the edge covariates model the aggregated network is generated first, and conditioned on it, the edges are
distributed among the layers. In the independent layers model the layers are formed independently of
each other. Reprinted figure with permission from Ref. [247] ©2015 by the American Physical Society.

Interestingly, this study provides two clear examples in which the model that best fits
the data is different. The first example is a social network of N = 241 physicians that were
asked to identify their social connection with respect to the following three questions:

(1) When you need information or advice about questions of therapy where do you usually
turn?

(2) And who are the three or four physicians with whom you most often find yourself
discussing cases or therapy in the course of an ordinary week? Last week for instance?

(3) Would you tell me the first names of your three friends whom you see most often socially?

This multilayer network of physicians is best fitted by the edge covariates model and the
independent layers model is rejected with the posterior odds ratio � ∼ 10−51. Therefore,
in this case the communities do not have an intrinsic multilayer nature, revealing that the
questions asked do not allow us to distinguish clearly between the different layers.

The second example is the network of vote correlations among federal deputies of
the Brazilian national congress between the years 1999 and 2006 including the two
consecutive terms (1999–2002 and 2003–6) forming the two layers of the network. In
this case the independent layer model is the one that best fits the data and the edge
covariates model can be rejected, with � ∼ 10−111 indicating that the multilayer network
is very informative of the network structure.

In conclusion, this work shows that there is no general answer to the question: to
aggregate or to disaggregate? and the suitable answer depends on the dataset.
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Centrality Measures

9.1 Centrality measures and multiplexity

In multilayer networks as well as in single layer networks it is often the case that a ranking
of the nodes is necessary for summarizing the information encoded in the network
structure. Centrality measures originally defined on single networks have been used
extensively in social sciences and technological and biological networks. In multilayer
networks these measures can be extended in different ways. A set of centrality measures is
especially tailored to multiplex networks without interlinks. In these settings it is possible
to either evaluate the effect that the centrality of a node in one layer has on its centrality
on the other layer (Multiplex PageRank) or to associate a different influence with the
links of different layers that weights their contribution to the centrality of the nodes
(Multiplex Eigenvector Centralities, Functional Multiplex PageRank and MultiRank).
Other algorithms allow us to tackle the centrality of nodes on general multilayer networks
directly as they include an explicit treatment of interlinks (Versatility, Communicability).
Finally, suitable centrality measures for multi-slice networks have also been explored that
take into account the temporal sequence of the layers.

9.2 Multiplex PageRank

The Multiplex PageRank [147] evaluates the centrality of the nodes of multiplex
networks. The main effect that the Multiplex PageRank aims at capturing is the influence
of the centrality of a node in one layer on its centrality in another layer. Consider for
example a very central actor in the movie collaboration network. If the famous actor takes
part in social causes his/her centrality in the actor–movie collaboration network might
influence his/her centrality in socio-political causes. This is the case, for example, with
famous actors such as Angelina Jolie, who is also a UN Goodwill ambassador. Therefore,
in the Multiplex PageRank the centrality of a node in one layer might affect the centrality
of the same node in other layers.

In order to capture this phenomenon a master layer α with adjacency matrix a[α]
ij can

be chosen and the corresponding PageRank centrality can be calculated. The PageRank
xi of a node i in a network is given by

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001
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xi = μ

N∑
j=1

a[α]
ji

xj

κ̂j
+ ω, (9.1)

where κ̂j = max
(
κ̃j , 1

)
, with κ̃j = ∑N

r=1 a[α]
jr . Here δ(x, y) indicates the Kronecker delta

and ω, the teleportation parameter, enforces the normalization of the PageRank central-
ities.

Given the rank xi of node i in the layer α, the Multiplex PageRank algorithm measures
the centrality of this node in any other layer β with adjacency matrix a[β]

ij using a random
walker, as in the usual PageRank. At each time step the random walker placed on a
given node of the network either hops to a neighbouring node or jumps to a random
node of the network (teleportation jump). Moreover, the random walker of the Multiplex
PageRank has a probability of visiting any of the nodes that is affected by their rank xi in
layer α. In other words, the Multilayer PageRank evaluates the rank of the nodes in layer
β by determining the stationary probability of a random walk in layer β, biased by the
PageRank of the nodes in layer α. The Multiplex PageRank Xi(q, n) of node i depends
on two parameters q, n ∈ {0, 1} and satisfies

Xi(q, n) = μ

N∑
j=1

(xi)
qa[β]

ji
Xj(q, n)

κj
+ ω

(
xi

〈x〉
)n

, (9.2)

where κj and ω are given by

κj = max

(
N∑

r=1

a[β]
jr (xr)

q, 1

)

ω = 1
N

N∑
j=1

[
1 − μ + μδ

(
N∑

r=1

a[β]
jr (xr)

q, 0

)]
Xj(q, n). (9.3)

For (q, n) = (0, 0) the Multiplex PageRank Xi(q, n) reduces to the PageRank of layer β

which is independent of the ranking on the layer α. However, for (q, n) �= (0, 0) we
distinguish the following non-trivial cases of Multiplex PageRank:

(1) Additive Multiplex PageRank:
The Additive Multiplex PageRank is obtained for (q, n)= (0, 1). In this case,
when performing the teleportation jump the random walker chooses his desti-
nation node i according to his centrality xi in layer α.
In the Additive Multiplex PageRank each node in layer β derives an added benefit
by being central in network α, regardless of the relevance of the nodes that point
to it in layer β.

(2) Multiplicative Multiplex PageRank:
The Multiplicative Multiplex PageRank is obtained for the parameter val-
ues (q, n)= (1, 0). In this case, the random walker hopping from node j to a
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neighbouring node i chooses the node i from the neighbours of node j with a
probability proportional to its PageRank centrality xi in layer α.
In the Multiplicative Multiplex PageRank each node in layer β derives an added
benefit by being central in network α, but this benefit is contingent upon the
connections that a node receives from central nodes in network β.

(3) Combined Multiplex PageRank:
The Combined Multiplex PageRank is obtained for the parameter values
(q, n)= (1, 1). In this case, the random walker hopping from node j to a neighbour
node i chooses a node i from the neighbours of node j with a probability
proportional to its PageRank centrality xi in layer α. Additionally, when the
random walker jumps to a random node it chooses the random node with a
probability proportional to xi .
In the Combined Multiplex PageRank the effect of network α on network β is a
combination of the effects of an additive and of a Multiplicative PageRank.

In multiplex networks with more than two layers the Multiplex PageRank can also
be applied repeatedly to different layers of a given multiplex network once the most
opportune order between the layers has been chosen [163].

9.3 Multiplex Eigenvector Centralities

In multiplex networks links in different layers can contribute differently to the centrality
of the nodes. In order to capture this phenomenon in Ref. [278] the Authors have
introduced an M × M influence matrix w of non-negative elements wαβ describing the
influence of the generic layer β on layer α. The Multiplex Eigenvector Centralities
proposed are called local and global heterogeneous eigenvector-like centralities and rank
replica nodes in the multiplex network neglecting the effect of interlinks. Ranking replica
nodes responds to the need to tailor the ranking to a given aspect captured by a layer of
the multiplex network. For example, the centrality of an actor in the actor collaboration
network might be different from his centrality in social media. The local and the
global heterogeneous eigenvector-like centrality take into account all the layers of the
multiplex network, weighting their contribution as predetermined by a given influence
matrix.

The global heterogeneous eigenvector centrality x�
iα of a replica node (i, α) is given by the

eigenvector corresponding to the maximum eigenvalue of the supra-weighted matrix W
of dimension (N · M) × (N · M) given by

Wiα,jβ =
∑
β

wαβa[β]
ij . (9.4)

The local heterogeneous eigenvector centrality instead is the eigenvector of the block
diagonal supra-weighted matrix Ŵ of dimension (N · M) × (N · M) given by
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Ŵiα,jβ = δ(α, β)
∑
γ

wαγ a[γ ]
ij . (9.5)

The idea of considering the influence matrix is brilliant and meaningful for a number
of real-world multiplex networks. However, the shortcoming of these definitions of
centrality is that they require the knowledge of the influences wαβ which are M2

parameters typically not accessible to the network scientist. We will see how the concept
of influences of the layers has subsequently been developed in the Functional Multiplex
PageRank and in the MultiRank algorithms.

9.4 Functional Multiplex PageRank

9.4.1 A function as centrality measure

Characterizing the centrality of nodes in multiplex networks is a challenging task because
links of different types can contribute differently to the centrality of the nodes. Take,
for example, the multiplex airport network. A hub airport like Heathrow might gain
important centrality thanks to British Airways connections, while a hub airport like
Frankfurt might gain a relevant role thanks to its important function in the Lufthansa
network.

As different patterns of connections contribute differently to the centrality of a
node, in Ref. [164] an influence z �m is associated with each multilink �m. The Functional
Multiplex PageRank centrality determines the centrality of the node as a function of
the influences z = {z �m| �m �= �0} associated with its non-trivial multilinks in this way,
describing exhaustively the contribution to the centrality of the node coming from every
possible type of connection between two nodes of a multiplex network.

The Functional Multiplex PageRank captures the fact that different multilinks con-
tribute differently to the centrality of each node and associates with each node i an entire
function Xi(z). For each node i the function Xi(z) is also called the pattern to success
because from this function it is possible to extract the information about which types of
connections contribute the most to the centrality of the node.

The Functional Multiplex PageRank describes the steady state of a random walker
that hops from a node j to a neighbour node i with probability μ if this is possible, and
otherwise it jumps to a random node that is not isolated. When the random walker hops
to a random neighbour it follows each multilink �m �= �0 with a probability proportional to
z �m (see Fig. 9.1). As a function of the parameters z the Functional Multiplex PageRank
Xi(z) of node i can be reduced to:

(a) PageRank on each separate layer;

(b) PageRank on the aggregated network;

(c) PageRank on the network formed by the links (i, j) present at the same time in
every layer α = 1, 2, . . . M.
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Fig. 9.1 The Functional Multiplex PageRank defines the stationary state of a random walker that either
hops to a neighbour node connected by a non-trivial multilink �m with a probability proportional to the
influence z �m, or jumps to a random node of the multiplex network.

9.4.2 Definition

The Functional Multiplex PageRank Xi(z) of node i is defined as the steady state of the
random walker described in the previous section. Mathematically, Xi(z) is given by the
solution of the following recursive equation,

Xi(z) = μ

N∑
j=1

A �mji

ji z �mij 1
κj

Xj + ωvi , (9.6)

where z�0 = 0 and where κj and ω are normalization factors and the vector v determines
which nodes are not isolated. Specifically, by defining

κ̃j =
N∑

i=1

A �mji

ji z �mji

we have that κj , ω and vi are given by

κj = κ̃j + δ(κ̃j , 0),

ω =
N∑

i=1

[
(1 − μ) + δ(0, κ̃i)

]
Xi ,

vi = 1
N

θ

⎛
⎝ N∑

j=1

A �mij

ij z �mij + κ̃j

⎞
⎠, (9.7)

where δ(x, y) indicates the Kronecker delta and θ(x) indicates the Heaviside step
function. Using the definition of the Functional Multiplex PageRank given by Eq. (9.6),
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by making an opportune choice of the influences z it is possible to recover the desired
limiting cases.

(a) The Functional Multiplex PageRank reduces to the PageRank in the layer α for

z �m =
{

z� > 0 if m[α] = 1,

0 if m[α] = 0.
(9.8)

(b) The Functional Multiplex PageRank reduces to the PageRank in the aggregated
network obtained for

z �m = z� > 0 (9.9)

as long as �m �= �0.

(c) The Functional Multiplex PageRank reduces to the PageRank fully overlapping
network for

z �m =
{

z� > 0 if �m = �1,

0 if �m �= �1.
(9.10)

The Functional Multiplex PageRank can describe non-linear effects due to the overlap
between the links. For instance, in a duplex network we can have

z(1,1) > z(1,0) + z(0,1), (9.11)

indicating that the multilinks with link overlap have more influence than the sum of
influences attributed to multilinks having connections exclusively in the first and second
layers. Unlike when

z(1,1) < z(1,0) + z(0,1), (9.12)

we are attributing less influence to multilinks having link overlap than the sum of the
influences attributed to multilinks having connections exclusively in the first and second
layers. From the definition of the Functional Multiplex PageRank, one observes that the
ranking X(z) is invariant under the transformation

z = γ z (9.13)

for γ > 0. Therefore, by considering z as a vector in a (2M − 1)-dimensional space, with
elements z �m for every �m �= �0, the Functional Multiplex PageRank only depends on the
direction of this vector and not on its normalization. Therefore, the general definition of
the Functional Multiplex PageRank depends on (2M − 2)-independent parameters.
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9.4.3 Correlations between the Functional Multiplex
PageRank of different nodes

By evaluating the Functional Multiplex PageRank on a given (2M − 2)-dimensional
grid with Ng points, we can calculate the Pearson correlation ρ between the Functional
Multiplex PageRank of the generic nodes i and j as

ρ = XiXj − Xi Xj

σ(Xi)σ (Xj)
, (9.14)

where Y (z) is given by

Y (z) = 1
Ng

Ng∑
n=1

Y (zn) (9.15)

and σ(Y ) =
√

Y 2 − Y
2
. Note that ρ ∈ [−1, 1] where negative values ρ < 0 indicate

anticorrelations, while ρ > 0 indicates positive correlations.

9.4.4 Absolute Functional Multiplex PageRank

From the Functional Multiplex PageRank it is also possible to define an absolute ranking
of nodes by assigning to each node i the maximum of the Functional Multiplex PageRank
over all the space in which the vector z varies. To this end, the Absolute Multiplex
PageRank X�

i of node i can be defined as

X�
i = max

z
Xi(z). (9.16)

Another interesting possibility for determining an absolute ranking from the Functional
Multiplex PageRank is to take the absolute ranking induced by the average of the
Functional Multiplex PageRank, i.e.

X̂ i = 〈Xi(z)〉z. (9.17)

9.4.5 Application to duplex networks

The Functional Multiplex PageRank of a duplex network depends on the values of the
influences z = (z(1,0), z(0,1), z(1,1)). As has been discussed in the previous paragraphs,
the Functional Multiplex PageRank only depends on the direction of z interpreted as
a three-dimensional vector in R

3. In a duplex network, changing only the direction of
the vector z within the three-dimensional region where all the components of z are
either positive or null is sufficient to span all cases. Accordingly, the different directions
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Table 9.1 Top-ranked airports according to the Abso-
lute Multiplex PageRank in the duplex airport network
formed by Lufthansa and British Airways flight connec-
tions.Here, in order to find the absolute Functional Mul-
tiplex PageRank we evaluated the Functional Multiplex
PageRank for angles (θ , φ) chosen on a grid with spacing
δθ = δφ = π/80. Data from Ref. [164].

Rank Airport

1 Heathrow Airport (LHR)

2 Munich Airport (MUC)

3 Frankfurt Airport (FRA)

4 Gatwick Airport (LGW)

of z can be parametrized by using just two parameters. Therefore, the influences z =
(z(1,0), z(0,1), z(1,1)) can be expressed in spherical coordinates as

z(1,0) = sin θ cos φ,

z(0,1) = sin θ sin φ,

z(1,1) = cos θ , (9.18)

with θ , φ ∈ [0, π/2].
An example of a duplex network on which the Functional Multiplex PageRank has

been applied is the airport duplex network formed by the European flight connections
of Lufthansa (layer 1) and British Airways (layer 2).

The angle φ modulates the influence of the multilinks (1, 0) (exclusively Lufthansa
flight connections) with respect to multilinks (0, 1) (exclusively British Airways flight
connections). For φ = 0, θ = π/2 the influence of exclusively Lufthansa connections
is maximized, for φ = π/2, θ = π/2 the influence of exclusively British Airways
is maximized. The angle θ measures the influence of multilinks (1, 1) corresponding
to flight connections existing in both airline companies with respect to the other two
types of multilinks corresponding to flight connections existing in a single airline
company. For θ = 0 the influence of multilinks (1, 1) is maximized, while for π/2 it
is minimized.

The Absolute Multiplex PageRank of this duplex network ranks its four top central
airports according to the rank shown in Table 9.1.The major airports display a very
different Functional Multiplex PageRank revealed by their distinct pattern to success. In
Fig. 9.2 the pattern of success of four exemplary hub airports are shown. Frankfurt
Airport (FRA) shows a pattern of success that establishes the airport as a central hub for
Lufthansa. In fact, its Functional Multiplex PageRank displays a maximum for smaller
values of φ and decreases as θ decreases toward zero, showing that Frankfurt Airport
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takes most of its centrality from flight connections operated exclusively by Lufthansa. On
the contrary, Düsseldorf Airport (DUS) acquires significant centrality also by including
connections existing in both layers, although it constitutes an important Lufthansa hub.
Therefore, it has a Functional Multiplex PageRank that is as φ decreases, and also as θ

approaches zero. By calculating the Functional Multiplex PageRank of Heathrow Airport
(LHR) and Gatwick Airport (LGW) one can see that they are both British Airways
hub airports but Heathrow acquires important centrality also by including connections
existing in both layers.

Therefore, this result shows that the links that determine the centrality of the nodes
can be of different types for two different nodes of the multiplex network. It is therefore
interesting to measure the correlation between the Functional Multiplex PageRanks
(pattern to success) of two different nodes. In Table 9.2 we report the correlations ρ

existing between the Functional Multiplex PageRanks shown in Fig. 9.2, showing both
positive (Heathrow/Gatwick, Frankfurt/Düsseldorf but also Heathrow/Düsseldorf) and
negative values (Heathrow/Frankfurt, Gatwick/Frankfurt, Gatwick/Düsseldorf).
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Fig. 9.2 Functional Multiplex PageRanks for important airports such as Frankfurt Airport (FRA),
Heathrow Airport (LHR),Düsseldorf Airport (DUS) and Gatwick Airport (LGW) in the duplex network
formed by Lufthansa and British Airways flights. Reprinted from Ref. [164].Copyright ©EPLA, 2016.
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Table 9.2 Correlation ρ between the Functional Multiplex PageRank of the airports
Heathrow (LHR), Frankfurt (FRA), Gatwick (LGW) and Düsseldorf (DUS). Data
from Ref. [164].

ρ LHR FRA LGW DUS

LHR 1 -0.797 0.484 0.351

FRA -0.797 1 -0.983 0.275

LGW 0.484 -0.983 1 -0.729

DUS 0.351 0.2758 -0.729 1
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Fig. 9.3 Correlation ρ between the Functional Multiplex PageRank of the top-ranked neurons in the
duplex brain network of the nematode C. elegans. Reprinted from Ref. [164]. Copyright ©EPLA, 2016.

As a second example, the multiplex connectome (brain network) of the nematode
C. elegans has been analysed. This dataset includes all the connections existing between
the 302 neurons of the animal. These connections can be chemical (synaptic connections
forming layer 1) or electrical (gap junctions forming layer 2).

The Pearson correlation coefficient analysis performed on the top ten ranked nodes
(see Fig. 9.3) shows that neurons of the same type have highly correlated Functional
Multiplex PageRank.
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9.5 MultiRank

9.5.1 Ranking nodes and layers

The Functional Multiplex PageRank, without assigning any predefined influence to the
multilinks, has great flexibility and has been proved to be very useful for understanding
duplex networks. However, its applicability to multiplex networks is practically limited to
multiplex networks with few layers, as it requires the analysis of a function, the Functional
Multiplex PageRank, with a number of variables that increases fast with the number of
layers.

In order to address this limitation of the Functional Multiplex PageRank, a ranking
algorithm, MultiRank, has been proposed in Ref. [258]. MultiRank works efficiently on
multiplex networks with many layers and simultaneously ranks the nodes and the layers
of the multiplex networks.

According to this algorithm, each layer α has a centrality z[α] called the influence of the
layer and each node i has a centrality Xi . The centrality of each node strongly depends
on which nodes are pointing to it and in which layer, with links reaching the node from
influent layers contributing more to its centrality. On their turn, layers including central
nodes acquire a greater influence than layers including less central nodes.

Therefore, the algorithm consists of a set of coupled equations for the centrality of
the nodes and the influence of the layers.

The MultiRank algorithm interprets the multiplex network as a combination between
a coloured network and a bipartite network. The coloured network is the weighted aggre-
gated network where different types of links are assigned a different weight (influence).
On the other side, the algorithm also exploits the properties of the weighted, directed
bipartite network formed by nodes and layers that can be constructed from the multiplex
network. This bipartite network provides information about the activity of the nodes in
each layer, indicating whether they are present (and therefore connected) in the layer.
Additionally, the weighted and directed links of this bipartite network indicate the in-
strength and out-strength of each node in any given layer. In Fig. 9.4 the bipartite network
and the coloured networks extracted from any given multiplex network are represented.

Specifically, MultiRank uses the following two sets of matrices extracted from the
multiplex network. The first matrix is the (N × N)-weighted matrix C of the coloured
network, where the links of each layer α = 1, 2, . . . , M are weighted with the influences
z[α] associated with it. Therefore, the elements Cij of the matrix C are given by

Cij =
M∑

α=1

a[α]
ij z[α]. (9.19)

The second set of matrices are the incidence matrices of the bipartite network con-
structed from the multiplex network by considering the connectivity of each node i in
layer α. For directed multiplex networks we distinguish two M × N incidence matrices
Bin and Bout of elements
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Fig. 9.4 The schematic representation of a multiplex network formed by three different layers is shown
together with the construction of the directed bipartite network formed by nodes and layers and the
multiplex representation as a coloured network. The directed bipartite network indicates for each node
in which layers the node is connected. Additionally, as is explained in the text, it gives direct information
about in-strength and out-strength of each node in any given layer. Reprinted from Ref. [258].

Bin
αi =

∑N
j=1 a[α]

ji

W [α]
,

Bout
αi =

∑N
j=1 a[α]

ij

W [α]
, (9.20)

where

W [α] =
N∑

i=1

N∑
j=1

a[α]
ij (9.21)

indicates the total weight of the links in layer α. Therefore, Bin
αi indicates the normalized

in-strength of node i in layer α and Bout
αi indicates the normalized out-strength of node i in

layer α. For undirected multiplex networks the matrices Bin and Bout are identical. Note
that if node i is not connected in layer α we have Bin

αi = Bout
αi = 0 and that the node is

inactive in layer α.

9.5.2 The definition

The MultiRank algorithm depends on three parameters: γ > 0 , s taking values s ∈
{1, −1} and a taking values a ∈ {1, 0}.

The MultiRank algorithm assigns a centrality Xi to each node i and an influence z[α]

to each layer α. The centrality Xi of node i is higher if central nodes in influent layers
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point to node i. Therefore, given the influences z[α] the centrality Xi is determined by
the generalized PageRank algorithm

Xi = μ

N∑
j=1

Cji

κj
Xj + ωvi (9.22)

where μ is taken to be μ = 0.85, and κj , vi and ω are given by

κj = max

(
1,

N∑
i=1

Cji

)
,

vi = θ

⎛
⎝ N∑

j=1

[Cij + Cji]

⎞
⎠ ,

ω = 1∑N
i=1 vi

N∑
j=1

[
1 − μ θ

(
N∑

i=1

Cji

)]
Xj . (9.23)

These equations for Xi are then coupled with another set of equations specifying the
values of the influences z[α] given the centralities of the nodes. These equations depend
on the three parameters a, s and γ and read

z[α] = 1
N

[
W [α]

]a
[

N∑
i=1

Bin
αi (Xi)

sγ

]s

(9.24)

where N is a normalization constant.

• For a = 1 the influence of a layer is larger the larger the total weight W [α] of the
links in layer α.

• For a = 0, the influence of a layer is normalized with respect to W [α].

• For s = 1, layers have larger influence if they include more central nodes. In this
case the parameter γ can be tuned to either suppress (γ > 1) or enhance (γ > 1)
the contribution of low-centrality nodes in determining the centrality of the layers
in which they are active.

• For s = − 1, however, layers have larger influence if they include fewer highly
influential nodes. In other words, this algorithm awards elite layers. In this case,
the parameter γ can be tuned to either enhance (γ > 1) or suppress (γ > 1) the
contribution of low-centrality nodes in determining the centrality of the layers in
which they are active.

• For a = 0 and γ = 0, all the layers have the same influence and the MultiRank
reduces to the PageRank of the aggregated network.
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9.5.3 Possible variations of the MultiRank algorithm

The MultiRank algorithm is fully defined by Eqs (9.22) and (9.24). However, this
algorithm can be modified by changing the first equation (i.e. Eq. (9.22)) determining
the centrality of the nodes. In fact, instead of adopting a PageRank algorithm for the
centrality of the nodes, it is possible to consider either the eigenvector centrality or
the Katz centrality. In the first case Eq. (9.22) could be substituted by the normalized
eigenvector centrality, satisfying the system of equations

λ1Xi =
N∑

j=1

CjiXj ,

N∑
i=1

Xi = 1, (9.25)

where λ1 is the maximum eigenvalue of the matrix C. In the second case Eq. (9.22) could
be substituted by

Xi = μ

N∑
j=1

CjiXj + ω, (9.26)

where ω ensures the normalization condition and μ > 0 is suitably chosen to ensure the
convergence of the algorithm.

9.5.4 Applications to real datasets

In Ref. [258] the MultiRank algorithm has been applied to a large variety of multiplex
network datasets including the European Multiplex Air Transportation Network with
M = 37 layers, the Food and Agriculture Organization Multiplex World Trade Network
with M = 364 layers and the Pierre Auger Multiplex Collaboration Network with
M = 16 layers finding very informative results. In Fig. 9.5 we visualize the results
obtained by running the MultiRank on the European Multiplex Air Transportation
Network for different values of the parameters (s, a) and γ . From these maps the very
relevant but different roles of airports such as Stansted and Frankfurt are apparent as
they are the top-ranked airports for different parameter values.

9.6 Versatility

The versatility of the nodes [94] of a multilayer network is a centrality measure that
identifies the nodes that play the most central role in the cohesion of the multilayer
structure. The most versatile nodes are in fact the nodes that keep the multilayer network
together, connecting and bridging between the interaction existing in different layers.



(a)

(b)

Fig. 9.5 The maps representing the centrality Xi of European airports in the European Air Transporta-
tion Multiplex Network according to the MultiRank algorithm are shown for different values of the
parameters s = 1, a = 1, γ = 1 (panel (a)) and s = 1, a = 1, γ = 3 (panel (b)). By comparing the
results for γ = 1 and γ = 3 it is possible to observe that for γ = 3 few airports acquire a centrality much
higher than the others. Reprinted from Ref. [258].
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This centrality algorithm provides a global ranking of every node belonging to any layer
of the multilayer structure by using random walks that diffuse on intralinks and interlinks
as well. This centrality measure can be applied to general multilayer networks but also
to multiplex networks. In multiplex networks it is found that the versatility is strongly
dependent on the activity of the node. In Ref. [94] the Authors distinguish between the
eigenvector versatility and the PageRank versatility. The eigenvector versatility �iα of the
node (i, α) is given by the solution to the eigenvector problem

N∑
j=1

M∑
β=1

(
AT

)
iα,jβ

�jβ = λ1�iα (9.27)

where AT is the transpose of the supra-adjacency matrix of the multiplex network and λ1
is the maximum eigenvalue of the supra-adjacency matrix A. The PageRank versatility
�iα of the node (i, α) is given by the stationary state of a random walk that hops between
neighbour nodes and connected layers but that performs also additional teleportation
jumps with probability ω. Therefore, �iα is given by the solution of the equation

�iα = μ

N∑
i=1

M∑
α=1

(
AT

)
iα,jβ

κjβ
�jβ + ω, (9.28)

where κjβ = max
(

1,
∑

i
∑

α AT
iα,jβ

)
and where the constant ω is fixed by the normaliza-

tion condition

N∑
i=1

M∑
α=1

�iα = 1. (9.29)

The PageRank versatility can be obtained by solving Eq. (9.28) by iteration, or, for
relatively small matrices, it can be obtained by matrix inversion using the solution

�iα = ω

N∑
j=1

M∑
β=1

[
1 − μATD−1

]−1

iα,jβ
, (9.30)

where D is the supra-matrix of elements Diα,jβ = δ(i, j)δ(α, β)κi,α.
Using a similar approach, it is also possible to define the Katz versatility �iα of the

replica nodes given by the solution to the equation

�iα = μ

N∑
i=1

M∑
α=1

AT
iα,jβ�jβ + ω (9.31)

where the constant ω is fixed by the normalization condition, Eq. (9.29).
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Table 9.3 Comparison between the PageRank versatility and the PageRank of the
aggregated Wikipedia multiplex network. Data from Ref. [94].

Name PageRank Versatility PageRank Aggregated
network

Milton Friedman 1 15 (+14)

Hilary Putnam 2 33 (+31)

Edward Osborne Wilson 3 331 (+328)

Harlond Clayton Urey 4 536 (+532)

Kurt Gödel 5 42 (+37)

Charles Stark Draper 9 1195 (+1186)

Aristotele 11 2 (-9)

Immanuel Kant 13 1 (-12)

Albert Einstein 23 9 (-14)

Plato 24 3 (-21)

On multilayer networks the nodes (i, α) belonging to different layers α are replica
nodes. In this case, the node versatility Xi of the node i can be found from the set of
replica node versatilities �iα , as

Xi =
M∑

α=1

�iα. (9.32)

This choice corresponds to a maximum entropy assumption that each replica node (i, α)

of node i provides a contribution to the centrality of node i of equal weight.
In Ref. [94] the node versatility of philosophers, chemists and physicists in Wikipedia

has been compared with their centrality in the aggregated multiplex network. Interest-
ingly, significant differences have been found, indicating that the versatility of a node
favours individuals with an impact on multiple disciplines. For example, the versatility
ranking of Einstein and Kant is smaller than the versatility of Gödel whose research on
logic has impact in different fields ranging from pure mathematics to physics. Maybe
more surprisingly, the versatility attributes to Einstein and Kant a lower rank than the
one of Edward Osborne Wilson, the founding father of sociobiology, and Harold Clayton
Urey, the Nobel Prize-winner in Chemistry known for the theory of development of
organic life from non-living matter (see Table 9.3).

9.7 Multilayer Communicability

The multilayer communicability [115] is a centrality measure which quantifies the number
of paths taking both intralinks and interlinks that join a given node of a given layer
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to the other nodes of the multilayer structure. It is therefore a centrality measure that
naturally extends the definition of communicability proposed in Refs [116, 117] for single
layers (see Sec. 2.7.7). Let us consider the supra-matrix Ã constructed from the supra-
adjacency matrix by assigning a weight q to the interlinks, i.e.

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎝

a[1,1] 0 · · · 0

0 a[2,2] · · · 0
...

...
. . .

...

0 0 · · · a[M,M]

⎞
⎟⎟⎟⎟⎟⎟⎠

+ q

⎛
⎜⎜⎜⎜⎝

0 a[1,2] · · · a[1,M]

a[2,1] 0 · · · a[2,M]

...
...

. . .
...

a[M,1] a[M,2] · · · 0

⎞
⎟⎟⎟⎟⎠. (9.33)

The weighted multiplicity of walks of length L between the representation of a node
(i, α) and node (j, β) is given by different entries of the Lth power of the supra-adjacency
matrix, ÃL . In many instances, we are interested in assigning more importance to shorter
walks than to longer ones. In this way, one defines the communicability matrix G as

C = I + Ã + Ã2

2! + · · · =
∞∑

L=0

ÃL

L! = eÃ. (9.34)

In a multilayer network in which each layer has the same number of nodes, i.e. Nα = N
for every α = 1, 2, . . . , M, we can further express the communicability matrix as

C = eÃ =

⎛
⎜⎜⎜⎜⎜⎝

c[1,1] c[1,2] . . . c[1,M]

c[2,1] c[2,2] . . . c[2,M]

...
. . .

...

c[M,1] c[M,2] . . . c[M,M]

⎞
⎟⎟⎟⎟⎟⎠

, (9.35)

where c[α,α] is an N × N matrix containing the communicability between the represen-
tations of every pair of nodes within layer α of the multiplex and c[α,β] is the N × N
matrix containing the communicability between pairs of nodes belonging to layer α and
layer β respectively. It is important to note that c[α,α] �= exp(a[α,α]), where a[α,α] is the
(eventually weighted) adjacency matrix of each layer. Every node (i, α) of the network
can therefore be ranked according to its total communicability with the other nodes of the
same layer. Specifically, in directed networks we might be interested in ranking according
to xreceive

iα which depends on the incoming paths or according to xbroadcast
iα which depends

on the outgoing paths, i.e.

xreceive
iα =

N∑
j=1

Cjα,iα,

xbroadcast
iα =

N∑
j=1

Ciα,jα. (9.36)
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Table 9.4 Comparison between the communicability of the multiplex network formed by the six
European airline companies (British Airways, Lufthansa, AirFrance, Ryanair, Easyjet, AirBerlin) and
communicability for the aggregated network. Data from Ref. [115].

Rank q = 0.0 q = 0.1 q = 1.0 Aggregated

1 Paris CdG London Stansted London Stansted Frankfurt

2 Barcelona Madrid Dublin Munich

3 Venice Barcelona Madrid London Stansted

4 Amsterdam ParisCdG Palma de Mallorca London Gatwick

Finally, if the multilayer network is a multiplex, it is possible to attribute to each node i
a centrality given by the inverse of the harmonic mean of the centralities of its replica
nodes, i.e.

Xtype
i =

[
1
M

M∑
α=1

1

xtype
iα

]−1

, (9.37)

where ‘type’ indicates either the receive or the broadcast centrality measure. In Ref. [115]
this centrality measure has been applied to a social multiplex network within a company
and to a subset of the undirected European Air Transportation Multiplex Network [71].
The top five ranked airports of the multiplex network are indicated in Table 9.4 for
different values of q and compared to the communicability of the aggregated network.
Note that since this multiplex network is undirected there is no distinction between the
received and the broadcast centrality.

9.8 Centrality of multi-slice networks

For multi-slice networks a new ranking algorithm has been proposed in Ref. [141] based
on a modification of the Katz centrality of single networks.

The Katz centrality of a single network attributes to each node a centrality that is equal
to the number of paths that reach the node starting from every node of the network, when
the contribution of longer paths is discounted by a factor μn, where n is the length of the
path and μ < 1. Specifically, the Katz centrality of a node i in a layer with adjacency
matrix a is given by

xi =
N∑

j=1

(I − μa)−1
ji =

N∑
j=1

∞∑
n=0

μnan
ji . (9.38)

In Ref. [141] it has been proposed to extend this definition to multi-slice temporal
networks as in the following. Instead of considering the paths which can traverse a single
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layer, the Authors of Ref. [141] consider paths that can travel in multiple layers of the
multi-slice networks. These paths can perform several steps in the same layer and can
move from one layer to any subsequent layer, but they can never go back to an older
layer. To this end, a series of N × N matrices K̂[�] with � ∈ {1, 2, . . . , M} is defined

K̂[�] = K̂[�−1](I − μa[�])−1

||K̂[�−1](I − μa[�])−1|| (9.39)

where K̂[0] = I and || . . . || denotes the Euclidean norm. Therefore, we have that K̂[M] is,
up to a rescaling constant equal to the weighted sum of all the directed paths described
above,

K̂[M] ∝ (I − μa[1])−1(I − μa[2])−1 . . . (I − μa[M])−1

=
∞∑

n1=0

∞∑
n2=0

. . .

∞∑
nM=0

μn1+n2+...+nM (a[1])n1(a[2])n2 . . . (a[M])nM. (9.40)

The broadcast centrality characterizes how well a node can broadcast a message,
the receive centrality characterizes how central a node is with respect to receiving
information. These centralities are given by

Xreceive
i =

N∑
j=1

K̂[M]
ji ,

Xbroadcast
i =

N∑
j=1

K̂[M]
ij . (9.41)

In Ref. [141] these centrality measures have been applied to the Enron email datasets
and the MIT telecommunication dataset showing that the multi-slice network centrality
provides relevant information that cannot be extracted by considering the layer in
isolation or by simply evaluating the degrees of the nodes.
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10.1 Different approaches to multilayer network modelling

Multilayer network modelling allows us to artificially construct multilayer networks with
given structural properties or obeying simple dynamical rules. The ability to construct
multilayer networks from scratch or to randomize a given multilayer network is central
in network theory. On the one side, it is important to test which dynamical rules are
responsible for given multilayer network structures, on the other, comparing a given
real multilayer network structure with null models of multilayer networks is essential to
investigate which structural aspects are over- (or under-) represented in real datasets.

As in single networks, for multilayer networks there are two main classes of models.
The non-equilibrium models usually imply network growth and include simple dynami-
cal rules that are responsible for emergent structural properties. The equilibrium models
instead are the least biased models, satisfying a set of constraints, and constitute the
topologies of reference to which real multilayer networks are usually compared. Multi-
slice networks are modelled using different approaches and can be classified depending
on whether the models do or do not reproduce the burstiness of real datasets.

10.2 Growing multiplex network models

10.2.1 Growing multiplex networks

Growing multiplex network models are inspired by the widely used growing network
models of single networks which most notably include the Barabási–Albert (BA) model
[15]. The non-equilibrium framework of growing network models allows us to explore
the role of simple dynamical rules in promoting the emergence of complexity in the
large network limit. For instance, the BA model shows that preferential attachment plays
a major role in the generation of scale-free networks. Similarly, here growing multiplex
network models will determine some basic rules responsible for the emergence of positive
and negative degree correlations, community structures and degree distributions in
multiplex networks.

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001
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10.2.2 Generalized linear preferential attachment model

As in single networks, in multiplex networks scale-free layers are also ubiquitous. For
instance multiplex networks with scale-free layers include, among others, collaboration
multiplex networks between scientists or between movie actors, social multiplex networks
formed by several online platforms and multiplex molecular networks.

It is therefore natural to discuss growing multiplex network models with generalized
preferential attachment in which new links are attached preferentially to nodes that have
high degrees. Here we will see that this mechanism not only produces scale-free layers
but also generates positive degree correlations among the layers of the multiplex. For
simplicity, we will consider the growth of a duplex network (multiplex network with
M = 2 layers). We will assume that when new links are attached to a given layer, the
target nodes are chosen with a probability that is larger, the larger the linear combination
of their degrees in layers 1 and 2.

The model is simply defined. Starting at time t = 1 from a duplex network with
n0 ≥ m nodes (with a replica node in each of the two layers) connected by m0 links in
each layer, the model proceeds as follows:

• Growth: At each time t > 1 a node represented by a a replica node in each of the
two layers is added to the multiplex. Each newly added replica node is connected
to the other nodes of the same layer by m links.

• Generalized preferential attachment: Each new link in layers α = 1, 2 is attached to
node i with probability �

[α]
i proportional to a linear combination of the degree k[1]

i

of node i in layer 1 and k[2]
i of node i in layer 2, i.e.,

�
[1]
i ∝ c1,1k[1]

i + c1,2k[2]
i ,

�
[2]
i ∝ c2,1k[1]

i + c2,2k[2]
i , (10.1)

where cα,β ∈ [0, 1] with c1,1 + c1,2 = c2,1 + c2,2 = 1.

In the case in which c1,1 = c2,2 = 1, the model reduces to two apparently decoupled
BA models. Nevertheless, in the multiplex network two replica nodes have the same age,
therefore this characteristic of the model is responsible for generating degree–degree
correlations in the layers of the duplex. In fact, it is well known that in the BA model the
most connected nodes are also the first nodes arrived in the network. Therefore, in the
multiplex network model with c1,1 = c2,2 = 1, in which the two layers evolve as single
BA networks, an old node that arrived early in the multiplex network will acquire large
degree in both networks, whereas a young node will have small degree in both networks
yielding a multiplex network with positive degree correlations. These results can easily be
obtained in the mean-field approximation and extend also to the case (c1,1, c2,2) �= (1, 1).

Let us derive the degree correlations in the framework of the mean-field approxima-

tion. The degrees ki =
(

k[1]
i , k[2]

i

)T
of each node i evolve according to the mean-field

equation
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dki

dt
= m�i (10.2)

where �i =
(
�

[1]
i , �[2]

i

)T
with �

[α]
i given by Eq. (10.1). In the large multiplex network

limit, since
∑

i k[α]
i � 2mt for both α = 1, 2, we have

dki

dt
= 1

2t
Cki , (10.3)

with the matrix C given by

C =
(

c1,1 1 − c1,1
c2,1 1 − c2,1

)
. (10.4)

If (c1,1, c2,2) �= (1, 1), the matrix C has eigenvalues λ1 = 1 and λ2 = (c1,1 − c2,1) with
corresponding eigenvectors u1 = (1, 1) and u2 = (1 − c1,1, −c2,1). Therefore, we can
decompose the vector of degrees ki(t) = D1(t)u1 +D2(t)u2 and we can solve Eqs (10.3)

obtaining

ki(t) = D1(ti)
(

t
ti

)λ1/2

u1 + D2(ti)
(

t
ti

)λ2/2

u2, (10.5)

where ti indicates the time when node i is arrived in the network. By imposing the initial
condition ki(ti) = mu1, implying D1(ti) = m and D2(ti) = m, we obtain

ki(t) = m
(

t
ti

)1/2

u1 (10.6)

and therefore in the mean-field approximation we have

k[1]
i = k[2]

i = m
(

t
ti

)1/2

. (10.7)

In the case where (c1,1, c2,2) = (1, 1) the system of equations decouples and it is easily
derived that the solution does not change and Eq. (10.7) is recovered again. Therefore,
we find that in the framework of the mean-field approximation the multiplex network
displays positive degree correlations (see Fig. 10.1) as the conditioned average degree〈
k[1]|k[2]

〉
defined in Sec. 7.2 is given by

〈
k[1]|k[2]

〉
= k[2]

i . (10.8)

Moreover, given this mean-field solution it is possible to show that both layers have scale-
free degree distribution with exponent γ = 3 (see Fig. 10.1).
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Fig. 10.1 Degree distribution P
(
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)
in layer 2, and the interlayer degree–degree correlations

〈
k[1]|k[2]

〉
for the growing multiplex network model of Ref. [228] in the cases c1,1 = c2,2 = 1 (panels (a) and (b))
and c1,1 = c2,2 = 0.5 (panels (c) and (d)). The solid lines indicate the theoretical results obtained with the
master-equation approach (panels (a) and (b)) and with the mean-field approach (panels (c) and (d)).

Interestingly, this model admits an explicit exact analytical solution for c1,1 = c2,2 = 1
obtained using the master equation approach [228]. The joined degree distribution
P(k, q) of having a node with degree k[1] = k in layer 1 and degree k[2] = q in layer
2, is given by (see Appendix C for the derivation)

P(k, q) = 2�(2 + 2m)�(k)�(q)�(k + q − 2m + 1)

�(m)�(m)�(k + q + 3)�(k − m + 1)�(q − m + 1)
. (10.9)

The conditioned average degree
〈
k[1]|k[2]

〉
can be calculated exactly from the joint degree

distribution given by Eq. (10.9) as

〈
k[1]|k[2]

〉
=
∑
k[1]

k[1]P(k[1]|k[2] = q) = m(k[2] + 2)

1 + m
. (10.10)

This result agrees with simulation results (see Fig. 10.1) and is consistent with the
result obtained in the mean-field approximation (Eq. (10.8)) confirming that the model
displays positive degree correlations.



194 Multilayer Network Models

In this case, the degree distribution (see Fig. 10.1) in each layer P(k) is given by the
degree distribution of the BA network model, i.e.

P(k) = 2m(m + 1)

k(k + 1)(k + 2)
. (10.11)

In Ref. [173] a calculation of the Pearson correlation coefficient r (defined in Sec. 7.2)
has been carried out for the parameter values c1,1 = c2,2 = 1 − ε, finding in the limit
t → ∞

r = 〈(k − 〈k〉)(q − 〈q〉)〉
σkσq

=
{1

2 for ε = 0
1 for ε > 0,

(10.12)

where k = k[1] indicates the degree in layer 1 and q = k[2] indicates the degree in layer 2.
Therefore, for ε > 0 the correlations are more significant than in the case ε = 0.

For a treatment of a growing multiplex network model with more than two layers, see
Ref. [214].

10.2.3 Generalized non-linear preferential attachment

Growing multiplex network models can also generate negative degree correlations
between the layers. In particular, this is the case in the non-linear attachment kernel
used in Ref. [229]. The model includes growth and non-linear preferential attachment
depending on the degree of the same node in the different layers. In a single layer, non-
linear preferential attachment has been shown [178] to display a rich phenomenology,
including a gelation phase transition in which the oldest node acquires a finite fraction
of all the links (see discussion in Sec. 2.8.4).

The growing duplex network model with non-linear preferential attachment proposed
in Ref. [229] is described by the following algorithm.

Starting at time t = 1 from a duplex network with n0 ≥ m nodes (with a replica node
in each of the two layers) connected by m0 links in each layer, the model proceeds as
follows:

• Growth: At each time t > 1, a node with a replica node in each of the two layers is
added to the multiplex. Each newly added replica node is connected to the other
nodes of the same layer by m links.

• Generalized non-linear preferential attachment: The new links are attached to node i
with probability �

[1]
i in layer 1 and with probability �

[2]
i in layer 2 with

�
[1]
i ∝

(
k[1]

i

)η (
k[2]

i

)θ

,

�
[2]
i ∝

(
k[2]

i

)η (
k[1]

i

)θ

. (10.13)

The model depends on the values of the two parameters η and θ . When η, θ are
both positive, nodes with high degrees in both layers are more likely to acquire new
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links in both layers. However, when η > 0 but θ < 0 the nodes that have high
degree in a given layer but low degree in the other are more likely to acquire new
links in the layer in which they are more connected. Therefore, for η > 0 we expect
to observe positive correlations for θ > 0 and negative correlations for θ < 0.

This model displays a very interesting phenomenology, generating multiplex networks
with different types of degree distributions and degree–degree correlations, and with a
condensation of the links. The condensation of the links occurs when the oldest node
acquires a finite fraction of all the links of the network. The model can be predicted
theoretically [229] to display the condensation of the links for

η > min(1, 1 − θ). (10.14)

These predictions perfectly match the simulation results and reduce to the condition
η > 1 valid in single layers for θ = 0. The degree distribution is predicted to be scale-
free only on the transition line η = min(1, 1 − θ). For η < min(1, 1 − θ) the distribution
is homogeneous while for η > min(1, 1 − θ) it is dominated by the condensation
phenomenon with all the nodes different from the oldest one acquiring only a small
degree.

In order to investigate the interlayer degree correlations generated naturally by this
model, let us consider the Kendall correlation coefficient τ(t) between the degree of
corresponding replica nodes, calculated only over the nodes arrived at time t′ < t (see
Fig. 10.2). For η > 0, θ > 0 all the nodes have positively correlated degrees in the two
layers. In the case η > 0, θ < 0 only the older nodes have negatively correlated degrees
in the two different layers, while the recently added nodes in the duplex network have
positively correlated degrees. This is indicated by the dependence of τ(t) as a function
of t which is increasing, eventually acquiring even a positive value (see Fig. 10.2). This
phenomenon is due to the fact that the attachment kernel is symmetric in the two layers,
and initially every node starts by having the same degree in both layers. Only with
time, for η > 0, θ < 0 each node will end up having much larger degree in one layer
than in the other. Therefore, the degrees of the younger nodes will follow a stochastic
dynamics where layers compete to become the most connected layer before one of the
layers becomes clearly the dominating one. Note that on average half of the nodes will
end up having the first as the dominating layer and half of the nodes will have the other,
respecting the overall symmetry of the growing dynamics.

10.2.4 Growing multiplex networks with communities

Triadic closure is an important mechanism driving the evolution of growing multiplex
networks.

Consider, for example, collaboration networks of scientists working on different
topics. In this case, as in many social networks, it is possible to argue that links are
not random, and that instead scientists usually exploit the neighbourhood of their
collaborators in a specific field to establish new collaborations. Therefore, it is often
the case that the new collaborator of a given scientist already active in a scientific topic
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Fig. 10.2 The Kendall coefficient τ(t), measuring the interlayer degree correlations among the nodes
arrived up to time t is here shown for the growing duplex network model with non-linear preferential
attachment proposed in Ref. [229] with η = 0. The dashed black line corresponds to τ = 0 and is
reported for visual reference. For θ > 0 the interlayer degree correlations are always positive. For θ < 0
the interlayer degree correlations for older nodes are disassortative (yielding τ(t) < 0 for small t), while
for younger nodes they are positive (yielding τ(t) > 0 for large t).

is already a second neighbour in the collaboration network corresponding to the given
topic (intralayer triadic closure). Similarly, when opening himself to new scientific fields,
a researcher usually takes into account the neighbourhoods of his past colleagues from
previous collaborations in other fields (interlayer triadic closure).

Interestingly, in Ref. [29] it is found that growing multiplex network models enforcing
triadic closure are able to generate multiplex networks with tunable community structure,
reproducing the patterns observed in real-world collaboration networks.

Therefore, triadic closure can be considered a basic microscopic mechanism respon-
sible for the mesoscale structure of multiplex networks.

In Ref. [29] a stylized multiplex network with M = 2 layers, including both interlayer
and intralayer triadic closure has been proposed.

Initially (at time t = 1) each layer is formed by a clique of n0 ≥ m nodes. At each
time step t > 1 a new node is added to the multiplex network. Each of its two replica
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Fig. 10.3 Schematic representation of network growth with intralayer and interlayer triadic closure.
Reprinted from Ref. [29] ©2016 Battiston et al.

nodes is connected to the other replica nodes of its own layer by m links according to the
following algorithm (see Fig. 10.3):

• Selection of the first layer.
One of the two layers α ∈ {1, 2} is chosen uniformly at random.

(a) Random initial attachment.
The new node i connects its replica node (i, α) to a random replica node of the
network called node (j, α).

(b) Intralayer triadic closure.
Each of the remaining m − 1 edges of the replica node (i, α) is attached with
probability p[α] to a random neighbour (in layer α) of replica node (j, α) and
with probability 1 − p[α] to a random replica node of layer α.

• Selection of the second layer.
The links in layer β �= α are placed according to the following algorithm.

(a’) Interlayer triadic closure.
The replica node (i, β) connects to the replica node (j, β) with probability p

and with probability 1−p∗ to one of the other replica nodes of layer β, chosen
uniformly at random. The node to which this first link is attached is called
(j′, β).

(b’) Intralayer triadic closure.
The remaining m−1 links at layer β are attached with probability p[β] to one of
the first neighbours of (j′, β) chosen uniformly at random, and with probability
1 − p[β] to a random replica node in layer β.

This general model has four tunable parameters, namely the number of new edges m
which determines the average degree on each layer and the three probabilities p[1], p[2]

and p∗, which are responsible for the formation of intra- and interlayer triangles. In fact,
by varying the parameter p[α] it is possible to tune the strength of the intralayer triadic
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Fig. 10.4 In the framework of the model proposed in Ref. [29] enforcing triadic closure, the effect of the
value of the interlayer triadic closure parameter p∗ on the multiplex community structure is displayed.The
two top layers show two typical realizations of the simplest version of the network model with N = 50,
m = 2 and p[1] = p[2] = p = 0.9. Nodes belonging to the same community are given the same colour
and are drawn close to each other. The two layers at the bottom of each multiplex are obtained by setting
p∗ = 0.9 (left) and p∗ = 0.1 (right) respectively. The nodes maintain the same placement in space on the
second layer, but are coloured according to the community they belong to in that layer (colours are chosen
in order to maximize the number of nodes that have the same colour in the two layers). It is evident that
the community structures of the two layers on the left, corresponding to p∗ = 0.9, are very similar, while
the partition into communities of the upper layer on the left panel is substantially different from the one
observed in the bottom layer of that multiplex. Reprinted figure from Ref. [29] ©2016 Battiston et al.

closure mechanism in each layer α, i.e the probability of forming triangles on the given
layer. In particular, larger values of p[α] will foster the creation of a larger number of
triangles within layer α. Conversely, the parameter p∗ tunes the interlayer triadic closure
mechanism, and in particular high values of p∗ correspond to a higher probability that
the neighbourhoods of node i at the two layers will exhibit a certain level of overlap.
These two simple attachment rules, namely intralayer and interlayer triadic closure, aim
to describe the real mechanisms characterizing the evolution of collaboration networks.

For large values of p[1], p[2] this model favours the establishment of communities
within each layer. For large values of the parameter p∗ the communities across the two
layers are correlated, displaying a significant overlap, while for small values of p∗ they are
not correlated (see Fig. 10.4).

10.2.5 Other attachment kernels

Other attachment kernels have been considered in different papers. For instance, in Ref.
[173] an initial attractiveness has been added to the generalized preferential attachment,
while in Ref. [42] a model with generalized preferential attachment and an internal
ability (fitness) of the nodes to acquire new links has been considered. Both models
are able to reproduce scale-free multiplex networks with tunable power-law exponent γ .
By modifying the attachment probability, multiplex networks with exponential layers
or multiplex networks including both scale-free and exponential layers have been
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generated [228]. Finally, in Refs [84, 230] multiplex networks growing by the subsequent
attachment of entire new layers have been considered.

10.3 Multiplex network ensembles

10.3.1 Ensembles as null models of networks

While growing non-equilibrium models aim at proposing a basic mechanism for
explaining the emergence of complex features (such as scale-free degree distributions,
degree correlations, communities), ensembles of multiplex networks provide the ideal
scenario for constructing null models. Null models are models of multiplex networks
that preserve some structural property but are otherwise totally random. Specifically,
they are the least biased models of multiplex networks satisfying a set of constraints. As
such, ensembles of multiplex networks are widely used in network analysis because they
provide a reference model to compare real multiplex networks to. Additionally, they are
used to probe the interplay between structure and dynamics when dynamical processes
are defined on top of them.

Ensembles of multiplex networks can reproduce a wide class of properties of real
multiplex networks. They include null models of independent layers with given degree
sequence, multiplex networks with given activity of the nodes, multiplex networks with
given multidegree sequence and controlled level of link overlap and spatial random
multiplex networks. Therefore, this framework is very flexible and can be very useful
in a wide variety of cases.

10.3.2 The theoretical framework

Consider a multiplex formed by N labelled nodes i = 1, 2, . . . , N and M layers where we
indicate by G = (G1, G2, . . . , GM) the set of all the networks Gα at layer α = 1, 2, . . . , M
forming the multiplex. A multiplex network ensemble is specified when the probability
P( G) for each possible multiplex network is given. Specifically, in a multiplex network
ensemble we can neglect to treat the interlinks. In fact, even when the interlinks are
explicitly taken into account, since they are placed deterministically among each pair
of replica nodes the probability of a multiplex network only depends on the random
topology of its layers G.

In a multiplex network ensemble, the entropy S is defined as

S = −
∑

G
P( G) log P( G). (10.15)

The entropy measures the logarithm of the typical number of multiplex networks in the
ensemble.

The least biased method of constructing multiplex networks with given structural
properties is to maximize the entropy of the ensemble, given the set of structural
constraints.
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One can distinguish between microcanonical and canonical multiplex network ensem-
bles. The microcanonical ensembles enforce a given set of hard constraints, i.e. every
multiplex network of the ensemble has a given structural property such as total number
of links in each layer, given degree sequences within each layer, given multidegree
sequences. On the contrary, the canonical ensembles (also called exponential random
graphs) enforce a given set of soft constraints. This means, for example, that instead of
fixing the total number of links in each layer the number of links in each layer is allowed
to fluctuate as long as their average in the ensemble is fixed. Similarly, soft constraints
might constrain the expected degree sequence of each layer or the expected multidegree
sequences. The statistical mechanics of randomized network ensembles (exponential
random graphs) has been extended to describe multiplex ensembles [41, 209, 304, 148,
120, 308, 245], and applied to analysing different multiplex data sets [209, 185, 154].
An alternative class of equilibrium network models with coloured nodes were proposed
in 2003 by Söderberg [271–3].

In the following paragraphs we discuss multiplex network ensembles adopting the
main lines of the discussion presented in Ref. [41].

10.3.3 Ensembles with independent layers

Independent layers and correlated degrees

Multiplex network ensembles can be distinguished between the ones with independent
layers and the ones in which the layers are not independent. When the layers are inde-
pendent, the probability P( G) of the multiplex network is factorized in the probabilities
Pα(Gα) of each single layer, i.e.

P( G) =
M∏

α=1

Pα(Gα). (10.16)

Therefore, each layer can be drawn independently from the others. This is the simplest
way to generate multiplex networks. Specifically, one can consider the multiplex in which
each layer is drawn using a configuration model, i.e. with a given degree sequence, or,
instead, in which each layer is drawn using an exponential random graph with given
expected degree sequence. Note that in this scenario multiplex networks with any pattern
of degree correlations can be constructed since this approach is applicable to any set of
degree sequences (or expected degree sequences) specified for any layer.

Canonical multiplex network ensemble

Let us consider the canonical multiplex network ensemble where the expected degrees
k[α]

i of each node i in every layer α are fixed. Indicating by PC( G) the probability of
the multiplex networks in the ensemble, we require that the following constraints are
satisfied:
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∑
G

PC( G)

⎡
⎣ N∑

j=1

a[α]
ij

⎤
⎦ = k[α]

i , (10.17)

for i = 1, 2, . . . , N and α = 1, 2 . . . , M. The least biased ensemble that satisfies the
constraints is obtained by maximizing the entropy of the ensemble, obtaining for PC( G)

the log-linear expression

PC( G) = 1
ZC

exp

⎡
⎣−

N∑
i=1

M∑
α=1

λ
[α]
i

N∑
j=1

a[α]
ij

⎤
⎦, (10.18)

where λ
[α]
i are the Lagrangian multipliers enforcing the constraints in Eq. (10.17) and

ZC is the normalization constant. The probability PC( G) can equivalently be written as

PC( G) =
∏
i<j

M∏
α=1

[
p[α]

ij a[α]
ij + (1 − p[α]

ij )(1 − a[α]
ij )

]
, (10.19)

where p[α]
ij indicates the marginal probability that node i and node j are connected in

layer α. The entropy S determining the typical number of multiplex networks in this
ensemble can also be expressed in terms of the marginal distributions as

S = −
∑
i<j

[
p[α]

ij ln p[α]
ij + (1 − p[α]

ij ) ln(1 − p[α]
ij )

]
. (10.20)

The value of the marginal probabilities p[α]
ij is given in terms of the Lagrangian multipliers

λ
[α]
i as

p[α]
ij = e−λ

[α]
i −λ

[α]
j

1 + e−λ
[α]
i −λ

[α]
j

. (10.21)

Here the Lagrangian multipliers are fixed by the constraint that each node i has expected
degree k[α]

i in layer α, which reads

k[α]
i =

N∑
j=1

p[α]
ij . (10.22)

In the presence of a structural cutoff for each layer α, when the expected degrees of the
nodes satisfy
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k[α]
i �

√〈
k[α]

〉
N (10.23)

the marginal probabilities p[α]
ij take the uncorrelated form

p[α]
ij = k[α]

i k[α]
j〈

k[α]
〉
N

. (10.24)

Microcanonical ensemble

In the microcanonical model, in which we fix the degree k[α]
i of each node i in every

layer α (also called the configuration model of multiplex networks), the probability of
the multiplex network is given by

PM( G) =
∑

G

N∏
i=1

M∏
α=1

δ

⎛
⎝k[α]

i ,
N∑

j=1

a[α]
ij

⎞
⎠. (10.25)

The marginal p[α]
ij expressing the probability that node i and node j are connected in

layer α takes the same expression as for the canonical network model (Eq. (10.21)).
In particular, if the layers of the multiplex network have the structural cutoff (i.e. they
satisfy Eq. (10.23)), the probability of a link between node i and node j in layer α follows
Eq. (10.24). However, the microcanonical and canonical ensembles are not equivalent,
as emerges clearly from the calculation of the entropy � of the microcanonical network
ensemble, which in the thermodynamic limit is not equal to the entropy S of the canonical
ensemble given by Eq. (10.20). In fact, � and S are related by the equation [44,7,39]

� = S − � (10.26)

where

� = − ln

⎡
⎣∑

G
PC( G)

N∏
i=1

M∏
α=1

δ

⎛
⎝k[α]

i ,
N∑

j=1

a[α]
ij

⎞
⎠
⎤
⎦, (10.27)

where PC( G) is defined in Eqs (10.18) and (10.19). The quantity � is extensive in the
number of nodes N of the multiplex network and is a non-negligible contribution. In the
presence of the structural cutoffs when the degrees k[α]

i of the nodes in layer α satisfy
Eq. (10.23), � has an explicit analytical expression given by

� = −
N∑

i=1

M∑
α=1

ln

[
1

k[α]
i !

(
k[α]

i

)k[α]
i

e−k[α]
i

]
. (10.28)
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Most notably, this configuration model for multiplex networks can be used to model
networks P(k). In these multiplex networks the degree of the nodes across different layers
can be either uncorrelated or correlated. When the degrees across different layers are
uncorrelated we have

P(k) =
M∏

α=1

P[α]
(

k[α]
)

(10.29)

where P[α]
(
k[α]

)
is the degree distribution in layer α. In this case, we have for each pair

of distinct layers α and β with α �= β

〈
k[α]k[β]

〉
=
〈
k[α]

〉 〈
k[β]

〉
, (10.30)

where the average indicates the average over all the nodes of the network, i.e.

〈
k[α]k[β]

〉
= 1

N

N∑
i=1

k[α]
i k[β]

i . (10.31)

Instead if the degrees across the different layers are correlated we have

P(k) �=
M∏

α=1

P[α]
(

k[α]
)

(10.32)

and in this case
〈
k[α]k[β]

〉
�=
〈
k[α]

〉 〈
k[β]

〉
. (10.33)

These latter multiplex networks include multiplex networks with Maximally Positively
correlated and Maximally Negatively correlated degrees represented in Fig. 7.1.

Construction of multiplex ensembles with independent layers

Multiplex network ensembles with independent layers can be created simply by generat-
ing each layer independently. Therefore, when we want to preserve the expected degree
of each node in each layer we can draw the network in each separate layer independently
from the canonical network ensemble (exponential random graph). However if we aim
at preserving exactly the degree of each node in each layer every network of each
layer can be independently constructed using the microcanonical network ensemble
(configuration model).

10.3.4 Independent layers do not display significant overlap

In multiplex networks with independent layers we can evaluate, following Ref. [41], the
average global overlap

〈
O[α,α′]

〉
between the layers α and α′ and the average local overlap
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〈
o[α,α′]

i

〉
between two layers α and α′ where the global overlap O[α,α′] and the local overlap

o[α,α′]
i are defined in Eq. (7.13) and Eq. (7.14) respectively. These quantities are given by

〈
O[α,α′]

〉
=
∑
i<j

p[α]
ij p[α′]

ij ,

〈
o[α,α′]

i

〉
=

∑
j|j �=i

p[α]
ij p[α′]

ij . (10.34)

For sparse multiplex ensembles with given expected degree of the nodes in each layer,
when p[α]

ij can be approximated by Eq. (10.24), these equations can be expressed as

〈
O[α,α′]

〉
= 1

2

⎛
⎜⎝
〈
k[α]k[α′]

〉2
〈
k[α]

〉 〈
k[α′]〉

⎞
⎟⎠ ,

〈
o[α,α′]

i

〉
= k[α]

i k[α′]
i

〈
k[α]k[α′]

〉
〈
k[α]

〉 〈
k[α′]〉N . (10.35)

If the degrees in the different layers are uncorrelated, i.e. Eq. (10.31) holds, the global
and local overlaps are given by

〈
O[α,α′]

〉
= 1

2

(〈
k[α]

〉 〈
k[α′]

〉)
� N ,

〈
o[α,α′]

i

〉
= k[α]

i k[α′]
i

N
� min

(
k[α]

i , k[α′]
i

)
. (10.36)

Therefore, the overlap is negligible. Degree correlation between different layers can
enhance the overlap, but as long as

〈
k[α]k[α′]

〉
� N the average global

〈
O[α,α′]

〉
and the

local
〈
o[α,α′]

i

〉
overlap continue to remain negligible with respect to the total number of

nodes in the two layers and the degrees of the node i in the two layers. In sparse multiplex
network ensembles without an embedding space, if we want to obtain a significant link
overlap we need to consider multiplex ensembles with dependent layers. Examples of
ensembles in this category will be considered in the following paragraphs.

10.3.5 Multiplex networks with given multidegree sequence
or expected multidegree sequence

Ensemble with dependent layers

One way to construct multiplex networks with the desired amount of link overlap is to
consider multiplex network ensembles which enforce a given multidegree sequence or,
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alternatively, an expected multidegree sequence. The multidegree k m
i , defined in Sec. 7.3,

determines the number of multilinks m connected to node i. Every different multilink
determines in which layers the two connected nodes are linked. Therefore, by fixing
the multidegree sequence it is possible to generate multiplex networks with the desired
level of link overlap. In these cases the layers are not any more independent, and as a
consequence of this the probability P( G) of a multiplex network cannot be expressed as
a product of the probabilities Pα(Gα) of the single layers taken in isolation

P( G) �=
M∏

α=1

Pα(Gα). (10.37)

Canonical ensemble

Let us first consider the canonical network ensemble when we fix the expected non-trivial
multidegrees k m

i of each node. Therefore, by indicating with PC( G) the probability of a
multiplex network of the ensemble we impose the constraints

∑
G

PC( G)

⎡
⎣ N∑

j=1

A m
ij

⎤
⎦ = k m

i (10.38)

for all i = 1, 2 . . . , N and m �= 0. Here A m
ij indicates the elements of the multiadjacency

matrices defined in Sec. 7.3. Again, the probability PC( G) of the least biased ensemble
satisfying these constraints can be obtained by maximizing the entropy getting

PC( G) = 1
ZC

exp

⎡
⎣−

N∑
i=1

∑
m�=0

λ m
i

N∑
j=1

A m
ij

⎤
⎦, (10.39)

where λ m
i are the Lagrangian multipliers enforcing the constraints in Eq. (10.38) and ZC

is the normalization constant. An alternative expression of the probability PC( G) is

PC( G) =
∏
i<j

[∑
m

p m
ij A m

ij

]
, (10.40)

where p m
ij indicates the marginal probability that a pair of nodes (i, j) is connected by a

multilink m. The entropy of these canonical multiplex network ensembles can also be
expressed in terms of the marginal probabilities p m

ij as

S = −
∑
i<j

∑
m

p m
ij ln p m

ij . (10.41)
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The marginals p m
ij are given in terms of the Lagrangian multipliers by

p m
ij = e−λ m

i −λ m
j

1 + ∑
m�=0 e−λ m

i −λ m
j

(10.42)

for m �= 0 and for m = 0 by

p0
ij = 1 −

∑
m�=0

p m
ij . (10.43)

In Eq. (10.42), λ m
i indicate the Lagrangian multipliers which are fixed by the constraints

k m
i =

N∑
j=1

p m
ij (10.44)

with m �= 0. In presence of a suitably defined structural cutoff, when the non-trivial
multidegrees m �= 0 satisfy

k m
i �

√〈
k m〉N (10.45)

the marginal probabilities of multilinks p m
ij for non-trivial multilinks m �= 0 are given by

the simple expression [41]

p m
ij = k m

i k m
j〈

k m〉N . (10.46)

Construction of the canonical ensemble with expected multidegree sequence

A multiplex network with expected multidegree sequence can easily be constructed by
following the steps below:

• Calculate the probability p m
ij to have a multilink m between nodes i and j.

• For every pair of nodes i and j, draw a multilink m with probability p m
ij and

consequently put a link in every layer α where m[α] = 1 and put no link in every
layer α where m[α] = 0.

Microcanonical ensemble

In the microcanonical model, when we fix the multidegrees k m
i of each node i, the

probability of the multiplex network is given by
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PM( G) =
∑

G

N∏
i=1

∏
m�=0

δ

⎛
⎝k m

i ,
N∑

j=1

A m
ij

⎞
⎠. (10.47)

The marginal p m
ij expressing the probability that node i and node j are connected by a

multilink m takes the same form as for the canonical network model (Eqs (10.42) and
(10.43)). In particular, when Eq. (10.45) is satisfied p m

ij is given by Eq. (10.46). However,
the microcanonical ensemble is not equivalent to the corresponding canonical ensemble,
as it emerges clearly from the calculation of the entropy � of the microcanonical network
ensemble, that it is not equal to the entropy of the corresponding canonical ensemble
given by Eq. (13.47) in the thermodynamic limit. Specifically, � is smaller than S as it
satisfies [39]

� = S − � (10.48)

where

� = − ln

⎡
⎣∑

G
PC( G)

N∏
i=1

∏
m�=0

δ

⎛
⎝k[α]

i ,
N∑

j=1

A m
ij

⎞
⎠
⎤
⎦, (10.49)

with PC( G) given by Eqs (10.39) and (10.40). The quantity � is extensive in the number
of nodes N of the multiplex network and is a non-negligible contribution. In the presence
of the structural cutoffs when the multidegrees k m

i of non-trivial multilinks m �= 0 satisfy
Eq. (10.45), � has an explicit analytical expression given by

� = −
N∑

i=1

∑
m�=0

ln

[
1

k m
i !

(
k m

i

)k m
i

e−k m
i

]
. (10.50)

This configuration model for multiplex networks includes multiplex networks with
given multidegree distributions, where each multidegree is drawn independently, i.e.

P(k m) =
∏
m�=0

P m(k m). (10.51)

For instance, it is possible to consider duplex networks in which each different type of
multilink is Poisson-distributed with average degree

〈
k m〉 = c m, i.e.

P m(k m) =
(
c m)k m

k m! e−c m
. (10.52)

Interestingly, this ensemble can also capture more complex scenarios where the multi-
degree distributions are not independent, i.e.
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Fig. 10.5 Schematic representation of the construction of a multiplex network with given multidegree
sequence. Stubs of different types are associated with nodes. Solid line, dashed line and dot-dashed line
stubs refer to multilinks (1,1),multilinks (1,0) and multilinks (0,1) respectively.Stubs of the same type are
randomly matched, forming the multiplex network.

P(k m) �=
∏
m�=0

P m(k m). (10.53)

For instance, this ensemble can capture the topology of duplex networks with nodes
with higher multidegree k(1,1), having also high multidegrees k(1,0), k(0,1), or, on the
contrary, duplex networks in which nodes with high multidegree k(1,1) tend to have low
multidegrees k(1,0), k(0,1).

Construction of microcanonical multiplex ensemble with given multidegree
sequence

A multiplex network with given multidegree sequence can be constructed following these
steps (see Fig. 10.5 for a schematic representation of the algorithm):

• Assign to each node i, k m
i stubs of type m �= 0.

• Randomly pair stubs belonging to different nodes, matching exclusively stubs of
the same type m and never matching more than two stubs for any pair of nodes.

• If two nodes have matched stubs of type m connect them by a multilink m.

10.3.6 Spatial multiplex network ensembles

When the multiplex networks are embedded in a real (as in the case of the airport
multiplex network in Ref. [71]) or a hidden space, the overlap of the links can emerge
naturally from the correlations induced by the distance in the embedding space [148].
Intuitively, if in every layer links are more likely between nodes that are closer in the
embedding space, then one can observe non-negligible overlap of the links because two
nodes that are close in the embedding space are more likely to be connected to each
other in every layer of the multiplex. Let us consider, for instance, the case in which the
probability P( G|{ri}) of a network G with N nodes at positions {ri} is given by
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P( G|{ri}) =
M∏

α=1

Pα(Gα|{ri}), (10.54)

where Pα(Gα|{ri}) is the probability of a network in layer α given by

Pα(Gα|{ri}) =
∏
i<j

[
p[α]

ij a[α]
ij + (1 − p[α]

ij (1 − a[α]
ij )

]
. (10.55)

The probability p[α]
ij of a link between node i and node j in layer α can be modulated

either by an exponential function of the distance dij between the nodes in the embedding
space (when for each link (i, j) there is an associated ‘cost’ increasing linearly with the
distance dij),

p[α]
ij = e−λ

[α]
i −λ

[α]
j −dij/d[α]

0

1 + e−λ
[α]
i −λ

[α]
j −dij/d[α]

0

(10.56)

or by a power law of the distance, (when for each link (i, j) there is an associated ‘cost’
increasing linearly with the order of magnitude of the distance dij),

p[α]
ij =

e
−λ

[α]
i −λ

[α]
j

dθ [α]

ij

1 + e−λ
[α]
i −λ

[α]
j

dθ [α]

ij

. (10.57)

Note that here λ
[α]
i , d[α]

0 , θ [α] are Lagrangian multipliers. In both cases it is possible to
observe a significant overlap of the links [148].

Recently also a multiplex network model in hyperbolic hidden geometry has been
proposed in Ref. [175]. In this model each layer is a network in the hyperbolic hidden
geometry. In each layer α, every node i is assigned a radial r[α]

i and an angular θ
[α]
i

position in a (d = 2)-dimensional Poincaré disk. The radial coordinate is approximately
determined by the node degree in layer α (satisfying approximately r[α]

i = ln N − ln k[α]
i ),

while the angular coordinate allows for the identification of node ‘similarities’. In this
model pairs of nodes (i, j) that have a small hyperbolic distance

x[α]
ij ∼ r[α]

i + r[α]
j + 2 ln sin(�θ

[α]
ij /2), (10.58)

with

�θ
[α]
ij = π − |π − |θ [α]

i − θ
[α]
j || (10.59)

indicating the angular distance between the nodes, are more likely to be connected. This
model can be used in inference problems: for any given layer of a multiplex network the
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angular coordinates in the hidden hyperbolic space can be estimated. In this way, clusters
of soft communities revealed by the position of closed sets of nodes in the hyperbolic
space can be detected. Interestingly, when applying these techniques on real multiplex
networks important correlations are observed between the hidden geometry of different
layers. For instance, the probability P(β|α) that a random pair of nodes is connected in
layer β given their hyperbolic distance in layer α reveals that nodes that are connected in
layer β tend to be close in space also in layer α.

10.3.7 Multiplex networks with heterogeneous activity
of the nodes

As many real networks display a heterogeneous activity of the nodes (defined in Sec.
7.5) it is important to generate ensembles displaying this important structural property.
Since a node is active in a layer only if it is connected at least to one other node, the first
and most direct way to generate networks with heterogeneous activity of the nodes is
to consider degree sequences {k[α]

i } or multidegree sequences {k m
i }. When these degree

sequences allow a fraction of nodes to be disconnected in one or more layers it is possible
to generate multiplex networks with heterogeneous activity of the nodes.

However, this procedure implies that we know exactly which nodes are active in which
layers.

In a number of cases, we do not have this information, but we need to construct multi-
plex networks with given activity distribution. In this scenario the following constructive
procedure proposed in Ref. [75] can be used:

(a) Construct the bipartite network between nodes and layers where each node is
linked to a layer if it is active on it (see Fig. 7.5). For instance, this bipartite network
can be constructed using the configuration model where each node i has given
activity Bi (its degree in the bipartite network) and each layer α has its own layer
activity Nα (its degree in the bipartite network).

(b) Assign to each layer α of the multiplex network the set of nodes i that are active
on it, as indicated in the bipartite network constructed in point (a).

(c) Assign to the active nodes in each layer α a degree greater than or equal to one
according to a desired degree distribution P[α](k) and generate the network with
the resulting degree sequence.

10.4 Randomization algorithms

Randomization algorithms are very useful for generating null models starting from real
network data. Here we provide an overview of three different randomization algorithms.
The first keeps the same network in each layer but randomizes the one-to-one mapping
between the nodes and removes the effect of interlayer degree correlations. The second
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algorithm keeps the same interlayer degree correlations but randomizes each layer
independently, therefore removing the effect of link overlap among the layers and the
effect of intralayer degree correlations. Finally, the third algorithm keeps the multidegree
sequence and therefore keeps at the same time the same link overlap and the same
interlayer degree sequences as the original network.

Randomization of the replica nodes

A given null model of a real multiplex network can be obtained by randomizing the one-
to-one mapping between the replica nodes of the network while keeping the same layers.
To this end, for every layer α we can consider a random permutation of the labels i of
the nodes. In this way, while the networks in each layer remain unchanged the interlayer
degree correlations are removed.

Independent randomization of each layer

In this case, each single network can be randomized separately while keeping the degree
sequences and the interlayer degree correlations. To this end it is possible to use the
swap algorithm [200] extensively used in the context of single layers to randomize a
network while preserving the degree sequence. The algorithm applied to each single
layer α proceeds as follows

• Consider two random links of layer α connected to four distinct nodes. We assume
that the first link is connected to nodes i1 and j1 and that the second link is connected
to nodes i2, j2.

• Swap the two links substituting them with other two links connecting node i1 to
node j2 and node i2 to node j1 only if the move is allowed. The move is allowed if
none of the links (i1, j2) and (i2, j1) already exists in layer α.

These swaps proceed until the network is completely randomized and basic structural
properties of the network do not change by increasing the number of iterations.

Randomization algorithm preserving the multidegree sequence

In this case the existing multiplex network is randomized by keeping the same multide-
gree sequence. To this end, it is possible to generalize the widely used swap algorithm
of single networks [201] for randomizing a multiplex network keeping the multidegree
sequence and therefore the same overlap of the links between any two layers. This
generalized swap algorithm is defined as follows:

• Consider two random multilinks of the same type m �= 0 connected to four distinct
nodes of the network. Let us assume that the first multilink is connected to nodes
i1 and j1 and the second multilink is connected to nodes i2 and j2.

• Swap the two multilinks substituting the original multilinks m �= 0 with two
multilinks m connecting nodes i1 and j2 and nodes i2 and j1 if and only if the move
is allowed. The move is allowed if the nodes i1 and j2 and the nodes i2 and j1 are
not yet connected by any type of non-trivial multilink.
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Fig. 10.6 Schematic representation of the swap algorithm that randomizes multiplex networks preserving
their multidegree sequence. Here solid line, dashed line and dot-dashed line connections refer to multilinks
(1,1), multilinks (1,0) and multilinks (0,1) respectively.

The swap algorithm proceeds until the network is completely randomized and the
multiplex network measures do not change significantly if the number of iterations is
increased. The swap algorithm is schematically represented in Fig. 10.6.

10.5 Models of multi-slice temporal networks

10.5.1 Modelling temporal networks

Modelling temporal networks represents a major challenge of network theory. In fact,
networks that are time-varying are evolving through a non-equilibrium dynamics and
often it is not at all clear if they even have a stationary state. Additionally, social temporal
networks can be affected by periodic modulations in time reflecting, for instance, daily
and weekly habits.

Nevertheless, several statistical common features of temporal networks can be cap-
tured by stochastic models with steady states. These models represent an ideal platform
for simulating artificial datasets with controlled structural and temporal properties.

10.5.2 Models with temporal activity of the nodes

Temporal activity model: the motivation

In temporal networks some nodes might be more inclined than others to establish
connections at any given time-window. This tendency of the nodes to be more active
or less active in temporal networks can have profound consequences for the temporal
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network topology and for the dynamics defined on it. In the modelling framework
proposed in Ref.[249] this heterogeneity of the nodes of the network is modelled by
assuming that each node is assigned a temporal activity drawn randomly from a given
distribution. The temporal activity of the nodes is kept fixed during the entire dynamical
evolution of the network.

At each time-slice the nodes establish connections with a probability proportional to
their temporal activity. Different time-slices are drawn independently, but all of them are
conditioned on the temporal activity of the nodes.

Definition

Given a temporal network of N nodes, every node i is assigned a temporal activity ai = ηxi
where xi is drawn randomly from a distribution F(x) and η is a parameter that can be
used to tune the properties (the average number of active nodes at time t) of the temporal
network.

The probability distribution F(x) is arbitrary with support [ε, 1] with ε > 0. How-
ever, for any given application its functional form can be dictated by the data under
consideration.

The model generates a multi-slice temporal network in which every slice corresponds
to a temporal window δt.

Every temporal slice is drawn independently of the previous one, but is conditioned
on the temporal activities of the nodes that are quenched and do not change over time.

The algorithm generating the temporal network is simply stated. At each time t, with
probability aiδt each node becomes active and it is connected to m other randomly chosen
nodes. Note that in this way inactive nodes can also receive connections. Every slice of
the temporal network is drawn independently using the same algorithm.

Derivation of the aggregated degree distribution

The degree Ki in the aggregated network of the above model is given by the sum of the
connections K̃out

i that are drawn by node i during the time-slices when it is active and
the number of connections K̃ in

i , not included in the previous set, that the node receives
from other nodes during the time-slices when it is inactive, i.e.

Ki = K̃out
i + K̃ in

i . (10.60)

Since when node i is active it is connected to any node of the network randomly, the
probability that in the aggregated network of M = T time-slices node i is connected to
any other node is given by

p = 1 −
(

1 − 1
N

)maiT

� 1 − e−maiT/N , (10.61)

where the last expression is valid for T/N � 1. Therefore, it follows that

K̃out
i � N

[
1 − e−maiT/N

]
. (10.62)
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The number of connections K̃out
i instead is given by

K̃ in
i = m〈a〉Te−maiT/N. (10.63)

In fact, the average number of links drawn by nodes different from node i over the
entire time-window T is m〈a〉NT . Each of these links is connected to node i with
probability 1/N giving an average number of connections m〈a〉T . These connections
should be counted in K̃ in

i only if they are established between nodes that are not otherwise
connected. Therefore, K̃ in

i is given by Eq. (10.63) where the factor e−maiT/N accounts
for the probability that the link is not also counted in K̃out

i . Finally, using Eqs (10.62),
(10.63) we obtain

Ki = N
[

1 −
(

1 + m〈a〉 T
N

)
e−maiT/N

]
� N

[
1 − e−maiT/N

]
, (10.64)

valid for T/N � 1. Therefore, the aggregated degree is a one-to-one function of the
temporal activity of the node. In this approximation, the cumulative distribution of the
aggregated network P(Ki ≥ K) is given by

P(Ki ≥ K) = P
(

xi = ai

η
≤ − N

ηmT
ln
[

1 − k
N

])
, (10.65)

yielding the degree distribution P(K) of the aggregated network

P(K) = 1
Tmη

1

1 − k
N

F
[
− N

ηmT
ln
(

1 − k
N

)]
� 1

Tmη
F
[

k
Tmη

]
. (10.66)

Therefore, the degree distribution of the aggregated network is determined by the
distribution of temporal activities. This theoretical model can be simulated starting
from empirically measured activity parameters and can be show to capture important
properties of temporal networks (see Fig. 10.7).

Variations of the model

Different variations of this model including memory effects in the network temporal
dynamics have been considered in subsequent publications. In particular, a different
attachment probability which goes beyond the random attachment of the nodes has been
considered in Ref. [169] and in Ref. [295] a stochastic variable is attributed to each link
modulating its duration.

10.5.3 Exponential random multi-slice networks

The exponential random graph framework defining the canonical ensembles of networks
can be extended to temporal multi-slice networks [204]. In particular, within this
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Fig. 10.7 Cumulative distribution FC(x) of the activity potential x, empirically measured by using four
different time-windows and a schematic representation of the proposed network model. In particular, the
cumulative distributions of the observables for Twitter (panel (a)),for the IMDb actor collaboration network
(panel (b)) and for the PRL scientific collaboration network (panel (c)) are shown. In panel (d) a schematic
representation of the model is represented. Considering just 13 nodes and m = 3, a visualization of the
resulting networks is plotted for three different time steps. The final visualization represents the network
after integration over all time steps. Reprinted by permission from Macmillan Publishers Ltd: [249].

framework it is possible to include in multi-slice networks memory effects that are not
present in the original version of the model with activities of the nodes.

Let us consider a multi-slice network described by adjacency matrices a[α] with
α = 1, 2 . . . M each indicating the interactions occurring in the temporal slice α of the
network. It is assumed that each temporal slice only depends on the previous temporal
slice. It follows that the probability P({a[α]}α=1,2...,M) of the entire multi-slice network
follows a Markovian process

P({a[α]}α=1,2...,M) =
M∏

α=2

P̃(a[α]|a[α−1])P̂(a[1]) (10.67)
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where P̂(a[1]) is the probability that the first temporal slice α = 1 has adjacency matrix
a[1] and P̃(a[α]|a[α−1]) is the probability that the temporal slice α has adjacency matrix
a[α], given that the previous temporal slice had adjacency matrix a[α−1].

In Refs [264, 151, 150] this Markovian assumption on the probability of the multi-slice
network is combined with the framework of canonical network ensembles. In particular, it
is assumed that every temporal slice is a maximum entropy network satisfying a number
of constraints depending also on the structural properties of the preceding temporal
slice. By indicating with Fμ

(
a[α], a[α−1]

)
the different structural properties of the network

under consideration, the structural constraints enforced on average on the conditional
probability P̃

(
a[α]|a[α−1]

)
read

∑
a[α]

P̃
(

a[α]|a[α−1]
)

Fμ

(
a[α], a[α−1]

)
= Cμ, (10.68)

where Cμ are constant values. The conditional probability P̃
(
a[α]|a[α−1]

)
of the lead

biased ensemble of networks satisfying these constraints is given by the maximum
entropy ensemble with

P̃
(

a[α]|a[α−1]
)

= 1
Z

exp

(
−
∑
μ

λμFμ

(
a[α], a[α−1]

))
(10.69)

where λμ are the Lagrangian multipliers enforcing the different types of constraints.
Typically, here the label μ indicates the different types of constraints. These are usually
taken to be global network properties determining respectively the density, the stability,
the reciprocity and the transitivity of the multi-slice network [204].

These most notable examples of constraints are described in the following:

• Density. This constraint fixes the expected total number of links in the temporal
slice α

Fdensity

(
a[α], a[α−1]

)
=
∑
i,j

a[α]
ij . (10.70)

It is an example of constraint that acts on each layer independently of the previous
layer.

• Stability.This constraint fixes on average the total number of pairs of nodes that are
either interacting or non-interacting in both layer α and the preceding layer α − 1,

Fstability

(
a[α], a[α−1]

)
=
∑
i,j

a[α]
ij a[α−1]

ij + (1 − a[α]
ij )(1 − a[α−1]

ij ). (10.71)

• Reciprocity. This constraint fixes on average the fraction of nodes that reciprocate a
direct interaction existing in the previous time-slice,
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Freciprocity

(
a[α], a[α−1]

)
=

∑
i,j a[α]

ji a[α−1]
ij∑

i,j a[α−1]
ij

. (10.72)

• Transitivity. This constraint fixes on average the propensity of the multi-slice
network to have links at time α that close triads between triple nodes forming a
wedge at the preceding time-slice,

Ftransitivity

(
a[α]|a[α−1]

)
=

∑
i,j,r a[α]

ij a[α−1]
ir a[α−1]

rj∑
i,j,r a[α−1]

ir a[α−1]
rj

. (10.73)

These types of maximum-entropy network ensembles typically are too complicated
to allow an analytical determination of their entropy. As a result, these models cannot
be used to estimate real temporal network parameters through maximum-likelihood
estimation. Nevertheless, Markov Chain Monte Carlo methods can be used to infer the
parameters of the model from real data.

10.5.4 Models with burstiness

Burstiness in temporal networks

Many temporal networks, including face-to-face interactions and mobile-phone calls,
but also email correspondence and traditional exchange of mail, are bursty [13, 74, 317].
This term indicates that the interval between subsequent interactions and the duration
of the interactions are power-law distributed. This implies that the establishment of new
interactions does not occur at a constant rate at any given interval of time. Instead, the
burstiness implies that the temporal evolution of the network includes significant memory
effects.

Models of bursty temporal networks include notably queue models with priority of
tasks [13] that characterize the dynamics from a single-node perspective. In this case
it is possible to model the time series indicating when a single agent sends emails or
letters. In this framework the main idea is that agents act with some sort of bounded
rationality by performing tasks of some priority with an assigned probability distribution.
This probability can range from a random uniform distribution (yielding a non-bursty
temporal network) to an extremal dynamics indicating that the task with highest priority
is the first to be accomplished (yielding a bursty temporal network).

Another class of models assumes that the cause of burstiness is instead a temporal rein-
forcement dynamics, extending to the temporal realm a sort of preferential attachment
rule [288, 318, 317]. In the context of face-to-face interations this framework assumes
that an interacting agent has a smaller probability of ending a conversation the longer
the conversation lasts. This type of modelling has been shown to be very appropriate for
describing face-to-face interactions and mobile-phone communication as well, revealing
the different statistical properties of the two types of communication.
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Bursty model for face-to-face interactions

In this model each node i = 1, 2, . . . , N forms or removes its links over a very fine time-
window called a micro-time step.

The dynamics of the stochastic model is extremely simple. Let us indicate with ni ∈
{0, 1, 2 . . . , N − 1} the number of connections of node i and with ti the last step at which
node i has acquired ni connections. Starting from a given random initial condition, at
each micro-time step t the following algorithm is simulated:

(1) A node i is chosen randomly.

(2) The node i updates its number of connections ni = n with probability pn(t, ti). If
ni is updated, the changes in the network are determined by the rules:

(i) If node i is isolated, i.e. ni = 0, it is connected to another isolated node j
chosen with probability proportional to p0(t, tj).

(ii) If node i is interacting in a group, i.e. ni = n > 0, with probability λ the node
leaves the group and with probability (1 − λ) an isolated node j chosen with
probability proportional to p0(t, tj) joins its group.

In this model, if the probabilities pn(t, t′) are chosen to be constant in time, every node
has a fixed probability of forming a group or leave from a group. In this case the formation
of the groups is a Poisson process and the distribution of the duration of contact is an
exponential. Therefore, the duration of contacts has a characteristic time.

The experimental data on face-to-face interactions [74] strongly deviates from this
traditional framework, showing a power-law distribution of the duration of contacts
without a characteristic timescale. This implies that the decision of the agents to form or
leave a group is driven by memory effects dictated by a reinforcement dynamics. This
reinforcement dynamics can be summarized in the following statement: the longer an
agent is interacting in a group the smaller the probability that he will leave the group, the longer
an agent is isolated the smaller the probability that he will form a new group. In particular,
this reinforcement principle implies that the probabilities pn(t, t′) that a node degree n
changes the number of its connections depends on the last time t′ the node has updated
its number of connections, i.e. pn(t, t′) = pn(t − t′). Any function pn(t − t′) taken to be a
decreasing function of its argument describes a reinforcement dynamics, but the face-to-
face interaction data are reproduced only for a particular choice pn(t − t′). In particular,
the only choice of the kernel pn(t − t′) that can reproduce the power-law distribution of
duration of contacts is given by

pn(t − t′) = bn

1 + (t − t′)/N
. (10.74)

In Eq. (10.74) the choice bn = b1 for every n ≥ 1 indicates the fact that the interacting
agents change their state independently of the number of other agents n with whom they
are interacting, provided that n ≥ 0. In the case in which λ = 0, only groups of size at



Models of multi-slice temporal networks 219

most two are formed. At the stationary state, the number of isolated/interacting agents
N0(t, t′)/N1(t, t′) at time t that have been isolated/interacting since time t′ decays like a
power law of time, given by

N0(t, t′) ∝
(

1 + t − t′

N

)−2b0

,

N1(t, t′) ∝
(

1 + t − t′

N

)−2b1

. (10.75)

In the case λ ∈ [0, 0.5] a stationary state is reached where groups of different sizes are
formed. The number of nodes Nn(t, t′) that at time t have degree n and have not changed
their degree since time t′ decays with time as a power law with

N0(t, t′) ∝
(

1 + t − t′

N

)−b0[2+(1−λ)ε̂]

Nn(t, t′)
∣∣
n>0 ∝

(
1 + t − t′

N

)−(n+1)b1

, (10.76)

where ε̂ > 0 can be predicted by the analytical solution of the model (see Refs
[288, 318]). Since Nn(t, t′) decays as a power law with exponent (n + 1)b1 for n > 0,
this solution implies that larger groups are more unstable than smaller groups. In fact,
in this model a large group changes size whenever any of its members decide to leave
the group, leading to a higher instability of larger groups. This effect reproduces very
well the behaviour observed in real datasets of face-to-face interactions coming from
Sociopattern experiments (see Fig. 10.8). We note here that this model can be turned
into a multi-slice network model by taking snapshots of the network after N micro-time
steps.

Model for mobile-phone interactions

Mobile-phone networks have different statistical properties from face-to-face interaction
networks. In fact, the duration of contacts is not power-law distributed but is distributed
according to a Weibull distribution [317]. Despite this difference, since Weibull distribu-
tions cannot be obtained from Poisson processes mobile-phone interactions also cannot
be described by models in which nodes change connectivity at a constant rate. It turns
out that a reinforcement dynamics also has the ability to reproduce quite accurately the
mobile-phone interactions. However, instead of taking a probability pn(t−t′) of changing
the connectivity state (from interacting to non-interacting for n = 1 or vice versa for
n = 0) given by Eq. (10.74) it is opportune to take [317]

pn(t − t′) = bn

(t − t′)β
, (10.77)

with β ∈ (0, 1) and bn > 0. Notice that this probability again satisfies the reinforcement
mechanism of the network dynamics.
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Fig. 10.8 Probability of duration Pn(τ ) of interactions with other n nodes (groups of size n + 1). Panel
(a) shows the distribution found in the Sociopattern experiment conducted between the 175 voluntary
participants of the sixth European Semantic Web Conference in 2009, panel (b) shows a typical outcome
of the model for bursting face-to-face interactions proposed in Refs [288, 318]. Reprinted figure from
Ref. [318].

10.6 Ensembles of more general multilayer networks

General multilayer networks can be modelled using different network ensembles depend-
ing on how interlinks connect nodes of different layers. Since in multilayer networks
there is a large degree of freedom in the way the interlinks can be placed, the variety of
multilayer network ensembles is remarkable. Here we will discuss three major classes of
multilayer network ensembles.
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Networks of networks with replica nodes

In these networks of networks, if layer α is connected with layer β in the supernetwork
(i.e. Aαβ = 1), each replica node (i, α) of network α is connected to its replica node (i, β)

in layer β (see Fig. 10.9 and definition in Sec. 5.5.3). Therefore, once the supernetwork
is given the interlinks between different layers are fixed but the networks within any given
layer can be random. Every layer can be given by a suitable single-layer network model.
For instance, the layers can be given by the microcanonical network ensemble with given
degree sequence or by the canonical network ensemble with expected degree sequence.
Assuming that each layer is drawn from the configuration model the probability P(M)

of a network of networks M in this ensemble is given by

P(M) = 1
Z

N∏
i=1

M∏
α=1

⎡
⎣δ

⎛
⎝k[α]

i ,
N∑

j=1

Aiα,jα

⎞
⎠ ∏

β �=α

δ
(
Aαβ ,Aiα,iβ

)⎤⎦, (10.78)

where here and in the following A is the adjacency matrix of the supernetwork, A is the
supra-adjacency matrix of the network of networks, δ(x, y) is the Kronecker delta and
Z is a normalization factor. In Sec. 11.6 we will study percolation in the presence of
interdependencies for this class of networks of networks.
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Fig. 10.9 Schematic view of a typical network of networks with replica nodes. Interdependencies
(interlinks between nodes from different levels) are shown by the black dashed lines. Intralinks between
nodes within layers are shown as solid red lines. Reprinted figure from Ref. [49].
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Fig. 10.10 Schematic representation of a network of networks with fixed supernetwork and random
permutations of the labels of the nodes. The supernetwork can be arbitrary but in the drawing we show
a specific realization in which the supernetwork is a loop formed by M = 3 layers. Reprinted from [54]
©2014 with permission from Elsevier.

Networks of networks without replica nodes

In this case the networks of networks do not have replica nodes but have a supernetwork.
If network α is connected with network β in the supernetwork, each node (i, α) of network
α is connected to a single node (j, β) of network β randomly chosen from the nodes of
layer β (see Fig. 10.10). The one-to-one mapping between the nodes of two different
layers is performed by defining a permutation πα,β of the indices {i} such that j = πα,β(i)
if and only if node (i, α) is linked to node (j, β). In order to define an undirected network
of networks, we need to impose that the permutation πβ,α is the inverse permutation of
πα,β , enforcing that if j = πα,β(i) then i = πβ,α(j).

Ensembles of networks of networks of this type can be defined for any given
supernetwork and set of permutations πα,β(i) by assuming that every network in each
distinct layer is random (either generated by a microcanonical or the canonical network
ensemble). Assuming that each layer has the same number of nodes (i.e. Nα = N ∀α)
and is drawn from a configuration model, the probability P(M) of a network of networks
M in this ensemble is given by

P(M) = 1
Z

N∏
i=1

M∏
α=1

⎡
⎣δ

⎛
⎝k[α]

i ,
N∑

j=1

Aiα,jα

⎞
⎠ δ

(
Aiα,παβ(i)β , Aαβ

)⎤⎦. (10.79)

The present case differs substantially from the first discussed type of network of
networks, having both a supernetwork and replica nodes. For instance, consider the case
of a supernetwork forming a loop of size M between the different layers. In the previous
case, starting from each node (i, α) and following only interlinks between different layers
we can reach only M other nodes, while in the present scenario (as each permutation
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Fig. 10.11 Schematic representation of a network of networks with given superdegree distribution. Each
layer α has given superdegree qα . However each node (i, α) can be linked to any other replica nodes.
Reprinted figure from Ref. [48].

πα,β(i) is random) the number of different nodes that can be reached following interlinks
can be significantly higher than M (see Fig. 10.10).

In Sec. 11.6 we will study percolation in the presence of interdependencies for this
class of network of networks.

Multilayer networks with replica nodes and with given supradegree
distribution

In this case, each node (i, α) can be linked only to its replica nodes (i, β), but there is no
fixed supernetwork between the layers. Therefore, each set of replica nodes (i, α) with
α = 1, 2, . . . , M is connected by a network formed exclusively by interlinks. In order to
have a simple model we assume this network is a random uncorrelated network where
the replica node (i, α) in layer α is linked to q = qα replica nodes (i, β) of randomly
chosen layers β [48] (see Fig. 10.11). The value qα is called the supradegree of layer α.
Assuming that each layer is drawn from the configuration model, the probability P(M)

of a multilayer network M in this ensemble is given by

P(M) = 1
Z

N∏
i=1

M∏
α=1

⎡
⎣δ

⎛
⎝k[α]

i ,
N∑

j=1

Aiα,jα

⎞
⎠ δ

⎛
⎝qα,

∑
β �=α

Aiα,iβ

⎞
⎠
⎤
⎦. (10.80)

In this ensemble of network of networks every layer is drawn randomly from a suitable
network ensemble but also the interlinks are drawn randomly. Therefore, for a sufficiently
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Fig. 10.12 Schematic representation of a network of networks with multiple interconnections. Each node
(i, α) has ki

[α,β] links with nodes in layer β. Reprinted from [54] ©2014 with permission from Elsevier.

sparse distribution of supradegree the network formed by the interlinks is uncorrelated
and any interlink between node (i, α) and node (i, β) with α �= β has probability πiα;iβ
given by

πiα;iβ = qαqβ

〈q〉 M
. (10.81)

In Sec. 11.6 we will study percolation in the presence of interdependencies for this class
of network of networks and we will indicate with PS(q) the supradegree distribution,
while we will indicate with PL(k) the degree distribution of the intralink within each
layer, assumed for simplicity to be the same for every layer.

Multilayer networks with multiple interconnections

The last example of multilayer networks assumes that the nodes of a layer can be linked to
any other node in other layers, and that the number of interlinks of each node is arbitrary.
In this scenario it is possible to consider the ensemble in which every node (i, α) has k[α,β]

i
connections with nodes in layer β = 1, 2, . . . , M. Therefore, assuming that all the layers
have the same number of nodes (i.e. Nα = N ∀α), the probability of a generic multilayer
network M is given by
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P(M) = 1
Z

N∏
i=1

M∏
α=1

M∏
β=1

δ

⎛
⎝k[α,β]

i ,
N∑

j=1

Aiα,jβ

⎞
⎠. (10.82)

A random uncorrelated multilayer network of this ensemble has a link between node
(i, α) and node (j, β) with probability

πiα;jβ = k[α,β]
i k[β,α]

j〈
k[α,β]

〉
N

. (10.83)

The typical structure of a network of networks in this ensemble is shown in Fig. 10.12.
In Sec. 12.2.3 we will study classical percolation in this class of multilayer network.
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Interdependent Multilayer Networks

11.1 Interdependencies in multilayer networks

Multilayer networks are usually formed by interdependent layers. While in classical
percolation the failure of a node does not necessarily induce the failure of its neigh-
bouring nodes, when two nodes are interdependent it is impossible for a node to be
functional if the other node is not also functional. Therefore, the failure of one of the
two interdependent nodes causes the failure of the other one. Global infrastructures are
dependent on each other as a node in one layer can control or regulate other nodes in
other layers. A similar scenario holds for multilayer financial networks where different
financial institutions are related to each other by financial contracts. Biological networks
in the cell formed by the combination of transcription networks, signalling networks,
protein interaction networks and the metabolic network are strongly interdependent and,
as a result, the cell is not alive if any of these networks is not functional.

Having a reliable theory for characterizing the robustness of multilayer networks in
the presence of interdependencies is of fundamental importance for policy makers, and
in general for a comprehensive understanding of the response of complex systems to
damage.

In a seminal paper by Buldyrev et al. [66] it has been shown that in the presence of
interdependencies multilayer networks can be much more fragile than single networks.
In particular, as an increasing fraction f of nodes is damaged interdependent multilayer
networks are dismantled even if their single layers would be functional if in isolation.
Additionally, the disruption of the network occurs at a discontinuous transition char-
acterized by large avalanches of failure events that propagate back and forth across the
different layers of the network.

Significant progress has been made in characterizing this transition, and variants of
the models (including partial [319] and redundant interdependencies [257]) have been
proposed as possible scenarios for improving the robustness of interdependent multilayer
networks.

In this chapter we aim at providing a comprehensive overview of the rich literature
covering these important problems, highlighting the main results and their relevance to
understanding the robustness of multilayer networks.

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001
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Additionally, from the theoretical perspective, the characterization of the robustness
of interdependent multilayer networks allows us to formulate a generalized percolation
problem that opens an entirely new scenario in the percolation theory.

11.2 Percolation of interdependent networks

11.2.1 The Mutually Connected Giant Component
of a multiplex network

A multilayer network is interdependent if all the interlinks imply the interdependence of
the connected nodes. Two nodes are interdependent if the damage of one node implies
the damage of the other interdependent node, independently of the rest of the network.
In presence of interdependencies, the robustness of a multilayer network when a random
damage affects a fraction of its nodes can be evaluated by calculating the size of its
Mutually Connected Giant Component (MCGC) [66]. In Fig. 11.1, it is shown how to
construct the MCGC for the case of a multiplex formed by two layers where the replica
nodes are interdependent. Starting from a random initial damage in a given layer, the
damage will affect all the nodes of the same layer that are not part of its giant component.
The damage caused in one layer propagates to the other layer through the interlinks
because the interlinks imply interdependencies. In each of these layers all the nodes that
are not in the giant component are damaged. The MCGC of a multiplex interdependent
network is the giant component that remains after the random damage propagates back
and forth in the different layers. Therefore, initial damage to the nodes of the multiplex
network can cause an avalanche of failure events.

The algorithm that defines the MCGC in a general multilayer network formed by
M layers is as follows [66]. Given an initial damage of the nodes

(a) (b) (c) (d)

Fig. 11.1 The algorithm for extracting the MCGC from a multiplex interdependent network formed by
two layers is here shown after the damage (attack) of a single initial node in the bottom layer. The damage
propagates from one layer to the other until the algorithm stops and no more nodes can be damaged. The
remaining nodes belong to the MCGC. Here damaged nodes are indicated as darker nodes.
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(i) the giant component of each layer α = 1, 2, . . . , M is determined, evaluating the
effect of the damaged nodes in each single layer;

(ii) each node that has at least an interdependency with a node that does not belong
to the giant component of its proper layer is damaged;

(iii) if there are no new damaged nodes the algorithm stops; otherwise it proceeds,
starting again from step (i).

At the end of the iteration the nodes that are not damaged by the iterative process form
the MCGC.

The MCGC in a multiplex network admits also another equivalent definition [33]. In
fact, it is the giant subgraph of the multiplex network induced by the set of nodes such
that every pair of nodes in the set is connected at least by one path in each of the M
layers of the multiplex network where these paths need to traverse only nodes belonging
to the MCGC.

11.2.2 Hybrid phase transition and avalanches of failure events

In the case in which the nodes are randomly damaged, it is possible to characterize the
non-linear response of the system by determining the fraction S of nodes that remain
in the MCGC. If the nodes of the multilayer networks are damaged with increasing
probability f = 1 − p it is therefore possible to characterize the entire function S = S(p),
determining the robustness of the system. Interestingly, by studying this phase transition
in different multilayer network topologies it is observed that multilayer networks are
more fragile than single layers taken in isolation, and that the initial damage of an
interdependent network can generate avalanches of cascading failures.

This important result provides a clear theoretical proof that, including interdepen-
dencies in multilayer infrastructures or transportation networks, can greatly reduce the
robustness properties of multilayer networks.

Commenting on the specific scenario of a multiplex interdependent network with
Poisson layers can be particularly instructive. Assuming that each of the M layers of the
multiplex network has a Poisson degree distribution with average degree c, the fraction
S of nodes in the MCGC when nodes are damaged with probability f = 1 − p satisfies

S = p
(

1 − e−cS
)M

. (11.1)

This equation can be compared with the equation determining the fraction S of nodes in
the giant component of a single Poisson network with average degree c, when a fraction
f = 1 − p of its nodes are randomly damaged, which is given by

S = p
(

1 − e−cS
)

. (11.2)
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The only difference between these equations is the exponent M > 1 on the right hand
side of Eq. (11.1). Nevertheless, this apparently small change is responsible for a dramatic
change in the nature of the percolation-phase transition observed in interdependent
multiplex networks. While on a single layer the percolation transition occurs continuously
at a second-order transition, in interdependent multiplex networks the MCGC emerges
discontinuously [66] (see Fig. 11.2). If one approaches the percolation threshold p = pc,
from p > pc the interdependent networks are affected by cascading failures that propagate
throughout the structure, rapidly dismantling the entire multiplex network. Moreover,
the percolation transition occurs for a critical value p = pc which is increasing with the
number of layers M, indicating an increased fragility of the system. In fact, the multiplex
network with larger number of layers M is destroyed when a smaller fraction of nodes
fc = 1 − pc is initially removed.

Finally, it has been shown that the critical behaviour of the model is characteristic of
a hybrid phase transition [33] (see Sec. 3.2). In other words, the MCGC emerges at a
discontinuous phase transition but is also characterized by a singular behaviour as the
probability p that a node is damaged approaches its critical value pc from above, i.e. for
p → p+

c .
On a side note, we mention here that it is also possible to generalize the MCGC by

defining the K-core percolation of interdependent multiplex networks. In this context the
K-core is the giant component formed by a set of nodes such that every pair of nodes
is connected in every layer at least by K paths. In Ref. [11] it has been shown that the
K-core of interdependent multiplex networks emerges at the discontinuous hybrid phase
transition for every K ≥ 1 as long as the multiplex is non-trivial, i.e. it includes M > 1
layer. Given the space limitation here we will focus our attention on the MCGC.

0 1 2 3 4 5
cp

0

1

2

3

4

cS

Fig. 11.2 Percolation transition in single and multiplex networks. The solid line indicates the fraction
S of nodes in the giant component of a single network (M = 1) with Poisson degree distribution with
average c as a function of the probability p that a random node is not initially damaged. The dashed and
the dot-dashed lines indicate the fraction of nodes in the MCGC of a multiplex network with Poisson
layers with the same average degree c formed respectively by M = 2 and M = 3 layers.
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11.3 Interdependent multiplex networks without link
overlap

11.3.1 The message-passing algorithm

On a locally tree-like multiplex network without link overlap, the MCGC can be found
by using a suitable message-passing algorithm. This algorithm was first proposed by Son
et al. in Ref. [281]. According to this algorithm, nodes send messages along their links
to neighbouring nodes. These messages can be used to determine whether a node is
in the MCGC or not. We distinguish three versions of the algorithm valid respectively
when the network and the initially damaged nodes are known, when the network is known
but the identities of the initially damaged nodes are not known and when we do not know
the exact topology of the network.

Given network and initially damaged nodes

Assuming that the variable si assigned to each node i indicates whether a node is initially
damaged (si = 0) or not (si = 1), each message sent by a node i to a node j indicates
whether node i connects node j to nodes in the MCGC. Specifically, the message σα

i→j

that node i sends to a neighbouring node j in layer α is equal to one
(
σα

i→j = 1
)

if the
following conditions are met:

(a) node i is not initially damaged, i.e. si = 1;

(b) node i belongs to the MCGC even if the link between node j and node i is
removed from the multiplex, i.e. for every layer β = 1, 2 . . . , M node i receives
at least one positive message σ

β

�→i = 1 from a node � �= j that is its neighbour in
layer β.

If these conditions are not met, then σα
i→j = 0. These messages determine whether a

node i belongs (σi = 1) or not (σi = 0) to the MCGC. In fact, node i belongs to the
MCGC if and only if

(a) node i is not initially damaged, i.e. si = 1;

(b) node i receives at least one positive message σα
�→i = 1 from a neighbour � of

node i in every layer α.

These two algorithms directly translate to the message-passing equations

σα
i→j = si

⎡
⎣1 −

∏
�∈Nα(i)\j

(
1 − σα

�→i

)
⎤
⎦ ∏

β �=α

⎡
⎣1 −

∏
�∈Nβ(i)

(
1 − σ

β

�→i

)⎤⎦.

σi = si

M∏
α=1

⎡
⎣1 −

∏
�∈Nα(i)

(
1 − σα

�→i

)⎤⎦, (11.3)
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where Nα(i) indicates the set of neighbours of node i in layer α. The fraction of nodes S
in the MCGC is given by

S = 1
N

N∑
i=1

σi . (11.4)

This algorithm allows us to determine for every real network, as long as it is locally tree-
like, which nodes are in the MCGC once the initially damaged nodes are given.

Note that the message σα
i→j is one only if node i receives at least one positive message

in each layer from node other than j. Therefore, this algorithm is not reducible to
the algorithm determining the giant component in each single layer. Interestingly, this
algorithm admits an epidemic-spreading interpretation [281] according to which each
node i can spread the epidemics (send a positive message) to a given neighbour j only
if in each layer of the multiplex network it is connected to at least one other neighbour
� �= j which is spreading the infection to node i.

Given network and random damage of the nodes

Let us consider a random initial damage of the nodes {si}i=1,2,...,N where each node is
damaged with probability 1−p. The initially damaged nodes are indicated by the variables
{si}i=1,2,...,N drawn from the distribution

P̂({si}) =
N∏

i=1

psi (1 − p)1−si . (11.5)

In this case we can formulate a message-passing algorithm which is able to determine
with which probability a node is in the MCGC. The messages σ̂ α

i→j of this algorithm
are sent between pairs of connected nodes and are given by the average of the messages
σα

i→j over the distribution P̂({si}) defined in Eq. (11.5). The messages σ̂ α
i→j determine the

probability σ̂i that the generic node i is in the MCGC. Here σ̂i is the average of σi over the
P̂({si}) distribution. The equations determining the messages σ̂ α

i→j and the probabilities
σ̂i are given by

σ̂ α
i→j = p

⎡
⎣1 −

∏
�∈Nα(i)\j

(
1 − σ̂ α

�→i

)⎤⎦ ∏
β �=α

⎡
⎣1 −

∏
�∈Nβ(i)

(
1 − σ̂

β

�→i

)⎤⎦,

σ̂i = si

M∏
α=1

⎡
⎣1 −

∏
�∈Nα(i)

(
1 − σ̂ α

�→i

)⎤⎦. (11.6)

This algorithm allows us to establish with which probability a given node of the multiplex
network is in the MCGC when only the probability of the initial damage of the nodes is
given. Therefore, the expected fraction of nodes in the MCGC is given by



232 Interdependent Multilayer Networks

S = 1
N

N∑
i=1

σ̂i . (11.7)

Random network and random damage of the nodes

Let us consider a random multiplex network taken with probability given by Eq. (10.25)
and a random realization of the initial damage described by the probability given by
Eq. (11.5). The probability S′

α that by following a link in layer α we reach a node in the
MCGC can be calculated by averaging the messages σ̂ α

i→j and the fraction of nodes in
the MCGC, S can be obtained by averaging the probabilities σ̂i . In this way we obtain
that S and S′

α satisfy

S′
α = p

∑
k

k[α]〈
k[α]

〉P(k)
[
1 − (

1 − S′
α

)k[α]−1
] ∏

β �=α

[
1 −

(
1 − S′

β

)k[β]]
,

S = p
∑

k

P(k)

M∏
α=1

[
1 − (

1 − S′
α

)k[α]]
, (11.8)

where k indicates the multiplex degree and P(k) indicates the multiplex degree
distribution.

Let us consider the case in which there are no correlations between the degrees of a
node in different layers, and the degree distribution P(k) follows

P(k) =
M∏

α=1

P[α]
(

k[α]
)

, (11.9)

where P[α](k[α]) indicates the degree distribution of layer α. In this case Eqs (11.8)

reduce to

S′
α = p

[
1 − G[α]

1

(
1 − S′

α

)] ∏
β �=α

[
1 − G[β]

0

(
1 − S′

β

)]
,

S = p
M∏

α=1

[
1 − G[α]

0

(
1 − S′

α

)]
. (11.10)

Here the generating functions G[α]
0 (z) and G[α]

1 (z) of the degree distribution P[α]
(
k[α]

)
of layer α are given by

G[α]
0 (z) =

∑
k[α]

P[α]
(

k[α]
)

zk[α]
,

G[α]
1 (z) =

∑
k[α]

k[α]

〈k[α]〉P[α]
(

k[α]
)

zk[α]−1. (11.11)
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This algorithm allows us to determine which is the expected fraction of nodes in
the MCGC in a random multiplex network. This algorithm has the advantage that by
treating ensembles of networks with given multilayer degree distribution it is possible to
explore the large size limit N → ∞, characterizing in this way the properties of the phase
transition.

11.3.2 Cascading failures

In an interdependent multiplex network, after the initial damage of the nodes failures
propagate back and forth from one layer to the others according to the algorithmic
definition of the MCGC given in Sec. 11.2.1. Here we discuss how cascades of failure
events [66] take place on multiplex networks of M layers where every layer α is an
uncorrelated network with degree distribution P[α]

(
k[α]

)
.

Initially, the nodes are independently damaged with probability f = 1 − p. Therefore
the probability P̂({si}) follows Eq. (11.5).

Subsequently, for every layer α = 1, 2, . . . , M only a fraction Sα(1) of replica nodes
belonging to layer α are left in the giant component. The fractions of nodes Sα(1) are
determined by the probabilities S′

α(1) that by following a random link in layer α we reach
a replica node in the giant component of the same layer. Therefore, Sα(1) and S′

α(1)

satisfy the equations valid for the percolation in each single layer (see Sec. 3.3.2)

S′
α(1) = p

[
1 − G[α]

1 (1 − S′
α(1))

]
,

Sα(1) = p
[
1 − G[α]

0 (1 − S′
α(1))

]
. (11.12)

After this first step, the damage propagates from one layer to the other through the
interlinks and every node that has at least one replica node not in the giant component
of its own layer is considered damaged in all the layers. This coupling between the
layers, caused by the built-in interdependencies, induces avalanches of failure events
propagating among the layers of the multiplex network. At every step n > 1 of the
cascade dynamics, only a fraction Sα(n) of replica nodes are left in the giant component
of layer α. These quantities depend on the probabilities S′

α(n) and S′
α(n − 1) that by

following a link of layer α we reach a replica node in the giant component of the same
layer at iteration n and at iteration n − 1 respectively. Specifically, S′

α(n) and Sα(n) are
determined by the equations

S′
α(n) = p

∏
β �=α

[
1 − G[β]

0

(
1 − S′

β(n − 1)
)] [

1 − G[α]
1

(
1 − S′

α(n)
)]

,

Sα(n) = p
∏
β �=α

[
1 − G[β]

0

(
1 − S′

β(n − 1)
)] [

1 − G[α]
0

(
1 − S′

α(n)
)]

. (11.13)

The first equation indicates that at iteration n, by following a link of layer α we reach a
replica node (i, α) in the giant component of the same layer if and only if:
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(a) the node i is not initially damaged, which occurs with probability p;

(b) all the replica nodes (i, β) belong to the giant component of their own layer β at
iteration step n − 1, which occurs with probability

∏
β �=α

[
1 − G[β]

0

(
1 − S′

β(n − 1)
)]

as long as we assume that node i is not initially damaged;

(c) among all the remaining links of replica node (i, α) in layer α, at least one reaches
a node in the giant component of the same layer at iteration step n, which occurs
with probability

[
1 − G[α]

1

(
1 − S′

α(n)
)]

assuming that node i is not initially damaged.

Similarly, the second equation indicates that at iteration n the replica node (i, α) is in the
giant component of the same layer if and only if:

(a) node i is not initially damaged, which occurs with probability p;

(b) all the replica nodes (i, β) belong to the giant component of their own layer at
iteration step n − 1, which occurs with probability

∏
β �=α

[
1 − G[β]

0

(
1 − S′

β(n − 1)
)]

as long as we assume that node i is not initially damaged;

(c) among all the links of replica node (i, α) in layer α, at least one reaches a node
in the giant component of the same layer at iteration step n which occurs with
probability

[
1 − G[α]

0

(
1 − S′

α(n)
)]

assuming that node i is not initially damaged.

Equations (11.13) describe the cascade of failure events propagating back and forth
between the interdependent layers of the multiplex network. Eventually these cascading
events stop when the damage does not propagate further in the duplex network. The
remaining nodes are the nodes in the MCGC. In fact, by putting

S′
α(n) = S′

α(n − 1) = S′
α,

Sα(n) = Sα(n − 1) = Sα (11.14)
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in Eqs (11.13) we observe these equations reduce to Eqs (11.10) with

Sα = S (11.15)

for every layer α where S indicates the fraction of nodes in the MCGC.
In Ref. [66] it was shown that the cascade of failure events close to the percolation

threshold p 
 pc are characterized by an average value of iterations 〈n〉 which scales as

〈n〉 


⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(pc − p)−1/2 for p < pc,

N1/4 for p = pc,

[ln N] (p − pc)
−1/2 for p < pc.

(11.16)

Therefore, close to the phase transition p 
 pc the cascades become systemic events
and propagate until the mutually connected component completely disappears from the
network (see Fig. 11.3). At the critical point p = pc the cascades typically involve a
diverging number of iterations 〈n〉 → ∞ in the limit N → ∞. This phenomenon reveals
that the interdependent networks can be much more fragile than single networks and are
prone to abrupt cascading failures.
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Fig. 11.3 The fraction of nodes S(n) in the MCGC of a duplex network after n steps of the avalanche
dynamics for several instances of networks from the same ensemble.The layers of the duplex network have
Poisson degree distribution with the same average degree c = 2.455 and a number of nodes N = 104.
The probability p is set to p = 1.
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11.3.3 Case of a multiplex formed by M Poisson networks
with the same average degree

In this paragraph we consider the case of a multiplex network formed by M Poisson layers
with the same average degree, showing that the percolation transition for interdependent
multiplex networks is discontinuous and hybrid.

In a multiplex formed by M Poisson networks with the same average degree 〈k[α]〉 = c,
∀α, where the degree distribution P[α]

(
k[α]

)
in layer α is given by

P[α]
(

k[α]
)

= 1
k[α]! c

k[α]
e−c, (11.17)

for every α = 1, 2, . . . , M the generating functions G[α]
0 (z) and G[α]

1 (z) reduce to

G[α]
0 (z) = G[α]

1 (z) = e−c(1−z). (11.18)

Therefore, Eqs (11.10) reduce to

S′ = S = p
(

1 − e−cS
)M

. (11.19)

This equation can be written as

gy(x) = x − y
(
1 − e−x)M = 0, (11.20)

where y = cp and x = cS. In Fig. 11.4 we plot the function gy(x) for M = 2. The
equation gy(x) = 0 always has a solution S = 0, but at y = cp = yc another solution
appears discontinuously when the function gy(x) is tangent to the x-axis at the point

0.5

–0.5

0

0

g y(
x)

1 2
x

3

Fig. 11.4 The function gy(x) for M = 2 is here plotted versus x for y = 2.2 (dashed line) y = yc = 2.455
(solid line) and y = 2.6 (dot-dashed line). The function gy(x) is zero for x = 0 and has a minimum. This
minimum is tangent to the x-axis for y = yc. Therefore, for y < yc the unique solution to the equation
gy(x) = 0 is x = 0. Instead for y = yc a non-zero solution emerges discontinuously at x = xc.



Interdependent multiplex networks without link overlap 237

0 0.5 1 1.5 2 2.5 3 3.5 4
cp

0

0.2

0.4

0.6

0.8

1

S

Fig. 11.5 The fraction S of nodes in the MCGC of a Poisson multiplex network with M = 2 layers
with the same average degree c and a number of nodes N = 104 (symbol) is compared to the theoretical
prediction (solid line). Here p indicates the probability that a random node is not initially damaged. At
p = pc = 2.455/c the size S of the MCGC has a discontinuous jump. For p → p+

c , S shows a square-
root singularity.

x = xc, y = yc. Therefore, in order to find the critical values x = xc and y = yc, we can
impose the set of equations [66, 281]

gy(x) = 0
dgy(x)

dx
= 0. (11.21)

Solving numerically this system of equations for M = 2 we get y = yc = cpc = 2.45541 . . .

and cSc = xc = 1.25643 . . . Therefore, the size of the MCGC for M = 2 jumps from a
value Sc = 1.25643/c to S = 0 at pc = 2.45541/c (see Fig. 11.5).

Comparing this result with the result obtained for a single Poisson network we
observe [66]:

(a) for M = 2 the transition is discontinuous, while for M = 1 it is continuous;

(b) for M = 2 the system is much more fragile because we observe the transition
already when a fraction fc = 1−pc = 1−2.45541/c of nodes are initially removed,
while for M = 1 the transition only occurs for fc = 1 − 1/c.

For general M > 1, it can be shown that we always get a minimum of gy(x), yielding a
discontinuous percolation transition in interdependent multiplex networks. Interestingly,
fc decreases for a larger value of M, showing that a multiplex network with more layers
is more fragile than a multiplex network with fewer layers.

In a multiplex network with M layers formed by Poisson networks with the same aver-
age degree c, the MCGC emerges at a discontinuous hybrid transition [33] characterized
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by a square-root singularity; in other words the order parameter, close to the transition,
scales as

S − Sc ∝ (p − pc)
1/2 (11.22)

for cp − yc = ε and 0 < ε  1.
Let us discuss in detail the simple derivation of this result. For p = pc +δp with δp > 0

(or equivalently y 
 yc and y = yc + δy with δy > 0) we can expand Eq. (11.20) around
the point y = yc, x = xc, obtaining

0 = gy(x) = xc + δx − (yc + δy)(1 − e−xc)M − (yc + δy)

[
d(1 − e−x)M

dx

∣∣∣∣
x=xc

δx

+ 1
2

d2
(
1 − e−x

)M
dx2

∣∣∣∣∣
x=xc

(δx)2] + o
(
(δx)2

)]
.

Since at x = xc and y = yc we have gy(x) = 0 and dgy(x)

dx = 0, it follows that

xc = yc
(
1 − e−xc

)M ,

1 = yc
d
(
1 − e−x

)M
dx

∣∣∣∣∣
x=xc

. (11.23)

Using these two equations, neglecting higher-order terms we get

0 = δy
(
1 − e−xc

)M + yc
1
2

d2
(
1 − e−x

)M
dx2

∣∣∣∣∣
x=xc

(δx)2. (11.24)

Since it can be shown that at x = xc we have d2(1−e−x)
M

dx2

∣∣∣∣
x=xc

< 0, it follows that

δy ∝ (δx)2, (11.25)

which for p → p+
c (by putting y = cp and x = cS) yields the singularity

S − Sc ∝ (p − pc)
β̂ , (11.26)

with the dynamical critical exponent β̂ given by

β̂ = 1
2

. (11.27)
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11.3.4 Case of a duplex network formed by two Poisson
networks with different average degree

In a network formed by M = 2 Poisson networks (layer A and layer B) with respectively
average degrees cA and cB, Eqs (11.10) determining the emergence of the MCGC reduce
to a single equation for S = S′

[1] = S′
[2] given by [281]

S = p
(

1 − e−cAS
) (

1 − e−cBS
)

. (11.28)

The emergence of the mutually connected component is described by a discontinuous
hybrid transition at the points of the phase diagram satisfying simultaneously the
following set of equations

h(S) = S − p
(

1 − e−cAS
) (

1 − e−cBS
)

= 0

h′(S) = 0. (11.29)

The phase diagram of the model in the plane (pcA, pcB) is shown in Fig. 11.6.

11.3.5 Multiplex networks formed by layers of scale-free
networks

For interdependent multiplex networks formed by scale-free layers, the MCGC emerges
at a discontinuous hybrid transition at a finite percolation threshold p = pc [66, 33]. As for
Poisson networks, the transition is characterized by a square-root singularity for p → p+

c .
In Fig. 11.7 from Ref. [33] we show the size of the MCGC for two scale-free networks
with the same degree distribution given by
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Fig. 11.6 The phase diagram of percolation with interdependencies for a duplex network formed by two
layers with Poisson degree distribution and average degree respectively cA and cB (panel (a)). Fraction
S of nodes in the MCGC of the same network as a function of the average degrees cA and cB and the
probability that a node is not randomly damaged is p (panel (b)).
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Fig. 11.7 Fraction of nodes S in the MCGC as a function of p for two symmetric power-law-distributed
networks with, from right to left, power-law exponent γ = 2.8, 2.5 and γ = 2.1 and same minimal
degree. The height of the jump becomes very small as the power-law exponent γ approaches two, but is
not zero, as seen in the inset, which shows S vs p on a logarithmic vertical scale for γ = 2.1. Reprinted
figure with permission from Ref. [33] ©2012 by the American Physical Society.

P[α]
(

k[α]
)

= C
1(

k[α]
)γ . (11.30)

Keeping the minimum degree constant, as γ → 2 the discontinuity of S becomes smaller
and smaller but is not vanishing as long as γ > 2. In Ref. [66] it was shown that a major
difference exists between scale-free single-layer and multiplex networks. In fact, if we
consider a multiplex network formed by two scale-free networks with the same degree
distribution and compare their percolation threshold pc keeping the average degree 〈k[α]〉
constant and changing only the power-law exponent γ , we obtain that the percolation
threshold pc increases as γ is decreased. This implies that multiplex networks formed
by broader scale-free distributions are more fragile than multiplex networks with a
steeper degree distribution. This surprising result shows that the robustness of multiplex
networks has very new and unexpected features. Therefore, for interdependent multiplex
networks, having scale-free layers does not provide an advantage with respect to their
robustness, as happens for single networks. This is due to the fact that high-degree nodes
in one layer might be interdependent with low-degree nodes of the other layer, greatly
increasing the fragility of the entire interdependent multiplex network.

11.3.6 Percolation in networks with degree correlations

The presence of degree correlations can modulate significantly the robustness properties
of interdependent multiplex networks by moving the position of the percolation threshold
pc[67, 240, 33, 213]. The effect of different types of correlation between the degree of the
nodes in different layers has been investigated in several papers including Refs [33, 213].
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For Maximally Negative (MN) correlated multiplex networks, the hub nodes are
interdependent on low-degree nodes. Therefore, the hub nodes that play an important
role in keeping each layer connected, can be easily damaged if their interdependent low-
degree nodes are damaged. It follows that Maximally Negative degree correlations yield
more fragile multiplex networks (larger value of pc). Conversely, for Maximally Positive
(MP) correlated multiplex networks, where the hub nodes are interdependent on hub
nodes instead, more robust multiplex networks are generated (smaller value of pc). The
networks with uncorrelated degrees in the different layers have a percolation threshold pc
that is in between the previous two. In Fig. 11.8, the dependence of the fraction of nodes
in the MCGC of correlated Poisson networks is shown as a function of the average degree
of the nodes.

In Ref. [213], the role of targeted attack of the multiplex networks is discussed.
Other papers have investigated the effect of the degree correlations within a layer on
the percolation properties of the network, and in particular assortativity [320] and the
effect of clustering [162].

11.3.7 Percolation in spatial multiplex networks

The vast majority of infrastructures, from the power grid to the water supply network,
are strongly affected by their embedding space that influences the robustness properties
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Fig. 11.8 The size S of the MCGC for duplex networks with different levels of degree correlation. The
duplex networks have two Poisson layers with the same average degree c = 4 and with N = 104 nodes.
Here MP indicates Maximally Positive degree correlations, MN indicates Maximally Negative degree
correlations, UC indicates no degree correlations.
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of the network very significantly [25]. In most cases the robustness of globally inter-
connected infrastructures cannot be fully captured if we do not take into consideration
the effect of interdependencies. However, when multilayer networks describing inter-
connected infrastructures have a non-trivial network geometry surprising phenomena
can be found. For instance, when studying two-dimensional interdependent lattices the
transition can become continuous also in presence of interdependencies. Additionally, for
diluted random lattices the transition can become even less sharp than classical perco-
lation (displaying larger dynamical critical exponent β̂) [282]. However, interdependent
lattices are only apparently more robust than random or scale-free networks. In fact, it is
possible to observe a continuous phase transition only if the layers have the same spatial
dimension and the interlinks (and therefore the interdependencies) couple the nodes
that are located at corresponding equivalent or almost equivalent positions. In fact, if
we assume as in Ref. [193] to have two two-dimensional interdependent lattices, where
interlinks join nodes at distance r (see Fig. 11.9) there is characteristic finite value rmax
such that for r < rmax the transition is continuous, while for r > rmax the transition is
discontinuous.

For these spatial interdependent lattices there is also the possibility of exploring the
response of the system to particular configurations of the initial damage which are
localized in some region of the two-dimensional space [38]. Interestingly, it is found that
even if the multiplex network can sustain the damage of a finite fraction of randomly
chosen nodes, they might get completely disrupted under localized damage including an
infinitesimal fraction of the nodes as long as the damage affects a large-enough region of
the lattice.

Finally, it is possible to consider interdependent, spatially embedded random networks
where nodes are placed on a two-dimensional grid and pairs of nodes at distance l on
the grid are connected with probability π(l) ∝ e−l/l0 . Therefore, for l0 → ∞ the network
becomes a random network, while for small values of l0 the connections are more likely
to be established between nodes that are nearest neighbours on the grid. Also, for these

A
Ai

B

r = 0
r = 2

y

x

Bj

Fig. 11.9 The nature of the percolation transition can change depending on the typical distance of
interdependent nodes, from discontinuous for large typical distances to continuous for small typical
distances. Reprinted figure with permission from [193] ©2012 by the American Physical Society.
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networks it is possible to observe a change in the critical properties of the percolation
transition that is continuous for l0 < lc and is discontinuous for l0 > lc [86].

11.4 Interdependent multiplex networks with link overlap

11.4.1 The effect of link overlap on percolation

Numerous multilayer networks have a significant link overlap which explains the need to
explore the percolation transition on this type of correlated multilayer structure.

The overlap of the links can change the properties of the percolation transition
significantly. In fact, in the limit in which we have a multiplex network of M totally
overlapping layers, the MCGC of the multiplex network reduces to the giant component
of a single layer, and the percolation transition is of the second order.

For these reasons, it is important to explore whether the emergence of the mutually
connected component becomes continuous when the overlap between the layers is above
a threshold value.

Recently, two approaches were used to describe the transition in multiplex networks
with link overlap. The first approach consists of a coarse-grained description of the
multiplex network in terms of supernodes [161, 212] and is restricted to duplex networks.
The second approach that we will describe in the following paragraphs is instead
based on message-passing algorithms and the local tree-like approximation [76, 32] and
extends to multiplex networks with an arbitrary number of layers.

Interestingly, it turns out that the message-passing algorithm valid in the absence of
overlap (described in Sec.11.3.1) needs to be modified appropriately to describe the
percolation of interdependent multiplex networks in realistic scenarios.

The major modifications that need to be considered are the following two:

(i) The message sent from a node i to a node j connected to node i in at least one
layer is not a scalar anymore, as in the absence of link overlap, but is instead a
vector

�ni→j =
(

n[1]
i→j , n[2]

i→j , . . . , n[α]
i→j , . . . , n[M]

i→j

)
. (11.31)

(ii) The message �ni→j is determined under the assumption that node j belongs to the
MCGC. In this hypothesis the elements n[α]

i→j indicate whether (n[α]
i→j = 1) or not

(n[α]
i→j = 0) node i connects node j to the MCGC through links in layer α.

The characterization of the percolation transition in interdependent multiplex net-
works with link overlap reveals that the percolation remains always discontinuous, with
the exception of the limiting case in which there is complete overlap of all the layers of
the multiplex network.
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11.4.2 Message-passing algorithms

We consider a multiplex network with M layers and adjacency matrix a[α] in each layer
α = 1, 2, . . . , M. Initially, we assume that we know the set of nodes that are initially
damaged. The configuration of the initial damage is indicated by the variables {si} where
si = 0 (si = 1) if node i is (is not) damaged. The message-passing algorithm for a
given initial damage configuration determines whether node i does (σi = 1) or does
not (σi = 0) belong to the MCGC, as long as the multiplex network is locally tree-like.
The algorithm requires the determination of the message �ni→j given by Eq. (11.31). The
message n[α]

i→j is set to one, n[α]
i→j = 1, if and only if the following four conditions are

satisfied:

(i) node i is not initially damaged, i.e. si = 1;

(ii) node j is a neighbour of node i in layer α, i.e. a[α]
ij = 1;

(iii) assuming node j belongs to the MCGC, node i is in the MCGC, i.e. node i has
in each layer at least one neighbour that connects it to nodes in the MCGC;

(iv) node i connects node j to the nodes in the MCGC through links of layer α:

These messages are determined by the recursive message-passing equations

n[α]
i→j = δ

(
vi→j , M

)
a[α]

ij si

⎡
⎣1 −

∏
�∈N(i)\j

(
1 − n[α]

�→i

)⎤⎦. (11.32)

Here vi→j indicates in how many layers node i is connected to the MCGC assuming that
node j also belongs to the MCGC, and it is given by

vi→j =
M∑

α=1

⎧⎨
⎩
⎡
⎣1 −

∏
�∈N(i)\j

(
1 − n[α]

�→i

)⎤⎦+ a[α]
ij

∏
�∈N(i)\j

(
1 − n[α]

�→i

)⎫⎬
⎭. (11.33)

Finally, the value of σi for any generic node i can be expressed in terms of the messages
�ni→j as

σi = si

M∏
α=1

⎡
⎣1 −

∏
�∈N(i)

(
1 − n[α]

�→i

)⎤⎦. (11.34)

In Fig. 11.10 we define the complete set of non-trivial messages in a multiplex network
of two layers. If node i and node j are connected only in one layer there is only one type
of non-trivial multilink between them. If node i and node j are connected in both layers
(i.e. they are connected by a multilink �mij = (1, 1)) there are three possible types of
non-trivial messages that node i can send to node j, i.e. �ni→j = (1, 0), �ni→j = (0, 1) and
�ni→j = (1, 1).
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ni→j = (1, 0) 

mij = (1, 0) mij = (0, 1) mij = (1, 1) 

ni→j = (0, 1) 
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Fig. 11.10 Possible types of non-trivial messages �ni→j that can be sent from node i to node j connected
by the multilink �mij = (a[1]

ij , a[2]
ij ) in a duplex network. The multilink between node i and node j is

represented as in Fig. 7.3; solid lines connected to the symbol of infinity indicate that through those links
node i is connected to nodes in the MCGC.

When the configuration of the initial damage is not known but only the probability
P̂({si}) given by Eq. (11.5) is known, an alternative message-passing algorithm needs
to be formulated. This novel message-passing algorithm needs to be derived from the
algorithm described above by averaging over the P̂({si}) distribution. However, since
the messages �ni→j in presence of link overlap are correlated, care should be put in to
performing this average. It turns out that the useful set of messages that should be used

when the actual configuration of the initial damage is not known are σ̂
�mij ,�n

i→j which indicate
the probability that for a random realization of the initial damage node i sends to node j
the message �ni→j = �n.

Finally, when the topology of the network is also not known and one wishes to perform
an average over a multiplex network ensemble, the relevant set of variables are: S, the
expected fraction of nodes in the MCGC and the average messages S �m,�n, indicating the
probability that, starting from a given node and following a multilink �m, we reach a node
that connects the original node to the MCGC in the layers where n[α] = 1 exclusively.

In other words, S �m,�n is the average of σ̂
�mij ,�n

i→j over a pair of nodes (i, j) connected by a
multilink �mij = �m.

Here we leave the somewhat technical derivation of these algorithms to Appendix D
and we discuss exclusively the phase diagram of a multiplex network with Poisson
multidegree distributions revealing that the continuous transition is only observed for
multiplex networks with complete overlap.

We consider a duplex network having two layers with Poisson multidegree distribution
and 〈k(1,0)〉 = 〈k(0,1)〉 = c1 with 〈k(1,1)〉 = c2. The full phase diagram of the model
is displayed in Fig. 11.11. The MCGC component emerges as a continuous phase
transition only when all links overlap, i.e. pc2 = 1, pc1 = 0 when we recover the
case of percolation in a single Poisson network whereas if pc1 �= 0 the transition is
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Fig. 11.11 The critical line of a discontinuous hybrid phase transition is shown for multiplex networks
with two layers and Poisson multidegree distribution with 〈k(1,0)〉 = 〈k(0,1)〉 = c1 with 〈k(1,1)〉 = c2.
Reprinted figure from Ref. [76].

discontinuous. Moreover, we observe that for c2 = 0 we recover the known results of
percolation transition in interdependent duplex Poisson networks with no link overlap,
i.e. c1pc = 2.455 . . . .

More complex phase diagrams, including multiple discontinuous phase transitions,
can be obtained for multiplex networks having correlated multidegree distributions. For
instance, in Ref. [32] very interesting phase diagrams have been observed for duplex
networks in which multidegrees k(1,1)

i are either positively or negatively correlated with

multidegrees k(1,0)
i and k(0,1)

i .

11.5 Partial and redundant interdependencies

11.5.1 Partial interdependence

It is rather interesting to consider the effect of partial interdependence in the robustness
of interdependent multiplex networks. By partial interdependence we indicate that this
interdependence is not always present between the replica nodes. As a function of
the probability r that a replica node is interdependent on the other replica nodes, the
transition can turn from discontinuous (for r > rT ) to continuous (for r = rT ) [238, 281].
Here we show how a passage between a discontinuous and a continuous transition
can occur in the simplest setting of a multiplex network, where every layer α is an
uncorrelated network with degree distribution P[α]

(
k[α]

)
.

The equations satisfied by the fraction S of nodes in the MCGC in this ensemble
of multiplex networks are here derived starting from the message-passing algorithm that
determines which nodes are in the MCGC in a sparse locally tree-like multiplex network.

Using the same notation as in Sec. 11.3, the initial damage configuration is determined
by the variables {si} indicating whether node i is damaged (si = 0) or undamaged (si = 0).
Additionally, the variables {qi} indicate whether that node i is interdependent (qi = 1 )
or not interdependent (qi = 0) with its replica nodes. Therefore, if qi = 0 the messages
σi→j sent by node i follow the Eqs (3.1) valid on a single layer. If, on the contrary, qi = 1,
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the messages follow the Eqs 11.3 valid for interdependent layers. A similar argument can
be made for the probability σiα that a replica node (i, α) belongs to the MCGC. These
considerations lead to the message-passing equations

σα
i→j = si

⎡
⎣1 −

∏
�∈Nα(i)\j

(
1 − σα

�→i

)
⎤
⎦ ∏

β �=α

⎡
⎣1 − qi

∏
�∈Nβ(i)

(
1 − σ

β

�→i

)⎤⎦,

σiα = si

⎡
⎣1 −

∏
�∈Nα(i)

(
1 − σα

�→i

)⎤⎦ ∏
β �=α

⎡
⎣1 − qi

∏
�∈Nβ(i)

(
1 − σ

β

�→i

)⎤⎦, (11.35)

valid in the locally tree-like multiplex networks without link overlap. When every node
is damaged with probability f = 1 − p, and we assume that every replica node is
interdependent on its other replica nodes with probability r, the novel set of message-
passing equations reads

σ̂ α
i→j = p

⎡
⎣1 −

∏
�∈Nα(i)\j

(
1 − σ̂ α

�→i

)⎤⎦ ∏
β �=α

⎡
⎣1 − r

∏
�∈Nβ(i)

(
1 − σ̂

β

�→i

)⎤⎦,

σ̂iα = p

⎡
⎣1 −

∏
�∈Nα(i)

(
1 − σ̂ α

�→i

)⎤⎦ ∏
β �=α

⎡
⎣1 − r

∏
�∈Nβ(i)

(
1 − σ̂

β

�→i

)⎤⎦. (11.36)

Here σ̂iα indicates the probability that node (i, α) is in the MCGC and σ̂i→j indicates the
probability that node (i, α) connects node (j, α) to other nodes belonging to the MCGC.

Finally, by averaging once more this last set of equations over the ensemble of mul-
tiplex networks in which each layer is an uncorrelated network with degree distribution
P[α]

(
k[α]

)
, we obtain that the fraction Sα of replica nodes of layer α that is in the MCGC

is given by

Sα = p
[
1 − G[α]

0

(
1 − S′

α

)]
⎧⎨
⎩
∏
β �=α

[
1 − rG[β]

0

(
1 − S′

β

)]⎫⎬
⎭, (11.37)

where the average messages S′
α are given by

S′
α = p

[
1 − G[α]

1

(
1 − S′

α

)]
⎧⎨
⎩
∏
β �=α

[
1 − rG[β]

0

(
1 − S′

β

)]⎫⎬
⎭. (11.38)

In particular, if all layers α have the same degree distribution, then G[α]
0 (z) = G0(z)

and G[α]
1 (z) = G1(z) and S′

α = S′ is given by
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S′ = p[1 − G1(1 − S′)]
[
1 − rG0(1 − S′)

]M−1. (11.39)

Furthermore, the probability S = Sα that a node in a given layer is in the mutually
connected component is given by

S = p
[
1 − G0(1 − S′)

] [
1 − rG0(1 − S′)

]M−1. (11.40)

For r = 0 the nodes of each layer have no interdependencies with the nodes of the other
layers; therefore each layer will percolate independently, and the percolation transition
will be a second-order continuous phase transition. On the contrary, when r = 1 we have
complete interdependency of each node of a given layer on all its replica nodes in the
other M − 1 layers, and the transition will be a discontinuous hybrid phase transition.
The process for general values of r follows two different regimes separated by a tricritical
point (r = rT , p = pT ) at which the transition changes its nature from discontinuous (for
r > rT ) to continuous (for r < rT ). Figure 11.12 reports simulation results of these two
regimes, in duplex networks of different degree distributions.

We consider a multiplex network formed by M Poisson networks with the same
average degree 〈k〉 = c. The order parameter S′ = S is the solution of the equation
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Fig. 11.12 The fraction of nodes S in the MCGC of a duplex network with partially interdependent
layers displays a continuous phase transition for weak coupling (r = 0.05) and a discontinuous transition
for strong coupling (r = 0.8). Here the duplex network is formed by two Poisson layers with the same
average degree c = 4 and N = 104 nodes.
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S = p
(

1 − re−cS
)M−1 (

1 − e−cS
)

. (11.41)

The equation (11.41) determining the size of the MCGC can be written as

h(S) = S − p
(

1 − re−cS
)M−1 (

1 − e−cS
)

= 0. (11.42)

The points of the hybrid phase transition can be found by imposing

h(S) = 0,

h′(S) = 0 (11.43)

and by looking for a non-trivial solution S > 0. This solution can be found for any
r > rT characterizing the level of partial interdependence of the tricritical point of the
model. For r < rT , the emergence of the mutually connected component is dictated by
a second-order phase transition at a critical value of p that can be obtained by imposing
the conditions

h(0) = 0,

h′(0) = 0. (11.44)

The tricritical point separates these two regimes, and results from imposing

h(0) = 0,

h′(0) = 0,

h′′(0) = 0. (11.45)

This system of equations yields the parameters of the tricritical point:

rT = 1
(2M − 1)

,

cpT =
(

2M − 1
2M − 2

)M−1

. (11.46)

Therefore, the transition is continuous for r < rT and discontinuous for r > rT as can
be shown by numerical simulations of the model (see Fig. 11.12).

Different papers have proposed modifications of this model and studied, for instance,
the effect of different degree distributions and degree correlations [239, 27, 160, 319].
Finally, in Ref. [297], the effect of degree correlations has been studied on a duplex
network with partial interdependence.
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11.5.2 Redundant interdependencies

Redundant interdependencies: the motivation

This section directly addresses the robustness of multiplex networks with more than two
layers.

Until now, we have always assumed that in the case of a multiplex network with more
than two layers every node must be interdependent on each of its linked nodes in the other
layers. This assumption predicts that by increasing the number of layers the multiplex
network becomes increasingly fragile (see Fig. 11.2).

In natural and man-made systems, interdependencies do not follow this rule, and the
actual rules determining the function of any given node are likely to be in general a very
complex set of interdependencies, determined by complex Boolean rules.

In Ref. [257] it has been shown that in the presence of redundant interdependencies,
increasing the number of layers of a multiplex can actually boost the robustness of the
network.

This result opens a completely new perspective both for policy makers and practi-
tioners that need to design interdependent infrastructures in a robust and resilient way.

Redundant Mutually Connected Giant Components

In the presence of redundant interdependencies the robustness of the network can
be evaluated by considering the Redundant Mutually Connected Giant Component
(RMCGC). In a multiplex network of M layers, the nodes that belong to the RMCGC
can be found by following the algorithm [257]. After the initial damage to the nodes,

(i) the giant component of each layer α = 1, 2 . . . , M is determined, evaluating the
effect of the damaged nodes in each single layer;

(ii) every replica node that has no other replica node in the giant component of its
proper layer is removed from the network and considered as damaged;

(iii) if no new damaged nodes are found at step (ii), then the algorithm stops;
otherwise it proceeds, starting again from step (i).

The set of replica nodes that are not damaged when the algorithm stops belongs to the
RMCGC.

The main difference between the percolation model discussed in Sec. 11.2.1 and the
consequent definition of the MCGC is that for obtaining the MCGC step (ii) must be
substituted with ‘every replica node that has at least a single replica node not in the giant
component of its proper layer is removed from the network and considered as damaged,
i.e., if a replica node is damaged all its interdependent replica nodes are damaged’. In
particular, the RMCGC and the MCGC are the same for M = 2 layers, but they differ
as long as the number of layers is above two, i.e. M > 2. In the latter case, the RMCGC
naturally introduces the notion of redundancy or complementarity to interdependent
nodes. In fact, for a node to be in the RMCGC it does not need all of its interdependent
nodes to be functional, but at least one must be.
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Fig. 11.13 Percolation transition in the US air transportation network (only US domestic flights operated
in January 2014 by the three major carriers in the US (American Airlines, Delta and United) are
considered). The number of nodes in the network is N = 183. Panel (a) displays the results of a single
realization of the random damage in the three possible multiplex networks composed of only two layers:
American–Delta (black circles) American–United (blue triangles) and Delta–United (red squares).The size
of the RMCGC and the MCGC of the multiplex network composed of all three layers are represented
respectively as purple triangles and grey triangles. Panel (b) displays the same quantities as panel (a), but
for average values over 100 independent realizations of the random damage. Purple thin lines stand for
the 100 independent realizations of random damage considered in the case of the redundant model. As is
apparent from the figure, the average doesn’t capture the behaviour of single instances of disorder well and
fluctuations are rather large for a wide range of possible values of p. Reprinted figure from Ref. [257].

In Fig. 11.13 the size of the RMCGC of the airport network of major US airlines with
M = 3 layers is compared with the MCGC of the same multiplex network, revealing that
in the presence of interdependencies the percolation threshold is reduced. Therefore, the
multiplex network displays an increased robustness to random damage. Interestingly,
when comparing the RMCGC of the multiplex with M = 3 layers with the RMCGC of
the multiplex networks formed by just two of its layers, an improvement on the robustness
properties (signalled by a decrease in value of the percolation threshold) is also observed.
Therefore, while for the MCGC increasing the number of layers is deleterious, in the
presence of redundant interdependencies the robustness properties of the multiplex
network will improve with the addition of new layers.

Message-passing equations determining the RMCGC

The initially inflicted random damage is defined by the variables siα. In particular, if
siα = 0 the node (i, α) is initially damaged; otherwise siα = 1. In this case, the indicator
function σiα determines whether or not the node (i, α) is in the RMCGC and depends
on the messages σα

i→j . In a locally tree-like multiplex network without link overlap the
messages σα

i→j and the indicator function σiα satisfy
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σα
i→j = siα

⎡
⎣1 −

∏
�∈Nα(i)\j

(
1 − σα

�→i

)⎤⎦
⎧⎨
⎩1 −

∏
β �=α

⎡
⎣1 − siβ + siβ

∏
�∈Nβ(i)

(
1 − σ

β

�→i

)⎤⎦
⎫⎬
⎭,

σiα = siα

⎡
⎣1 −

∏
�∈Nα(i)

(
1 − σα

�→i

)⎤⎦
⎧⎨
⎩1 −

∏
β �=α

⎡
⎣1 − siβ + siβ

∏
�∈Nβ(i)

(
1 − σ

β

�→i

)⎤⎦
⎫⎬
⎭.

Here we assume that the initial damage is inflicted on each replica node independently
with probability 1 − p; i.e. the probability P̂({siα}) is given by

P̂({siα}) =
M∏

α=1

N∏
i=1

psiα (1 − p)1−siα. (11.47)

When the initial configuration of the damage is not known we can gain insight into the
robustness properties of the multiplex network by averaging the above message-passing
equations over the distribution P̂({siα}). The equations determining the probability σ̂i
that a node is in the RMCGC depend on the average messages σ̂i→j given by

σ̂ α
i→j = p

⎡
⎣1 −

∏
�∈Nα(i)\j

(
1 − σ̂ α

�→i

)
⎤
⎦
⎧⎨
⎩1 −

∏
β �=α

⎡
⎣1 − p + p

∏
�∈Nβ(i)

(
1 − σ̂

β

�→i

)⎤⎦
⎫⎬
⎭,

σ̂iα = siα

⎡
⎣1 −

∏
�∈Nα(i)

(
1 − σ̂ α

�→i

)⎤⎦
⎧⎨
⎩1 −

∏
β �=α

⎡
⎣1 − p + p

∏
�∈Nβ(i)

(
1 − σ̂

β

�→i

)⎤⎦
⎫⎬
⎭.

Let us consider the case in which each layer α is drawn independently from the set of
networks with degree distribution P[α]

(
k[α]

)
. In this case, the equations for the average

messages S′
α and for the probabilities Sα that a replica node in layer α is in the RMCGC

are given by

S′
α = p

[
1 − G[α]

1

(
1 − S′

α

)]
⎧⎨
⎩1 −

∏
β �=α

[
1 − p + p G[β]

0

(
1 − S′

β

)]⎫⎬
⎭,

Sα = p
[
1 − G[α]

0

(
1 − S′

α

)]
⎧⎨
⎩1 −

∏
β �=α

[
1 − p + p G[β]

0

(
1 − S′

β

)]⎫⎬
⎭. (11.48)

Finally, the average number S of replica nodes in the RMCGC is given by

S = 1
M

M∑
α=1

Sα. (11.49)
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If we consider the case of equally distributed Poisson layers with average degree c,
using Eqs (11.48), one can show that S′

α = Sα = S, ∀α, and S is determined by the
equation

S = p
(

1 − e−cS
){

1 −
[
1 − p + pe−cS

]M−1
}

. (11.50)

This equation always has the trivial solution S = 0. In addition, a non-trivial solution
S > 0 indicating the presence of the RMCGC emerges at a hybrid and discontinuous
phase transition characterized by a square-root singularity on a line of points p = p


corresponding to the average degree c, determined by the equations

hc,p(S
) = 0,

dhc,p(S)

dS

∣∣∣∣
S=S


= 0, (11.51)

where

hc,p(S) = S − p
(

1 − e−cS
){

1 −
[
1 − p + pe−cS

]M−1
}

= 0. (11.52)

For p > p
 there is an RMCGC, for p ≤ p
 there is no RMCGC. The size of the
discontinuous jump at p = p
 in the fraction S of replica nodes in the RMCGC is given
by S = S
.

It is found that as the number of layers M increases the percolation threshold p


decreases for every value of the average degree c, indicating that the network becomes
more robust thanks to the addition of new layers. Also, the discontinuous jump S


decreases as the number M of layers increases for every given average degree c.
Therefore, as the number of layers increases the avalanches of failure events become
smaller.

Comparison between the RMCGC and the MCGC

The robustness of multiplex networks in the presence of ordinary interdependencies
can be compared with the robustness of the same multiplex networks in the presence of
redundant interdependencies.

To take a concrete example, here we make this comparison for a multiplex network
with M Poisson layers with the same average degree c. Since for redundant interdepen-
dencies we have assumed that the damage affects each replica node independently, in
order to make a meaningful comparison of the robustness of a multiplex network in the
presence and the absence of redundant interdependencies we take p = 1 and we compare
the critical value of the average degree c = c
 at which the percolation transition occurs
for the RMCGC and the MCGC respectively. A smaller value of c
 for the RMCGC
indicates that the multiplex network is more robust as smaller interlayer connectivities
are requested to have an RMCGC.
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Fig. 11.14 The critical average degree c
 where the RMCGC and the MCGC emerge (panel (b)) and
the corresponding size of the jump S
 (panel (b)) are shown as a function of the number of layers M for
Poisson multiplex networks, with layers having the same average degree. Results for the RMCGC model
are displayed as diamonds. Results for the MCGC model are denoted by triangles. Reprinted figure from
Ref. [257].

The jump S = S∗ in the size of the RMCGC and the MCGC at the percolation
threshold is the other parameter that we use to compare the two phase transitions. The
smaller the value of S
 the less dramatic the avalanches of failure propagating in the
multiplex network at the percolation transition. In Fig. 11.14 we display the values of
c
 and S
 as a function of the number of layers M for the RMCGC and the MCGC.
For M = 2, the two models give the same results as they are identical. For M > 2,
differences arise. In the presence of redundant interdependencies, multiplex networks
become increasingly more robust as the number M of layers increases. This phenomenon
is apparent from the fact that the RMCGC emerges for multiplex networks with an
average degree of their layers c
 which decreases as the number of layers M increases.
On the contrary, in ordinary percolation the value of c
 for the emergence of the MCGC
is an increasing function of M. Additionally, the size of the discontinuous jumps S
 at
the transition point decreases with M for the RMCGC, while its increases with M for
the MCGC show that the avalanches of failures have a reduced size for the RMCGC.

11.6 Percolation on interdependent multilayer networks

Since in general multilayer network nodes of different layers usually indicate different
node entities, it is natural to assume that the initial damage is inflicted independently on
each node (i, α). The initial damage is determined by the variables {siα} with siα = 0 if
node (i, α) is initially damaged, while siα = 1 if it is not initially damaged. Assuming that
each node is damaged with probability f = 1 − p, we have that the probability P({siα})
of the entire configuration of the initial damage {si,α} is given by
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P̂({siα}) =
M∏

α=1

N∏
i=1

psiα (1 − p)1−siα. (11.53)

The robustness of the multilayer network can be studied by considering the fraction S
of nodes in the MCGC as a function of p.

In a locally tree-like multilayer network it is possible to study this transition using a
message-passing algorithm that can be derived in the following way.

A node (i, α) is in the MCGC if and only if:

(a) it is not initially damaged, i.e. siα = 1;

(b) it has at least one neighbour node (j, α) in layer α that connects node (i, α) to
nodes in the MCGC;

(c) all the nodes (�, β) that can be reached from node (i, α) by interdependent links
have at least one neighbour node of their same layer β that connects them to the
MCGC.

In this paragraph we will characterize the percolation transition of interdependent
multilayer networks. Specifically we will focus on results applying to the following classes
of networks, of networks (these ensembles of networks of networks have been described
in Sec. 10.6).

• Networks of networks with fixed supernetwork and interlinks allowed only between replica
nodes.

• Multilayer networks with fixed superdegree distribution, where every node (i, α) is
interdependent on q = qα replica nodes (i, β) of randomly chosen layers β.

• Networks of networks without replica nodes where there is a fixed supernetwork but
there are no replica nodes.

We will show that there is a rich interplay between the structure (how interlinks are
placed) and the robustness properties of the multilayer network. In fact, the properties
of the percolation process change significantly in the three considered cases.

Networks of networks with replica nodes

Here we consider networks of networks in which, if network α is interdependent with
network β, each node (i, α) of network α is interdependent with node (i, β) of network
β, and vice versa. This ensemble has been introduced in Sec. 10.6, and it has been
graphically represented in Fig. 10.9. In Ref. [49] it has been shown that for this type
of network of networks, where each node can be interdependent only with its replica
nodes in the other layers, the supernetwork can be a tree or can contain loops, and in
both cases, as long as the supernetwork is connected, the size of the mutually connected
component is determined by the same equations determining the MCGC in a multiplex
network formed by the same layers.
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From this result, four main conclusions can be drawn:

• there is a unique hybrid and discontinuous phase transition as soon as M ≥ 2;

• the critical value p = pc always depends on the number of layers M;

• when the mutually connected component emerges at p = pc, every layer of the
network of networks contains a finite fraction of nodes that is in the mutually
connected component, i.e. in each layer the percolation cluster emerges at the same
time as p = pc;

• if we include a partial interdependence of the nodes, the transition changes from
discontinuous to continuous at a tricritical point, but also in this case either all layers
percolate, or none of them do.

Multilayer networks without replica nodes and with given supradegree
distribution

A much more random multilayer network topology is considered in this paragraph.
In this case, the multilayer networks have replica nodes and every node of a network
(layer) α is connected with qα > 0 randomly chosen replicas in some other networks
(see Sec. 10.6, and Fig. 10.11). The supradegree distribution is given by PS(q) and for
simplicity it is assumed that each layer has the same intra-layer degree distribution PL(k).
The generating functions G0(z) and G1(z) of the intra-layer degree distribution PL(k)

are defined as

G0(z) =
∑

k

PL(k)zk, G1(z) =
∑

k

kPL(k)

〈k〉 zk−1. (11.54)

The percolation transition for this ensemble of networks of networks has been
characterized using a message-passing algorithm in the locally tree-like approximation
in Ref. [48].

Each node of the layer α is in the MCGC if at least one of its neighbouring nodes
in the same layer is in the MCGC and every node that can be reached by following
exclusively interlinks is in the MCGC. In fact, failure of any of the nodes causes the
failure of every node connected to it exclusively through interlinks because the interlinks
imply interdependencies.

Therefore, assuming that the initial damage configuration is drawn randomly from
the distribution P̂({siα}) given by Eq. (11.53), the probability that a node i in a layer α

with superdegree qα = q is in the mutually connected component Sq is given by [48]

Sq = p
∑

s

P(s|q)
⎡
⎣∑

q′

q′PS(q′)
〈q〉 p

[
1 − G0

(
1 − σq′

)]
⎤
⎦

s−1 [
1 − G0

(
1 − σq

)]
. (11.55)

Here P(s|q) indicates the probability that a node i in layer α with qα = q is connected
through paths including exclusively interlinks to other s nodes of the multilayer network.
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Fig. 11.15 The fraction of nodes σq = Sq of a Poisson layer with superdegree q belonging to the MCGC is
shown versus the probability p that the nodes are not initially damaged for different values q = 1, 2, 3.The
considered multilayer network with replica nodes has every layer with Poisson degree distribution P(k)

and average degree 〈k〉 = c = 20 and has a scale-free distribution PS(q) of superdegrees with power-law
exponent γ = 2.8. For each value of q = 1, 2, 3,σq emerges discontinuously, with a jump, which becomes
smaller and smaller with increasing q. The emergence of σ2 is accompanied by a discontinuity of σ1. The
emergence of σ3 is accompanied by discontinuities of σ1 and σ2. Reprinted figure from Ref. [48].

Moreover, σq indicates the probability that by following a link of layer α of superdegree
qα = q we reach a node that is in the MCGC, which satisfies [48]

σq = p
∑

s

P(s|q)
⎡
⎣∑

q′

q′PS(q′)
〈q〉 p

[
1 − G0

(
1 − σq′

)]⎤⎦
s−1 [

1 − G1
(
1 − σq

)]
. (11.56)

Therefore, Eq. (11.55) and Eq. (11.56) can be simplified to

σq = p(�)q [1 − G1
(
1 − σq

)]
,

Sq = p(�)q [1 − G0
(
1 − σq

)]
,

� =
⎡
⎣∑

q′

q′PS(q′)
〈q〉 p

[
1 − G0

(
1 − σq′

)]⎤⎦∑
q′

q′PS(q′)
〈q〉 (�)q′−1. (11.57)

The parameter �, indicating the probability that by following an interlink we reach a
node in the MCGC, determines both σq and Sq for any value of the superdegree q. For
this reason, � can be considered as the order parameter. Note that for Poisson layers
G0(z) = G1(z), therefore, it follows that σq = Sq.

From the study of these equations, the following scenario can be drawn in the limit
M → ∞:
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• if the degrees qα are heterogeneous, the percolation transitions are multiple, each
one corresponding to the emergence of a percolation cluster in each layer with a
different value of q;

• each of these phase transitions is hybrid and discontinuous;

• the layers with a higher number of interdependencies are more fragile than those
with a smaller number of interdependencies.

The increased fragility of the layers with higher superdegree is in sharp contrast with
what happens in the percolation of single layers, in which nodes of high degree are more
robust, revealing the important effect of interdependencies. Fig. 11.15 shows that the
size of the percolation cluster Sq = σq in the Poisson layers with q number of inter-
dependencies has multiple discontinuities in correspondence with the discontinuities of
the order parameter �. Moreover, it is shown that the percolating cluster of layers with
higher superdegree q is disrupted before the percolating cluster of layers with smaller
superdegree.

For partial interdependencies, when the probability that an interlink implies an
interdependency is r < 1, Eqs (11.57) are modified as follows:

σq = p (r� + 1 − r)q [1 − G1(1 − σq)
]

,

Sq = p (r� + 1 − r)q [1 − G0(1 − σq)
]

,

� =
⎡
⎣∑

q′

q′PS(q′)
〈q〉 p

[
1 − G0(1 − σq′)

]⎤⎦∑
q′

q′PS(q′)
〈q〉 (r� + 1 − r)q′−1 . (11.58)

We note here that in the case in which every node has the same number of interdepen-
dencies, i.e. PS(q) = δ(q, m), and each layer is formed by a Poisson network with 〈k〉 = c,
one finds �[r� + 1 − r] = σm = σ . Therefore, σ indicating the fraction of nodes in the
MCGC satisfies

σ = p
[

1
2

(
1 − r +

√
(1 − r)2 + 4rσ

)]m

(1 − e−cσ ). (11.59)

The emergence of the mutually connected component in the configuration model of
a network of networks with r < 1 can always display multiple percolation transitions
corresponding to the activation of layers in increasing value of qα. Nevertheless, these
transitions can be either continuous or discontinuous, depending on the value of r.

Networks of networks without replica nodes

The percolation transition in networks of networks with a supernetwork but without
replica nodes, where nodes of different layer are randomly matched, has been investigated
in Refs [125, 124, 123].
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In this case it is found that the percolation process depends on the structure of the
network of networks. If the supernetwork is a tree, i.e. does not contain any loop, the
percolation transition follows the percolation transition of the networks of networks with
replica nodes discussed in the previous paragraph. Therefore, in this case the MCGC
is determined by the equations valid for the multiplex networks with the same layers.
If, instead, the supernetwork does contain loops, the percolation transition follows a
different set of equations. This difference is due to the fact that only in this case it is
possible, by exclusively following interlinks, to return several times to the same layer (see
Fig. 10.10).

Interestingly, when the supernetwork is a regular network with supradegree qα = m
for every layer α, and the layers have Poisson degree distribution with the same average
degree c, the fraction of nodes in the MCGC follows Eq. (11.59) valid for multilayer
networks without replica nodes.
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Classical Percolation, Generalized
Percolation and Cascades

12.1 Robustness of multilayer networks

In the previous chapter we characterized the robustness of multilayer networks with
interdependencies. However, in this chapter we will show that the robustness of multilayer
networks can be characterized also using different other processes.

Firstly, we will consider classical percolation in which all the links are treated on equal
footing. Therefore, to a large extent in this context we consider percolation on a single
large structured network. Despite the apparent absence of a multiplexity character for
this process, here we will show that also in this case a rich interplay between multiplexity
and robustness can be observed. In fact, the degree correlations among different layers
can modulate (increase or reduce) the robustness of the entire multilayer network.

Secondly, we will present the directed percolation process on multiplex networks
which describes the propagation of a disease requiring the cooperative infection from
different layers of the multiplex network. We will show that this novel type of percolation
transition reduces to the percolation of interdependent multiplex networks in the absence
of link overlap, but characterizes a different process in the presence of link overlap
and displays a rich phase diagram including both continuous and discontinuous phase
transitions.

Thirdly, we will investigate a generalized percolation transition on a duplex network
with antagonistic interactions where a node of one layer can be functional only if
its replica node is not functional. We will show that percolation in the presence of
antagonistic interactions can give rise to bistable states and hysteresis loops.

Finally, we will characterize the avalanches of failures that can affect multilayer
infrastructures due to the overload of their connections. This provides an alternative
scenario with respect to the avalanches caused by interdependencies discussed in the
previous chapter. Relevantly also in this scenario, we observe that multiplexity has
an important role in determining the distribution of avalanches. These effects can be
potentially exploited to design more resilient global infrastructures.

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001



Classical percolation 261

12.2 Classical percolation

12.2.1 Classical percolation: general remarks

Classical percolation refers to the study of the robustness of multilayer networks in which
all the interactions have the same valence. In this case, every link of the multilayer network
is called a ‘dependency link’. The response of the network to random damage of its nodes
or to random damage of its links is studied by calculating the size of the giant component
of the multilayer network resulting from the inflicted damage. The giant component
of a multilayer network is formed by a finite fraction of nodes that are connected
to each other by any type of connection. For instance, in a multilayer transportation
network including bus, underground and train connections, a station is in the giant
component if it is connected to a finite fraction of all the other stations by any type of
transportation system. This problem can be either studied on multiplex networks or on
general multilayer networks. The problem can be recast into a classical percolation model
on a large structured single network in which the probability of damaging a node (or a
link) depends on the layer where the node (or link) is. This problem has been studied on
multilayer networks in Refs [188, 261, 43] and on multiplex networks in Refs [213, 146].
In this context it has been shown that classical percolation on multilayer networks is
strongly affected by the structural correlations built in the multilayer network. These
correlations determine intrinsic structural mechanisms that can change the robustness
properties of the multilayer networks.

Here we will discuss the case of classical bond percolation on multilayer networks
where links are randomly damaged. This choice is dictated by the fact that this model
is fundamental also for understanding the property of the SIR epidemic model on
multilayer networks that will be discussed in the next chapter. We will consider separately
the bond percolation model defined on a multiplex network and on a general multilayer
network. The node percolation problem is a straightforward generalization of the bond
percolation model.

12.2.2 Classical percolation in multiplex networks

The message-passing algorithm

We consider a multiplex network formed by a set of nodes connected by different types of
interactions, i.e. we disregard interlinks. The giant component of this multiplex network
is formed by a pair of nodes connected to each other by at least a path composed by links
belonging to any layer. Let us consider an initial damage configuration indicating whether
(sαij = 0) or not (sαij = 1) the link between node i and node j in layer α is removed. Once
a given configuration of the initial damage of the links is known, as long as the multiplex
network is locally tree-like, it is possible to determine whether a node i is (σi = 1)

or is not (σi = 0) in the giant component using a simple message-passing algorithm.
This message-passing algorithm is determined by the messages σi→j indicating whether
(σi→j = 1) or not (σi→j = 0) node i is in the giant component also if all the links among
node i and node j are removed. A node i is in the giant component if it receives at least a
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positive message from a non-damaged link. A node i sends a positive message to node j
if it receives at least a positive message from at least one of its remaining undamaged
links, i.e.

σi→j = 1 −
M∏

α=1

∏
�∈Nα(i)\j

(
1 − sα�iσ�→i

)
, (12.1)

where Nα(i) indicates the set of nodes which are connected to node i in layer α. These
messages determine the indicator σi as

σi = 1 −
M∏

α=1

∏
�∈Nα(i)

(
1 − sα�iσ�→i

)
. (12.2)

When the initial configuration of the damage is not known, it is important to take care
that each pair of the nodes of a multiplex network can be connected in multiple layers.
By assuming that every multilink �m is damaged (loses all its links) with probability f �m =
1 − p �m we can consider the average of the above message-passing algorithm, providing
the probability σ̂i that node i belongs to the giant component. The novel set of messages
σ̂i→j indicating the average of σi→j when multilinks �m are damaged with probability
f �m = 1 − p �m satisfy

σ̂i→j = 1 −
∏

�∈N(i)\ j

(
1 − p �m�i σ̂�→i

)
, (12.3)

where N(i) is the set of nodes � that are neighbours of node i in any layer of the multiplex
network. Finally, the probability σ̂i that node i belongs to the giant component is given by

σ̂i = 1 −
∏

�∈N(i)

(
1 − p �m�i σ̂�→i

)
. (12.4)

In the case in which links are damaged independently in each layer α with probability
fα = 1 − pα we have

f �m =
M∏

α=1

(
fα

)m[α]
(12.5)

or equivalently

p �m = 1 −
M∏

α=1

(
1 − pα

)m[α]
. (12.6)
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However, the above formalism allows us to also consider random damage configurations
in which the links of different layers are not damaged independently.

In the case in which the multiplex network does not display link overlap the only
non-trivial multilinks include a connection only in a layer. Therefore, by indicating
with pα = 1 − fα the probability of retaining links in layer α, the message-passing
equations read

σ̂i→j = 1 −
M∏

α=1

∏
�∈Nα(i)\j

(
1 − pασ̂�→i

)
,

σ̂i = 1 −
M∏

α=1

∏
�∈Nα(i)

(
1 − pασ̂�→i

)
. (12.7)

Ensemble of multiplex networks without link ovelap

In order to appreciate the effect of multiplexity on classical percolation it is instructive to
consider the percolation transition on random uncorrelated multiplex network ensembles
without link overlap. In particular, we consider here multiplex network ensembles in
which each node is assigned a multiplex degree distribution P(k).

Let us indicate with S the fraction of nodes in the giant component of the multiplex
network when each link of the generic layer α is damaged with a probability fα = 1 − pα.
Equivalently, S can be interpreted as the average of σ̂i or the probability that a random
node belongs to the giant component of the multiplex network.

We indicate by S′
α the probability that by following a link in layer α we reach a node

in the giant component. This quantity can be evaluated by averaging the messages σ̂i→j
over the ensemble of multiplex networks. The probability S that a node is in the giant
component is determined by the values of S′

α for α = 1, 2, . . . , M. Indeed, by averaging
the message-passing Eqs (12.7) we have [213]

S =
[

1 −
∑

k

P(k)

M∏
α=1

(
1 − pαS′

α

)k[α]

]
. (12.8)

On their turn, the probabilities S′
α satisfy the following set of recursive equations

S′
α =

⎡
⎣1 −

∑
k

k[α]〈
k[α]

〉P(k)

M∏
γ=1

(
1 − pγ S′

γ

)k[γ ]−δ(γ ,α)

⎤
⎦, (12.9)

where δ(γ , α) is the Kronecker delta. This system of equations admits a trivial solution
in which S = 0, indicating that the giant component vanishes. This scenario is observed
when the solution S′

α = 0 ∀α is stable. The point at which the trivial solution becomes
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unstable indicates the percolation transition. In order to determine the conditions under
which the multiplex network percolates, we therefore linearize the system of Eqs (12.9)

for S′
α � 1, finding

S′
α =

∑
γ

pγ

〈
k[α]

[
k[γ ] − δ(γ , α)

]〉
〈
k[α]

〉 S′
γ , (12.10)

which can be written as

S′ = JS′, (12.11)

where J is the M × M Jacobian matrix of the system of equations (12.9) of elements

Jα,γ = pγ

〈
k[α]

[
k[γ ] − δ(γ , α)

]〉
〈
k[α]

〉 . (12.12)

Above the transition, this system must develop a set of non-trivial solutions. Therefore,
the transition point is obtained by imposing that the maximum eigenvalue �J of the
matrix J satisfies

�J = 1. (12.13)

From this derivation it follows that the multiplex networks is percolating if and only if
�J > 1. Let us now consider the specific case of a multiplex network with M = 2 layers.
By imposing �J = 1 we can show that the giant component of the multiplex network
emerges for

� = 1
2

[
p[1]κ1 + p[2]κ2 +

√(
p[1]κ1 − p[2]κ2

)2 + 4p[1]p[2]K1K2

]
= 1, (12.14)

where the variables κα and Kα correspond respectively to the second moment of the
degree distribution in layer α and a normalized measure of degree correlations among
the two layers, i.e.

κα =
〈
k[α](k[α] − 1)

〉
〈k[α]〉

Kα =
〈
k[1]k[2]

〉
〈k[α]〉 . (12.15)

From Eq. (12.14) it is evident that positive degree correlations among the two layers
(yielding large values of Kα) increase the robustness of the multiplex network, whereas
negative degree correlations (yielding small values of Kα) reduce the robustness of the
multiplex network.
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Ensembles of multiplex networks with link overlap

Classical percolation can also be studied in multiplex network ensembles with link
overlap, in which non-trivial multilinks �m are damaged with probability f �m = 1 − p �m.
In this scenario the percolation transition is most easily treated in the multiplex network
ensemble in which the multidegree distribution P({k �m}) is fixed. The fraction of nodes
S in the giant component (given by the average of the indicator functions σ̂i) is given by

S =
⎡
⎣1 −

∑
{k �m}

P
({k �m})

M∏
�m
=�0

(1 − p �mS′
�m)k �m

⎤
⎦. (12.16)

On their turn, the probabilities S′
�m that by following a multilink �m we reach a node in the

giant component (equivalent to the average of the messages σ̂i→j conditioned on having
�mij = �m) are given by

S′
�m =

⎡
⎣1 −

∑
{k �m}

k �m〈
k �m〉P (

{k �m}
) ∏

�m′

(
1 − p �m′S′

�m′
)k �m′−δ( �m, �m′)

⎤
⎦. (12.17)

In this case, linearizing the above equations for S �m � 1 it can be shown that the giant
component emerges when

�Ĵ > 1. (12.18)

Here �Ĵ is the maximum eigenvalue of the
(
2M − 1

) × (
2M − 1

)
Jacobian matrix Ĵ with

elements

Ĵ �m, �m′ =
〈
k �m

(
k �m′ − δ( �m, �m′)

)〉
〈
k �m〉 . (12.19)

12.2.3 Classical percolation in multilayer networks

In this paragraph we will depart form the multiplex network topology considered in the
previous paragraph and we will consider general multilayer networks or also multiplex
networks where we explicitly treat interlinks.

When percolation takes place on a multilayer network, multiplexity plays an important
role, which is revealed by studying these processes on multilayer network ensembles
including a controlled level of multilayer degree correlations [188, 261, 43].

The message-passing algorithm

Classical (bond) percolation of a single multilayer network can be studied by generalizing
the message-passing algorithm used to study percolation on a single network. The giant
component of the multilayer network is formed by pairs of nodes connected by at least
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a path formed by interlinks and intralinks of any layer. On a locally tree-like multilayer
network the giant component can be determined by a message-passing algorithm. If the
initial configuration of the damage is known, i.e. we know for every link connecting node
(i, α) to node (j, β) whether it is damaged (siα,jβ = 0) or not (siα,jβ = 1), it is possible to
determine whether node (i, α) is (σiα = 1) or is not (σiα = 0) in the giant component
by using a suitable message-passing algorithm. Specifically, messages of this algorithm
σiα→jβ are sent among neighbouring replica nodes and indicate whether (σiα→jβ = 1) or
not (σiα→jβ = 0) node (i, α) is in the giant component if the link [(i, α), (j, β)] is removed.
The algorithm is a direct generalization of the algorithm valid for single layers. A
node (i, α) belongs to the giant component (σiα = 1) if it receives at least a positive
message from one of its non-damaged links. Each node (i, α) sends a positive message
(σiα→jβ = 1) to a neighbour node (j, β) if it receives at least one positive message from
any of its remaining non-damaged links. Therefore, the message-passing equations read

σiα→jβ = 1 −
∏

(�,γ )∈N(i,α)\(j,β)

(
1 − s�γ ,iασ�γ→iα

)
, (12.20)

where N(i, α) indicates the set of replica nodes which are connected either by intralinks
of interlinks to (i, α). These messages determine the indicator σiα as

σiα = 1 −
∏

(�,γ )∈N(i,α)

(
1 − s�γ ,iασ�γ→iα

)
. (12.21)

Let us now assume that the initial configuration of the damage is not known and that
only the probability pαβ that links connecting nodes in layer α to nodes in layer β are
not damaged is available. Then, the probability σ̂iα that the generic node (i, α) is in the
giant component is determined by the messages σ̂iα→jβ and can be found by averaging
the previously discussed message-passing equation, i.e. solving the set of recursive
equations

σ̂iα→jβ = 1 −
∏

(�,γ )∈N(i,α)\(j,β)

(1 − pγασ̂�γ→iα),

σ̂iα = 1 −
∏

(�,γ )∈N(i,α)

(1 − pγασ̂�γ→iα). (12.22)

Ensemble of multilayer networks

Classical percolation can be studied over the multilayer network ensemble with given
multilayer degree distribution P[α](k) in layer α = 1, 2, . . . , M where the links among
replica nodes of layer α and layer β are retained with probability pαβ .

The probability S′
αβ that a link going from layer α to layer β reaches a node in the

giant component satisfies the set of equations [43]
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S′
αβ = xαβ

⎡
⎣1 −

∑
k

k[α,β]〈
k[α,β]

〉Pα(k)

M∏
γ=1

(
1 − pγαS′

γα

)k[α,γ ]−δ(γ ,β)

⎤
⎦, (12.23)

where xαβ = 1 if there is at least one connection between layer α and layer β, otherwise
xαβ = 0, i.e.

xαβ = 1 − δ
(

0,
〈
k[α,β]

〉)
. (12.24)

We note here that since
〈
k[α,β]

〉 = 〈
k[β,α]

〉
, it follows that xαβ = xβα.

The probability Sα that a generic node (i, α) of layer α is in the giant component is
expressed in terms of the probabilities S′

αβ as

Sα = 1 −
∑

k

Pα(k)

M∏
γ=1

(
1 − pγαS′

γα

)k[α,γ ]

. (12.25)

Finally, the fraction of nodes in the giant component is given by

S = 1
M

M∑
α=1

Sα. (12.26)

The percolation threshold is found by linearizing the Eqs (12.23) close to the trivial
solution S′

αβ = 0, obtaining the system of equations

S′
αβ =

∑
γ

pγαxαβ

〈
k[α,β]

[
k[α,γ ] − δ(γ , β)

]〉
〈
k[α,β]

〉 S′
γα (12.27)

which can be written as

S′ = J̃S′ (12.28)

where J̃ is the M2 × M2 Jacobian matrix of the system of equations (12.23) of elements

J̃αβ;γα = pγαxαβ

〈
k[α,β]

[
k[α,γ ] − δ(γ , β)

]〉
〈
k[α,β]

〉 . (12.29)

Note that in Eq. (12.29) we have adopted the following notation: whereas
〈
k[α,β]

〉 = 0

we take xαβ

〈
k[α,β][k[α,γ ]−δ(γ ,β)]

〉
〈k[α,β]〉 = 0. Above the transition, this system must develop a set

of non-trivial solutions. Therefore, the transition point is obtained by imposing that the
maximum eigenvalue �J̃ of the matrix J̃ satisfies

�J̃ = 1. (12.30)
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The case of a multilayer network ensemble with M = 2 layers

In the case of a multilayer network with M = 2 layers the system of Eqs (12.28)
reads

S′
11 = κ11p11S′

11 + K12p12S′
21

S′
22 = κ22p22S′

22 + K21p12S′
12

S′
12 = W12p11S′

11 + κ12p12S′
21

S′
21 = W21p22S′

22 + κ21p12S′
12 (12.31)

where

καβ = xαβ

〈
k[α,β](k[α,β] − 1)

〉
〈
k[α,β]

〉

K12 = x11

〈
k[1,1]k[1,2]

〉
〈
k[1,1]

〉

K21 = x22

〈
k[2,2]k[2,1]

〉
〈
k[2,2]

〉

W12 = x12

〈
k[1,2]k[1,1]

〉
〈
k[1,2]

〉

W21 = x12

〈
k[2,1]k[2,2]

〉
〈
k[2,1]

〉 . (12.32)

The transition is therefore obtained when the following condition is satisfied:

0 = (1 − p11κ11)(1 − p22κ22) − p2
12R12 (12.33)

where

R12 = (p11W12K12 + κ12 − p11κ12κ11) (p22W21K21 + κ21 − p22κ21κ22) . (12.34)

For the case in which only the links within each layer exist, i.e. x12 = 0 or p12 = 0, we
recover the transitions in the single layers [78, 227]

pα,ακαα = 1, (12.35)

or equivalently,

pαα =
〈
k[α,α]

〉
〈
k[α,α]

(
k[α,α] − 1

)〉 . (12.36)
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For the case in which only the interlinks exist x11 = x22 = 0 or p11 = p22 = 0 we
obtain the result valid for bipartite networks [227]

p2
12κ12κ21 = 1. (12.37)

Therefore,

p12 =
√

1
κ12κ21

=
√ 〈

k[1,2]
〉

〈
k[1,2]

(
k[1,2] − 1

)〉
〈
k[2,1]

〉
〈
k[2,1]

(
k[2,1] − 1

)〉 (12.38)

which can be vanishingly small for a heterogeneous distribution of either k[1,2] or k[2,1].
In general, we have that the relation between p12 at the transition point depends on

the values of p11 and p22 according to

p12 =
√

(1 − p11κ11) (1 − p22κ22)

R12
, (12.39)

and it is therefore strongly dependent on the correlations between the degrees of the
nodes within and across the layers.

Effect of interdegree and intradegree correlations

To study the effect of degree correlations let us assume we have a multilayer network
formed by two layers with tunable correlations between interlayer and intralayer degrees.

To be concrete, we consider a network with identical interlayer degree sequences and
intralayer degree sequences, in which the intralayer degree and the interlayer degree of
each node are either Maximally Positively correlated (MC), Maximally Anti-correlated
(MA) or Uncorrelated (UC). These correlated multilayer networks are constructed start-
ing from a multilayer network with the same interlayer network structure by changing
the way the intralinks are placed. For Maximally Positively correlated (MC) multilayer
networks the intradegree and interdegree sequences are first sorted in descending order.
To each node of rank r in the intradegree sequence the interdegree with the same rank
r is assigned. Subsequently, the bipartite network between the two layers is randomly
drawn in such a way that the interdegree of each node is preserved. For Maximally Anti-
correlated (MA) networks we proceed as in the previous case with the exception that
the intradegree and interdegree distributions are sorted in opposite order (one sequence
in increasing order and the other sequence in decreasing order). Finally, for the case
of Uncorrelated (UC) multilayer networks the interdegree is assigned randomly to any
node of a given layer of the multilayer network by performing a random permutation of
the corresponding interdegree sequence.

In Fig. 12.1 we show the percolation threshold points for Poisson multilayer networks
indicated by the line p = p(q) where q = p12 = p21 and p = p11 = p22 are respectively the
probabilities for retaining the interlinks and the intralinks. For high positive correlations
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Fig. 12.1 Percolation threshold for Maximally Correlated (MC), Maximally Anti-correlated (MA)
or Uncorrelated (UC) interdegree and intradegree sequences. The multilayer networks have two layers
(M = 2) with identical interlayer degree sequences and intralayer degree sequences drawn from a Poisson
distribution with average degree c = 3. The network size is N = 104 nodes. Adapted from Ref. [43].

of interlayer and intralayer degrees (MC multilayer network) R12 is higher, the mul-
tilayer network is more robust and the percolation threshold is smaller. For large anti-
correlations of interlayer and intralayer degrees (MA multilayer network) R12 is smaller,
the multilayer network is more fragile and the percolation threshold is larger.

Moreover, in Ref. [261] it has been shown that if in addition to positive interlayer
and intralayer degree correlations the multilayer network is also formed by positively
correlated layers where hub nodes tend to be connected to hub nodes, the robustness of
the multilayer network is further increased.

12.3 Directed percolation

12.3.1 Directed mutually connected components

Directed percolation is a generalized percolation problem that can be used to probe the
large-scale properties of multiplex networks. In particular, it characterizes the response of
a multiplex network to random damage of its nodes by evaluating the Directed Mutually
Connected Giant Component (DMCGC).
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The algorithm [77, 76] that allows us to find the nodes in the DMCGC has an
epidemic-spreading interpretation. In this epidemic-spreading interpretation, we assume
that a different disease propagates in each layer of the multiplex network and that a node
is infected only if it is in contact with at least one infected neighbour node in each layer
α = 1, 2, . . . , M. The set of nodes that become infected are the nodes in the DMCGC.

The DMCGC reduces to the Mutually Connected Giant Component (MCGC) in
the absence of link overlap and also for complete link overlap. However, the DMCGC is
distinct from the MCGC in the presence of a non-negligible but partial link overlap. In
particular, the algorithm determining the DMCGC has an inherent directed character
due to its epidemic-spreading interpretation, while the algorithm used for detecting the
MCGC in the presence of link overlap does not have this directed nature.

The MCGC can be determined by a message-passing algorithm that in the absence
of overlap and for complete overlap reduces to the algorithm discussed in Sec. 11.3, but
most relevantly differs from the algorithm discussed in Sec. 11.4.2 for determining the
MCGC in the presence of a non-vanishing overlap [76, 212]. For example, for the duplex
network in Fig. 12.2, all the nodes belong to the MCGC. In fact, every pair of nodes is
connected by at least one path in each layer of the duplex network. However, according
to the message-passing algorithm with the epidemic-spreading interpretation, once the

Not in the DMCGC

(a)

∞

∞ ∞

∞

(b)

In the MCGC

Fig. 12.2 A multiplex network with link overlap demonstrating that the DMCGC is not equivalent to
the MCGC.Here the multiplex network has M = 2 layers corresponding to the networks formed by links
indicated respectively with solid and dashed lines. In panel (a) we assume that one node is connected to the
DMCGC.By applying the message-passing algorithm for the DMCGC,we observe that two nodes of the
network do not belong to the DMCGC.In panel (b) we consider the same multiplex network configuration
but this time we assume that a single node is connected to the MCGC. By applying the message-passing
algorithm for the MCGC with link overlap we observe that all the nodes of this network belong to the
MCGC. Reprinted figure from Ref. [76].
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first two nodes have been infected neither of the two remaining nodes can receive the
infection coming from both layers at the same time. As a consequence, these two nodes
remain uninfected. That is, while these two nodes belong to the MCGC, they do not
belong to the DMCGC.

Finally, we note that the directed percolation can be also interpreted as the limit of
the multiplex network viability problem when the fraction of source nodes goes to zero
[212, 211]. In the epidemic interpretation the viability cluster is the cluster obtained by
assuming that some nodes are the source of the epidemics and the other nodes get the
infection and can further propagate if they are receiving the infection from links coming
from each layer. When the fraction of source nodes goes to zero the viable cluster reduces
to the DMCGC.

12.3.2 The message-passing algorithm

In a locally tree-like multiplex network the DMCGC can be determined by the following
message-passing equation [77, 76]. Let si = 0, 1 indicate if a node i is removed or not
from the network and let σi = 0, 1 indicate whether the node i is in the DMCGC. The
value of σi is determined by the messages σj→i that each of the neighbouring nodes j send
to node i. The value of the generic message σi→j sent from node i to the neighbouring
node j is set to one, σi→j = 1, if and only if the following two conditions are satisfied:

(a) node i is not initially damaged, i.e. si = 1;

(b) node i belongs to the DMCGC even if the multilink �mij between node i and
node j is removed from the multiplex, i.e. node i receives at least one positive
message σ�→i = 1 from a nearest neighbour � 
= j in every layer α of the multiplex
network.

If any of these conditions are not satisfied then the message is zero, i.e. σi→j = 0.
Additionally, node i is in the DMCGC (σi = 1) if the following conditions are

satisfied:

(a) node i is not initially damaged;

(b) for every layer α node i receives at least one positive message σ�→i = 1 from a
neighbour � in layer α.

This algorithm directly translates into the following message-passing equations for σi
and σi→j :

σi = si

M∏
α=1

⎡
⎣1 −

∏
j∈Nα(i)

(
1 − σj→i

)⎤⎦, (12.40)

σi→j = si

M∏
α=1

⎡
⎣1 −

∏
�∈Nα(i)\j

(1 − σ�→i)

⎤
⎦, (12.41)
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ni→j = (0, 1)
→

ni→j = (1, 1)
→

ni→j = (1, 0)
→

Fig. 12.3 Possible types of non-trivial messages �ni→j that can be sent from node i to node j connected
by the multilink �mij = (a[1]

ij , a[2]
ij ) in a duplex network. The multilink between node i and node j is

represented as in Fig. 7.3; solid lines connected to the symbol of infinity indicate that through those links
node i is connected to nodes in the MCGC.

where Nα(i) indicates the set of neighbouring nodes of node i in layer α. This algorithm
reduces to the one defining the MCGC in the absence of link overlap (see Sec. 11.3) but
it is distinct from the one determining the MCGC in the presence of link overlap (see
Sec. 11.4.2) In Fig. 12.3 we emphasize the difference between this algorithm and the
one used to detect the MCGC in multiplex networks with link overlap. It is particularly
clear that the directed nature of the algorithm defining the DMCGC does not allow the
non-trivial messages to propagate in situations where instead the messages determining
the MCGC are non-trivial.

Let us consider a random realization of the initial damage in which each node is
damaged, with probability 1 − p and a random realization of the multiplex network with
given multidegree distribution chosen with probability P( �G) given by Eq. (10.47). The
average S �m of the messages σ̂i→j along a generic non-trivial multilink �mij = �m determines
the average number of nodes in the DMCGC S (see Appendix D for the details of the
derivation).

We consider a duplex network with Poisson multidegree distribution and average
multidegrees

〈
k(1,1)

〉 = c2,
〈
k(1,0)

〉 = 〈
k(0,1)

〉 = c1. The full phase diagram of the model
is displayed in Fig. 12.4. We note that for c2 = 0 the phase transition is hybrid and
discontinuous and reduces to the known transition in duplex networks with no link
overlap, while for c1 = 0, indicating complete overlap of the layers, the transition is
continuous and reduces to the percolation transition on a single Poisson network. For
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Fig. 12.4 The critical lines of discontinuous hybrid phase transition (dashed line) and continuous phase
transition (solid line) describing the emergence of the DMCGC are shown for the case of a multiplex
network with two layers and the Poisson multidegree distribution with 〈k(1,0)〉 = 〈k(0,1)〉 = c1 and
〈k(1,1)〉 = c2. Reprinted figure from Ref. [76].

c2 < c1
√

2 the DMCGC emerges at a discontinuous phase transition while for c2 > c1
√

2
the transition is continuous. The point c2 = c1

√
2 separating the line of continuous from

the line of discontinuous phase transition if called tricritical point.
When this phase diagram is compared with the corresponding phase diagram deter-

mining the emergence of the MCGC (see Fig. 11.11), one observes firstly that the
transition points at c2 = 0 (absence of overlap) and at c2 = 1 (complete overlap) are
the same; secondly one notices that while for the DMCGC there is a tricritical point at a
non-zero value of the link overlap c2/c1 = √

2, in the phase diagram for the MCGC the
only tricritical point is the trivial one for c2 = 1. This is clear evidence that although the
MCGC and the DMCGC are the same in the absence of link overlap and in the presence
of complete link overlap, they describe a very distinct set of nodes in the presence of a
non-negligible but non-complete link overlap. In particular, the DMCGC is a proper
subset of the MCGC as long as the overlap between the layers is not vanishing or
complete, in which cases the DMCGC coincides with the MCGC.

12.4 Antagonist percolation

The treatment of interdependencies in multilayer networks has introduced the effect
of cooperative interactions in percolation problems. Nevertheless, in a variety of sys-
tems, including most notably biological networks, it is possible to assume that actual
resilience and percolation properties of the network can be affected both by cooperative
interactions (interdependencies) and antagonistic interactions. Possibly in the future it
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will be possible to formulate a well-defined percolation problem on multilayer networks
that will include different types of combinatorial relations between the nodes and overall
determine the stability and robustness of the multilayer structure.

In Ref. [316], a first step in this direction has been made by considering the case in
which the interactions across different layers of a multiplex network have an antagonistic
nature. In particular, a duplex network is considered in which the function or activity of
a node is incompatible with the function or activity of the replica node in the other layer.
The nodes in layer α are indicated in the following by (i, α), while the nodes in layer β

are indicated by (i, β), with i = 1, 2, . . . , N . The two nodes (i, α) and (i, β) are replica
nodes with an antagonistic interaction. In order to determine whether a node (i, α) is in
the percolation cluster of layer α, or a node (i, β) is in the percolation cluster of layer β,
the following algorithm has been proposed.

A node (i, α) is part of the percolation cluster in layer α if the following recursive set
of conditions is satisfied:

(i) at least one neighbour (j, α) of node (i, α) in layer α is in the percolation cluster
of layer α;

(ii) none of the neighbours (j, β) of node (i, β) are in the percolation cluster of layer β.

Similarly, a node (i, β) is part of the percolation cluster in layer β if the following recursive
set of conditions is satisfied:

(a) at least one neighbour (j, β) of node (i, β) in layer β is in the percolation cluster
of layer β;

(b) none of the neighbours (j, α) of node (i, α), are in the percolation cluster of
layer α.

For a given locally tree-like multiplex network without link overlap it is possible to
construct a message-passing algorithm that determines whether node (i, α) belongs to
the percolation cluster of layer α.

We denote by σα
i→j = 1, 0 the message within a layer α going from node (i, α) to node

(j, α). The message σα
i→j = 1 indicates that node (i, α) is in the percolation cluster of

layer α when we consider the network in which the link (i, j) in network α is removed. In
addition, we indicate with siα = 0 a node that is removed from the network as an effect of
the damage inflicted on the network, otherwise siα = 1. The message-passing equations
take the form

σα
i→j = siα

⎡
⎣1 −

∏
�∈Nα(i)\j

(
1 − σα

�→i

)⎤⎦ ∏
�∈Nβ(i)

(
1 − σ

β

�→i

)
, (12.42)

where here and in the following α 
= β. The indicator function σiα indicates that the node
(i, α) is (σiα = 1) or is not (σiα = 0) in the percolation cluster of layer α. The variables
σiα can be expressed in terms of the messages, i.e.
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σiα = siα

⎡
⎣1 −

∏
�∈Nα(i)

(
1 − σα

�→i

)⎤⎦ ∏
�∈Nβ(i)

(
1 − σ

β

�→i

)
. (12.43)

If we only know that the replica nodes α are damaged with probability fα = 1 − pα, the
probability σ̂iα that the replica node (i, α) is in the percolation cluster after the inflicted
damage is given by

σ̂iα = pα

⎡
⎣1 −

∏
�∈Nα(i)

(
1 − σ̂ α

�→i

)⎤⎦ ∏
�∈Nβ(i)

(
1 − σ̂

β

�→i

)
, (12.44)

where σ̂ α
i→j satisfies

σ̂ α
i→j = pα

⎡
⎣1 −

∏
�∈Nα(i)\j

(
1 − σ̂ α

�→i

)
⎤
⎦ ∏

�∈Nβ(i)

(
1 − σ̂

β

�→i

)
. (12.45)
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Fig. 12.5 Phase diagram of the percolation of two antagonistic Poisson networks (layer A and layer B)
with average degree given respectively by cA and cB.
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Fig. 12.6 Panels (a) and (b) show the hysteresis loop for the percolation of a duplex formed by two
antagonistic Poisson layers with average degree cA = 4, cB = 1.5 as a function of the probability pA of
not damaging the nodes in layer A. Here the nodes in layer B are not damaged, i.e. pB = 1.

If we consider a duplex formed by two uncorrelated networks (layer A and layer B) with
degree distributions PA(k) and PB(k) respectively, we can average the messages in each
layer, getting the equations for S′

A indicating the average of σ̂ α
i→j and S′

B indicating the

average of σ̂
β

i→j , that read as

S′
A = pA

[
1 − GA

1
(
1 − S′

A
)]

GB
0

(
1 − S′

B
)

S′
B = pB

[
1 − GB

1
(
1 − S′

B
)]

GA
0

(
1 − S′

A
)
, (12.46)

where GA
0 , GB

0 , GA
1 , GB

1 are the generating function of the degree distribution PA(k),
PB(k), k

〈k〉A
PA(k), k

〈k〉B
PB(k) respectively. The probabilities SA (or SB) that a random

node in layer A (or layer B) is in the percolation cluster of layer A (or layer B) are given by

SA = pA

[
1 − GA

0
(
1 − S′

A
)]

GB
0

(
1 − S′

B
)

SB = pB

[
1 − GB

0
(
1 − S′

B
)]

GA
0

(
1 − S′

A
)
. (12.47)
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This novel percolation problem has surprising features [316]. For example, for a duplex
network formed by two Poisson networks with average degree 〈k〉A = cA and 〈k〉B =
cB respectively, the phase diagram in Fig. 12.5 shows that this generalized percolation
problem displays a bistable phase. For cApA < 1 and cBpB < 1 we observe a phase in which
neither layer can percolate. The remaining three regions of the phase space include:
one region in which only layer A contains a percolation cluster; a symmetric region in
which only layer B contains a percolation cluster; a third region in which the solution
of the model is bistable, and depending on the initial condition of the message-passing
algorithm, either network A or network B are percolating. Due to the presence of this
bistable region, this generalized percolation problem can display a hysteresis loop, as
shown in Fig. 12.6. This means that the size of the giant component in layer A and in
layer B depends on the previous history of the process. If, for instance, we start from a
configuration in which there is a giant component in layer A and no giant component in
layer B and we increase subsequently the number of damaged nodes in layer A, the size of
the giant component is reduced until it reaches a tipping point where there is no more a
giant component in layer A (solid line in Fig. 12.6). However, the response of the system
might be significantly different if we start from an initial configuration in which layer
B is percolation and layer A is not and the nodes in layer A are subsequently activated
(dashed line in Fig. 12.6). Therefore, the same type of random damage can yield two
different and opposite configurations as long as the system is in the bistable region.

In the following chapters we will show that antagonistic or competing networks have
also been discussed in the framework of epidemic-spreading processes (Sec. 13.5),
election models (Sec. 16.3.1) and models for competing resources (Sec. 16.3.2).

12.5 Cascades on multilayer networks

12.5.1 Cascades without interdependencies

Cascades in multilayer networks can occur due to interdependencies between the nodes
of different layers or can be caused by alternative mechanisms including cascades of loads
[63, 187] described, for instance, by the Bak–Tang–Wisenfeld sandpile model [12], by
the threshold cascade model [65] proposed by Watts in Ref. [309] or by novel cascade
processes [186].

12.5.2 Cascade of loads and sandpile model

Cascades of loads have been extensively studied in simplex networks, shedding light
on the response of these networks to the flow of physical quantities in the network.
These works are especially important for applications ranging from power grids and
communication and transportation systems to financial markets [218]. In Ref. [63]
cascades of loads described by the stylized Bak–Tang–Wisenfeld sandpile model [12]
have been proposed to study the robustness of multilayer infrastructures and power grids.
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In this model it is assumed that ‘grains of sand’ flow in the network according to a discrete
dynamics of activations or ‘toppling events’. Each node is assigned a load capacity, i.e. the
maximum possible number of particles of sand it can support. Usually the load capacity
of each node is given by its degree. When a new grain of sand arrives on a given node
and the number of sand grains on the node is larger than its load capacity the node
‘topples’ and all the grains of sand in the node are distributed to its neighbour nodes,
adding one grain of sand to each neighbour node. Eventually, this dynamics can trigger
additional toppling events, generating a cascade in the system. Typically in the sandpile
model, the system is subjected to the subsequent addition of single grains of sand, and
the size of the resulting avalanche is monitored. In this way the number of grains of sand
in the network will continuously increase, eventually saturating all the nodes. In order to
avoid this undesired state it is important that the dynamics includes some mechanism for
dissipating the grains of sand. In the traditional realization of the sandpile model on a two-
dimensional finite-square lattice the dissipation is enforced by open boundary conditions
where all the grains of sand that move out of the lattice boundaries are dissipated. In
complex networks, the concept of boundary is usually lost, so in this case the dissipation
mechanism is enforced by introducing a small but non-zero probability f of deleting
grains of sand as they shed.

Power-grid stability and sandpile model on multilayer network

The sandpile model defined on single networks can be generalized without modifications
to modular multilayer networks formed by different interconnected networks. For
instance, this is the most realistic description of the US power grid which includes
thousands of distinct local and regional utilities organized in a multilayer structure (see
Fig. 12.7). In Ref. [63] the sandpile model is studied in random multilayer networks
and on real power-grid datasets in order to predict the response of these networks to
cascades of loads and the optimal multilayer network structures. The resulting sandpile
model on multilayer networks extends the model defined on single networks. Specifically,
the multilayer network ensembles where this model is defined take into account that
links might belong to different networks and therefore the multilayer network structure
might be non-trivial. Nevertheless, similarly to what happens for classic percolation, if
one does not average over the multilayer network ensemble the dynamics is the same
as the one defined on a large single modular network. The differences observed with
respect to a single random network are therefore due exclusively to the multilayer
network (modular) topology. The main result of Ref. [63] is that the probability of large
avalanches can be affected by the interlinks between layers. In fact, starting from two
distinct layers and increasing the probability p of having random interlinks, it is observed
that the probability of large avalanches has a minimum for a non-zero value p = p
 (see
Fig. 12.8). In fact, a smaller probability of interconnections leads to a higher probability
of large avalanches; because the network has more bottle-necks, a larger probability of
the interconnections can increase the capacity and the total possible load, eventually
generating larger cascades. Therefore, moderately increasing the interlayer connectivity
can reduce the size of the largest cascade in each layer, but too many interconnections
can become detrimental for the stability of the multilayer system.
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Fig. 12.7 The power grid of the United States is formed by three main regions—West, East and Texas—
forming a multilayer network. Here the power grid is shown schematically together with the proposed new
lines for transport of wind power. Reprinted figure from Ref. [63].

Sandpile model on multiplex networks

In Ref. [187] the sandpile dynamics on multiplex networks was further explored. It
has been shown that the avalanche distribution is not changed with respect to the one
observed on single layers. However, the multiplexity has a role in increasing the fragility
of high-degree nodes in multiplex networks.

12.5.3 Watts contagion model

Cascades of adoption of behaviour in social and financial contexts can be captured by the
Watts model [309]. These cascades include propagation of social opinions, emergence
of novel political or social movements and diffusion of financial strategies. The Watts
model is a contagion model indicating that a node’s decision to change state (opinion,
behaviour) is influenced by its neighbours. However, differently from percolation, it is
assumed that each individual has some resistance in changing his own state. Specifically,
an individual will not change his state if only a single neighbour adopts a different
behaviour, while only a larger number of neighbours will exert sufficient social pressure
to induce a change of state. Therefore, the Watts model assumes that each individual will
change opinion only if a given fraction (or a given number) of his neighbours acquires
another opinion.
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Fig. 12.8 The main plot displays the probability of large avalanches propagating within a single layer
Taa, inflicted on one layer by the other one Tba,and the probability of large avalanches Ta occurring in one
layer regardless of the origin of the avalanches as a function of the probability of interconnections p. Here
it is evident that Ta has a minimum at p
, indicating that there is an optimal value of interconnectivity
that reduces the likelihood of large avalanches. The inset shows the distribution of avalanche sizes for
different values of the interconnectivity p = 0.001, 0.01, 0.1 for a given artificial multilayer network (left
inset) and for a duplex network formed by two real subsets of the US power grid (right inset) connected by
c = 0, 8, 16 interlinks. Reprinted figure from Ref. [63].

In Ref. [65, 186] the Watts model is extended to the multiplex networks and modified
to capture the effects of multiplexity. It is shown that multiplexity can actually increase
the network vulnerability to global cascades. Additionally, in some regions of the phase
diagram of the model proposed in Ref. [186] it is possible to observe an abrupt
emergence of cascading events. These results show that advertising strategies can be
more effective in multiplex networks. However, whereas this model is appropriate
for modelling financial systems, these results also indicate that multiplex financial
networks have a larger systemic risk than single-layer financial networks. Additionally, the
discontinuous emergence of cascading events reveals a novel mechanism for capturing
the sudden adoption of a product, the uprising of a movement or the emergence of a
social opinion.
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Epidemic Spreading

13.1 Epidemics and multiplexity

Epidemic spreading is one of the most interesting and studied dynamical processes
on complex networks, with relevance for the modelling of biological epidemics, social
contagions, success of memes and tweets in social online networks and for designing
immunization strategies and identifying influential spreaders. Therefore, extending the
study of epidemic spreading to multilayer networks is natural. In fact, both biological
epidemics and social contagion generally occur on multilayer networks. For example,
sexually transmitted diseases can propagate across the multiplex networks formed by
layers consisting on heterosexual and homosexual contacts, while the co-existence of
several online social networks allows social contagion to span across the multiplex
networks formed by different online platforms such as Facebook, Twitter and LinkedIn.
Additionally, the multilayer set-up allows for modelling interacting contagion processes
as, for instance, the simultaneous spread of influenza on the social contact network and
the spread of the awareness behaviour on online social networks that do not require
physical contact between the individuals.

A rich and surprising phenomenology is observed when epidemic spreading prop-
agates in a multilayer network. It is found that in general multiplexity allows for the
propagation of the epidemics even if the single layers of the network are not able to
sustain the epidemics if taken in isolation. Additionally, the degree correlations existing
in a multilayer network can significantly affect the properties of the epidemic spreading.

The bibliography on epidemic processes in multilayer networks is already very rich
and includes several review articles [88, 305, 269]. Due to space limitation it will be
impossible here to cover entirely this very active field of research, so we decided instead
to focus on fewer representative results, showing the important effect of multiplexity on
epidemic spreading.

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001
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13.2 SIS model

13.2.1 General remarks

The Susceptible–Infected–Susceptible (SIS) dynamics plays a fundamental role in
modelling epidemic spreading in complex networks. This model assumes that nodes can
be in two possible states: susceptible (S) or infected (I). Susceptible nodes can become
infected if they have at least one infected neighbour, while infected nodes can spread
the infection and become susceptible at a constant rate in time. The SIS dynamics can
result in a dynamical state in two different regimes (or dynamical phases): the absorbing
phase and the endemic phase. In the absorbing phase the epidemic does not spread fast
enough and after a transient it dies out. The endemic phase instead is characterized by
a steady state in which a finite fraction of the nodes of the network is infected at any
given time.

13.2.2 Definition

The SIS dynamics on multiplex and general multilayer networks can be defined in two
different ways. On a multiplex network it is possible to assume that each node has the
same state on each of its replica nodes and that the infection proceeds at different rates
depending on the pattern of connections between any two linked nodes. In this case, we
can assume that each node i of the multiplex network is either susceptible (indicated
with Si) or infected (indicated with Ii). A suceptible individual that is connected to an
infected individual by a multilink �mij gets the infection with rate ξ �mij , i.e.

Si + Ij
ξ

�mij−−→ Ii + Ij , (13.1)

while an infected individual Ii becomes susceptible with rate μ, i.e.

Ii
μ−→ Si . (13.2)

In the particular case in which the multiplex network has no link overlap, the infection
probabilities ξ �mij only depend on the single layer α in which node i and node j are
connected, i.e. ξ �mij = ξ [α].

Alternatively, the SIS dynamics can be defined assuming that every node (i, α) of
a general multilayer network has a different dynamical state, being either susceptible
(indicated with Siα) or infected (indicated with Iiα). Considering the same recovery
rate for all the nodes of the multilayer network given by μ, this SIS dynamics can be
summarized by the following two processes. A susceptible node (i, α) connected to a
node (j, β) either by intralinks (α = β) or interlinks (α �= β) gets the infection at rate
ξ [α,β], i.e.

Siα + Ijβ
ξ [α,β]

−−−→ Iiα + Ijβ . (13.3)
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An infected node (i, α) becomes susceptible with rate μ, i.e.

Iiα
μ−→ Siα. (13.4)

Here, given space limitations, we will focus on this latter definition of the SIS dynamics,
which has been investigated extensively in the literature [271, 82, 87]. The derivation of
the theoretical predictions for the SIS dynamics on multilayer networks can be directly
extended to the SIS dynamics on multiplex networks where each node is characterized
by the same dynamical state.

13.2.3 General formalism for the SIS dynamics on
multilayer networks

Let us here derive the general formalism that describes the SIS dynamics on multilayer
network in discrete time. Let us indicate with Xiα(t) = 0, 1 whether node (i, α) is infected
Xiα(t) = 1 or susceptible Xiα(t) = 0 at time t. At each given time a susceptible node
(i, α) becomes infected it has been infected at least by one of its infected neighbours,
while an infected node (i, α) becomes susceptible with probability μ independently of its
neighbours. Therefore, the SIS dynamics on multilayer networks can be summarized by
the set of dynamic equations

Xiα(t + 1) =
{
(1 − Xiα(t)) with probability πiα,
Xi(t) with probability 1 − πiα,

(13.5)

where

πiα =
{[

1 −∏M
β=1

∏N
j=1
(
1 − Riα,jβXjβ(t)

)]
if Xiα(t) = 0

μ if Xiα(t) = 1.

In Eq. (13.5) the reaction supra-matrix R is expressed in terms of the adjacency
matrices a[α,β] and the infection rates ξ [α,β] and has a block structure of the type

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

ξ [1,1]a[1,1] ξ [1,2]a[1,2] · · · ξ [1,M]a[1,M]

ξ [2,1]a[2,1] ξ [2,2]a[2,2] · · · ξ [2,M]a[2,M]

...
...

. . .
...

ξ [M,1]a[M,1] ξ [M,2]a[M,2] · · · ξ [M,M]a[M,M]

⎞
⎟⎟⎟⎟⎟⎟⎠

. (13.6)

From the study of Eq. (13.5) we can derive the exact equation for the probability piα(t) =
〈Xi,α(t + 1)〉 that a node (i, α) is infected at time t, i.e.

piα(t) = 〈Xiα(t + 1)〉 =
〈(

1 − Xiα(t)
)⎡⎣1 −

M∏
β=1

N∏
j=1

(
1 − Riα,jβXjβ(t)

)⎤⎦
〉

+ (1 − μ) 〈Xiα(t)〉 . (13.7)
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13.2.4 Individual mean-field approximation

The exact numerical integration of the SIS dynamics on multilayer networks, and on
single networks as well, constitutes until now one of the major challenges of network
theory. In the absence of an exact solution of this model, as we have discussed in
the context of single layers, two approximations for studying these equations have
been proposed: the individual mean-field approximation and the annealed network
approximation. These two approximations can be used to compare simulations to
analytical predictions. Simulations have shown that in many cases of interest the mean-
field approaches can give a good indication of the simulation results. Nevertheless, the
limitations of these approaches have also raised significant attention in recent years. The
individual mean-field approach consists in neglecting correlations and assuming that

〈
Xiα(t)Xjβ(t)

〉 � 〈Xiα(t)〉 〈Xjβ(t)
〉

(13.8)

and

〈
Xi1α1Xi2α2 . . . Xiqαq

〉 �
q∏

n=1

〈
Xinαn

〉
. (13.9)

With these assumptions we can write the dynamical equation for piα(t) = 〈Xiα(t)〉
starting from Eq. (13.5) as

piα(t + 1) = (1 − piα(t)
)⎡⎣1 −

M∏
β=1

N∏
j=1

(
1 − Riα,jβpjβ(t)

)⎤⎦
+ (1 − μ)piα(t), (13.10)

which has the steady-state solution

piα(t) = piα(t + 1) = p�
iα (13.11)

for t � 1 given by

0 = −μp�
iα + (1 − p�

iα
)
⎡
⎣1 −

M∏
β=1

N∏
j=1

(
1 − Riα,jβp�

jβ

)⎤⎦ . (13.12)

This equation always has a solution p�
iα = 0, ∀(i, α). A non-trivial solution appears for

values of sufficiently high infection rates. The onset of the endemic regime can be studied
by linearizing Eq. (13.12) around the solution p�

iα = 0. In this way, by putting pi,α = εiα
with εiα 
 1 we get

0 =
M∑

β=1

N∑
j=1

[Riα,jβ − μδ(i, j)δ(α, β)]εjβ , (13.13)
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where δ(x, y) indicates the Kronecker delta. For simplicity we assume that the propaga-
tion of the disease has the same timescale within each layer ξ [α,α] = λ and that the disease
propagates across each pair of layers α �= β, with another timescale set by ξ [α,β] = η. In
these conditions we have that the endemic regime sets in when λ/μ is given by [82, 303]

λ

μ
= 1

�(R̃)
(13.14)

where �(R̃) is the maximum eigenvalue of the normalized reaction matrix R̃ = R/λ

of the multilayer network. We note here that, as in the case of single layers, this result
requires additional caution. In fact, it is only valid as long as the eigenvector associated
with the maximal eigenvalue �(R̃) is delocalized over at least a finite fraction of the nodes
of the network. Under these conditions, this result gives interesting insights regarding the
properties of the epidemic spreading in multilayer networks. In fact, the epidemic on a
multilayer network can become endemic also for infection rates λ for which the epidemic
does not spread in the individual layers if the layers are taken in isolation. For example,
in the case of a multilayer network formed by two layers we have [82, 303]

�(R̃) ≥ max
[
�(a[1,1]),

η

λ
�(a[2,2])

]
. (13.15)

In Fig. 13.1 of Ref. [87] the fraction of infected individuals at steady state is reported
against the control parameter λ in the case in which the multilayer network is a multiplex
network formed by two layers with interlinks joining the replica nodes (i, α) with α =
1, 2, . . . , M. From this figure it is possible to see that the epidemic threshold for the onset
of the endemic state in the multiplex network is smaller than the epidemic threshold
for each of the two layers taken in isolation. This result shows in a concrete example
that multiplexity in general will favour the spread of the epidemics. Interestingly, the
multilayer network will in any case preserve some ‘memory’ of the transition occurring
on its single layer taken in isolation. This is particularly evident when the susceptibility
of the system is measured. The susceptibility χ is defined as

χ =
〈(

NI
)2〉− 〈NI

〉
〈
NI
〉 , (13.16)

where NI is the number of infected nodes and the average if performed over the
distribution of NI at steady state. On a single layer the susceptibility has a single peak
that indicates the epidemic threshold [241]. The susceptibility of a multiplex network
of two layers, however, presents two peaks occurring in correspondence with the two
epidemic thresholds of its layers taken in isolation (see Fig. 13.2 from Ref. [87]). This
implies that when the infection rate is larger than the critical infection rate of the layer
which is more resistant to the spread of the epidemic, the infection will rapidly spread
over a larger population (see also panel (a) of Fig. 13.1)
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Fig. 13.1 Individual layer behaviour of the SIS epidemic spreading over a duplex network. Each layer
has N = 104 nodes and a fixed value of μ = 1. The average fraction of infected nodes ρ at the stationary
state is plotted as a function of the infectivity λ for the global duplex network (panel (a)) and for each single
layer (panels (b) and (c)). The arrows indicate the layers’ leading eigenvalues. Here the two layers have
power-law degree distributions with power-law exponent γ given respectively by γ = 2.5 (First layer)
and γ = 4.5 (Second layer). Reprinted from Ref. [87].
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layer has N = 103 nodes, the first layer is a scale-free network with power-law exponent γ ≈ 2.2 and
the second layer is a scale-free network with power-law exponent γ ≈ 2.8. Both layers have 〈k〉 ≈ 8. The
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5, 6, 7, 8, 9, 10, 20, 30. Reprinted from Ref. [87].

Until now the SIS epidemic has been formulated in discrete time using the mean-field
Eqs (13.10). By considering a discrete time dynamics taking place at time intervals �t,
and setting

λ → λ�t

δ → δ�t

μ → μ�t (13.17)

in the limit �t → 0, we can recover the continuous time equation for piα(t) given by

dpiα

dt
= −piα(t) + (1 − piα)

⎡
⎣ M∑

β=1

N∑
j=1

Riα,jβpjβ

⎤
⎦, (13.18)
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dpiα

dt
= −μpiα(t) + (1 − piα)

⎡
⎣ M∑

β=1

N∑
j=1

Riα,jβpjβ

⎤
⎦ (13.19)

where, without loss of generality, we have set μ = 1 by rescaling of time t → tμ and
ξ [α,β] → λ[α,β] = ξ [α,β]/μ. Therefore, in Eq. (13.18) the supramatrix Riα,jβ is given by

R =

⎛
⎜⎜⎜⎜⎜⎝

λ[1,1]a[1,1] λ[1,2]a[1,2] · · · λ[1,M]a[1,M]

λ[2,1]a[2,1] λ[2,2]a[2,2] · · · λ[2,M]a[2,M]

...
...

. . .
...

λ[M,1]a[M,1] λ[M,2]a[M,2] · · · λ[M,M]a[M,M]

⎞
⎟⎟⎟⎟⎟⎠

. (13.20)

Clearly, the steady-state solution of Eqs (13.18) will give results equivalent to the steady-
state solution of the dynamics in discrete time analysed earlier in the paragraph.

13.2.5 Annealed network approximation

Another usually considered approximation for describing the SIS dynamics on a network
is the annealed network approximation, also known as the heterogeneous mean-field
approximation. This approach consists in making essentially two different approxima-
tions. First of all, one considers the mean-field approximation that is assuming a decor-
relation between the dynamical states of neighbour nodes, expressed by Eqs (13.8) and
(13.9). Secondly, one assumes that the network is random and substitutes the adjacency
matrix elements a[α,β]

i,j with their average value in an appropriate network ensemble such
as a configuration model or a correlated network model. This second approximation, also
known as the annealed network approximation, is valid in the limit in which the network is
not static but instead links are continuously rewired in order to generate different network
configurations in the network ensemble. For example, here we will consider the case in
which links are rewired by keeping the same multilayer degree sequences.

Since in the annealed network approximation the multilayer degree of the nodes
determines the role of the nodes in the network completely, the SIS equations in the
heterogeneous mean-field approximation are describing the dynamical evolution of the
average number ρk,α of infected nodes that are in layer α and have multilayer degree
kiα = k, i.e.

ρk,α = 〈piα〉kiα=k . (13.21)

In the absence of multilayer degree correlations, the annealed approximation implies
substituting the elements i, j of the matrices a[α,β] with their average value πiα,jβ given
by Eq. (10.83) in the multilayer configuration model obtaining

a[α,β]
i,j → πiα,jβ = k[α,β]

i k[β,α]
j〈

k[β,α]
〉 . (13.22)
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Therefore, starting from the mean-field equation in continuous time Eq. (13.18), in the
heterogeneous mean-field approximation we obtain the dynamical equations [271]

dρk,α

dt
= −ρk,α + (1 − ρk,α)

M∑
β=1

∑
k′

β

λ[α,β]P(k′, β)
k[α,β]k′[β,α]〈

k[β,α]
〉 xαβρk′,β , (13.23)

where xαβ = 0 when
〈
k[β,α]

〉 = 0, and otherwise xαβ = 1. This equation is always consistent
with an epidemic-free phase ρk,α(t)= 0 for every t and every k, α. By linearizing
Eq. (13.23) close to this trivial solution for ρk,α 
 1 the conditions for the onset of
the endemic phase ρk,α �= 0 can be found. This equation reads

dρ

dt
= −ρ + Cρ, (13.24)

where C is a matrix formed by M × M blocks C[α,β] of elements

C[α,β]
k,k̃

= λ[αβ] k[α,β]k̃[β,α]〈
k[α,β]

〉 xα,βP(k̃, β). (13.25)

Eq. (13.24) allows us to study the stability of the trivial solution ρk,α = 0 for all values of
k, and α. It is found that this solution is unstable whenever the maximal eigenvalue �m
of C is larger than one, i.e.

�m > 1. (13.26)

Therefore, under the SIS dynamics this describes an endemic state. On the contrary, for

�m ≤ 1 (13.27)

the system will be in the epidemic-free absorbing phase.
Let us now discuss in detail the case in which the multiplex network is formed by two

layers, i.e. M = 2. In this case we have that C has the explicit form

C =
(

C[1,1] C[1,2]

C[2,1] C[2,2]

)
, (13.28)

where C[α,β] are matrices of elements given by Eq. (13.25). In this case the onset of the
endemic phase, when the maximal eigenvalue �m of C is given by

�m = 1, (13.29)
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is achieved when the infection rates λ[α,β] satisfy [55]

0 =
[
1 − λ[1,1](κ11 + 1

)] [
1 − λ[2,2](κ22 + 1

)]−
(
λ[1,2]

)2
R̂12, (13.30)

where

R̂12 =
[
λ[1,1]W12K12 + κ12 + 1 − λ[1,1](κ12 + 1

)(
κ11 + 1

)]

×
[
λ[2,2]W21K21 + κ21 + 1 − λ[2,2](κ21 + 1

)(
κ22 + 1

)]
(13.31)

and καβ , Kαβ and Wα,β are given by Eqs (12.32). Indicating with �[α,β] the quantities

�[α,β] =
{

λ[α,α]
(
καα + 1

)
for β = α,√

λ[1,2]λ[2,1]
(
κ12 + 1

)(
κ21 + 1

)
for β �= α.

(13.32)

The annealed mean-field approximation of single layers predicts that the quantities �[α,β]

given by

�[α,β] =
{

λ[α,α](καα + 1) for β = α,√
λ[1,2]λ[2,1](κ12 + 1)(κ21 + 1) for β �= α

(13.33)

determine the epidemic thresholds of layer 1 (�[1,1]), layer 2 (�[2,2]) and the bipartite
network formed exclusively by interlinks (�[1,2]). Specifically, values �[1,1] > 1 and
�[2,2] > 1 ensure that the epidemic is in the endemic phase in the single layers taken
in isolation, and values �[1,2] > 1 ensure that the bipartite network formed exclusively by
the interlinks is in the endemic phase.

It turns out that �m determining the epidemic threshold of the multilayer network is
always larger than the maximum of �[1,1], �[2,2] and �[1,2], i.e.

�m ≥ max
(
�[1,1], �[2,2], �[1,2]

)
. (13.34)

Therefore, also in the heterogeneous mean-field approximation we obtain that the
epidemic spreading on a multilayer network might become endemic for infection rates,
for which it is impossible to have an endemic state in the single layers taken in isolation.
This case is captured by configurations in which �m > 1, whereas �[1,1] < 1 and
�[2,2] < 1.

The annealed approximation for studying the epidemic spreading on networks can
be extended to multilayer networks with additional degree correlations [271]. To this
end, we can define the probability Pα,β

(
k̃, β|k, α

)
that a link of a node of layer α with

multilayer degrees k = (
k[α,1], k[α,2] . . . k[α,M]

)
connects this node to a node in layer β

with degrees k̃ =
(

k̃[β,1], k̃[β,2] . . . , k̃[β,M]
)

.
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Close to the epidemic threshold, for ρk,α 
 1 the epidemic spreading is described
also in this case by the linear equation

dρ

dt
= −ρ + Cρ, (13.35)

whereas the expression for the elements of the matrix C[α,β] is no longer given by Eq.
(13.25) but instead by

C[α,β]
k,k̃

= λ[α,β]k[α,β]Pα,β(k̃, β|k, α). (13.36)

Therefore, in this way it is possible also to explore the epidemic spreading in multilayer
networks whose single networks describing the interactions between nodes of different
layers and between nodes of the same layer display degree correlations.

13.2.6 Interplay between structure and dynamics

Both the individual mean field and the annealed network approximations reveal a strong
interplay between the structure of multilayer networks and the SIS dynamics which goes
beyond the insights gained by characterizing the epidemic spreading in single layers.

Probably the most significant result [271, 82, 87] is that the SIS epidemic can spread
in multilayer networks even if it cannot spread in the single layers that form the multilayer
structures when they are taken in isolation. This is a natural effect of the increased
interconnectedness of the system. Moreover, the epidemic spreading on a multilayer
network is not equivalent to the epidemic spreading in a random single network because
of the multilayer nature of the interconnections which impact on the dynamical behaviour
of the SIS model. This effect is revealed in a duplex network by the fact that the epidemic
process displays a local maximum of the susceptibility when the infectivity is given by
the critical epidemic threshold of the layer that is more resistant to the spread of the
epidemics when taken in isolation (see Fig. 13.2 from Ref. [87]). This implies that the
epidemic, although it spreads in the entire duplex network even before reaching this value
of the infectivity, when it reaches this value of the infectivity becomes suddenly much
more invasive. Therefore, this is a sign that the dynamical process is somehow aware of
the multilayer nature of the network.

Along a similar direction, it has also been observed in Ref. [87] that in the case of
one-to-one multilayer networks with three layers it is possible to observe three peaks in
the susceptibility. Interestingly, the positions of these peaks depend on how the interlinks
are placed and how the corresponding network of networks is structured. For instance,
in the case of multilayer networks with M = 3 layers the susceptibility function has a
different profile if the supernetwork is a line in which the three layers are placed in a
different order and/or if the supernetwork is a triangle (see Fig. 13.3).

Additionally, in general multilayer network structures where the degree distribution
of interlinks is arbitrary, one observes important effects of the intralayer and interlayer
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Fig. 13.3 Schematic illustration of the three multilayer network cases considered as examples.Top panels
represent the original networks which give rise to three distinct configurations for the networks of layers.
Reprinted from Ref. [87].

degree correlations [271]. These effects are made explicit by the result of the annealed
mean-field calculations and are clearly apparent, for instance, from Eq. (13.30), which
depends explicitly on the correlations between the degrees within each layer and across
different layers for a multilayer with M = 2 layers.

13.3 SIR model

13.3.1 General remarks

Epidemic spreading in multilayer networks can include cases in which the infected nodes
either die or become immune to the infection. This case is treated using the framework
of the Susceptible-Infected-Removed (SIR) model. In this framework nodes can be in
three possible dynamical states: susceptible nodes that can become infected when a
neighbour node is infected, infected nodes that can spread the epidemics but become
removed at a constant rate and removed nodes that cannot spread the infection but
cannot be infected either. The dynamics of the SIR model is obviously different from
the dynamics of the SIS model. In fact, an epidemic that obeys the SIR dynamics always
dies out asymptotically in time and the number of infected nodes is zero for sufficiently
long times. On the contrary, an epidemic obeying the SIS dynamics can result in an
endemic stationary state with a constant average number of infected individuals. Despite
this major difference, both the SIR and the SIS dynamics display a phase transition.
In fact, for sufficiently small infection rates (i.e. infection rates below the epidemic
threshold) both the SIS and SIR epidemics might describe an epidemic affecting only
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an infinitesimal fraction of the nodes of the network, while for infection rates above the
epidemic threshold the epidemics will affect a finite fraction of nodes of the network.

From the analytical point of view, the SIR model not allowing infected nodes to
become susceptible again is much easier to treat than the SIS model, since it can be
mapped to a bond percolation problem. Specifically, while the SIS does not have an
exact solution that can be expressed in a closed analytical form, the SIR dynamics is fully
determined by the exact solution available for bond percolation as long as the network is
locally tree-like. This technical advantage of the SIR model allows us to establish results
without making use of the mean-field approximation.

The literature on the SIR model has been mostly exploring the SIR dynamics on a
multiplex network without explicit use of interlinks where all the corresponding replica
nodes share the same dynamical state [69, 315]. Only recently, the SIR has been studied
on general multilayer networks where every replica node can be in a different dynamical
state [43]. Here we will review the major results obtained so far and we will discuss the
rich interplay between the multilayer network structure and the dynamical properties of
the SIR epidemic spreading.

13.3.2 SIR dynamics in multiplex networks

Definition

Let us assume that every node i of a multiplex network can be in a single dynamical
state, being either susceptible (indicated with Si), infected (indicated with Ii) or removed
(indicated with Ri). Additionally, we assume that the epidemic spreading can occur at
different rates depending on the layers across which the epidemics spread. For instance,
in the context of rumour spreading in social networks the rate at which the infection
spreads on Facebook can be different from the rate at which it spreads on Twitter.
Moreover, in the presence of multiplex networks with link overlap we might assume
that an infected neighbour that is both neighbour in Twitter and Facebook has a higher
chance of infecting a node than a neighbour connected just on one of the online social
platforms. Therefore, we will assume that a node i in the susceptible state Si connected
to a node j in the infected state Ij by a non-trivial multilink �mij is infected with rate
ξ �mij , i.e.

Si + Ij
ξ

�mij−−→ Ii + Ij . (13.37)

Moreover, each node i in the infected state Ii becomes removed with rate μ, i.e.

Ii
μ−→ Ri . (13.38)

Theoretical predictions

The disease transmissibility T �m across a multilink �m indicates the probability that an
infected node transmits the infection to a neighbour node connected by a multilink �m
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during its infection period. The transmissibility T �m is determined by the infection rate

λ �m = ξ �m

μ
.

The relation between T �m and λ �m can be derived by the stochastic properties of the
epidemic spreading along the same lines as the corresponding calculations performed
in a single layer (see Sec. 3.4.5) and is given by

T �m = λ �m

1 + λ �m . (13.39)

Alternative expressions of the transmissibility can also be considered in the case in which
the lifetime of an infected individual is fixed (see Sec. 3.4.5). In a multiplex network of
N nodes and M layers with given multiplex degree distribution P(k), there is no overlap.
Therefore, in this case the infection probabilities ξ �m only depend on the single layer α

establishing the connection between two nodes, and will be indicated with ξ [α]. It follows
that the transmissibilities to be considered are T [α], expressing the probability that the
infection spreads along a link of type α. The transmissibilities T [α] are given by

T [α] = λ[α]

1 + λ[α] (13.40)

where

λ[α] = ξ [α]

μ
.

These multiplex networks are also typically tree-like, and therefore in this case the SIR
dynamics admits an exact solution thanks to the possibility of performing a mapping
between SIR dynamics and the bond percolation model on a network.

The prevalence of the SIR epidemic S in the multiplex network is the fraction of
removed individuals at the end of the epidemic and it is equal to the fraction of nodes
in the giant component of the multiplex network when links in the generic layer α are
randomly damaged with probability f [α] = (1 − T [α]). Therefore, using the techniques
developed for describing percolation in a locally tree-like multiplex network without link
overlap (see Sec. 12.2.2), we obtain that the SIR equation for the fraction S of nodes
infected by the disease and removed at the end of the epidemics is given by

S =
[

1 −
∑

k

P(k)

M∏
α=1

(
1 − T [α]S′

α

)k[α]
]

. (13.41)

Here S′
α indicates the probability that by following a link we reach a node that has been

infected at some point in time, satisfying
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S′
α =

⎡
⎣1 −

∑
k

k[α]〈
k[α]
〉P(k)

M∏
γ=1

(
1 − T [γ ]S′

γ

)k[γ ]−δ(γ ,α)

⎤
⎦ (13.42)

where δ(α, γ ) indicates the Kronecker delta. The SIR epidemic spreading describes an
epidemic outbreak when the fraction of removed nodes at the end of the epidemic is
not vanishing, i.e. S > 0. Therefore, following the same derivation as in Sec. 12.2.2 it is
possible to show that the epidemic outbreak occurs for

1
2

[
T [1]κ1 + T [2]κ2 +

√(
T [1]κ1 − T [2]κ2

)2 + 4T [1]T [2]K1K2

]
> 1, (13.43)

where κα and Kα are given by Eqs (12.15). From Eqs (13.43) it is possible to deduce the
phase diagram of the SIR epidemics in multiplex networks. Interestingly, as happens for
the classical percolation, the phase diagram of the SIR epidemic spreading on multiplex
networks depends strongly on the degree correlations between the degree of each node
in different layers.

The SIR dynamics has been extended in Ref. [69] to duplex networks having only
partial coupling of the replica nodes. Additionally, the role of immunization strategies of
the nodes has been addressed in Ref. [315] (see Appendix F).

We note here that the more general case of the SIR dynamics spreading on a multiplex
network with link overlap can be treated along similar lines using the mapping to bond
percolation in multiplex networks with link overlap as treated in Sec. 12.2.2.

13.3.3 SIR dynamics in general multilayer networks

Definition

The SIR dynamics can also be defined on general multilayer networks, including an
arbitrary number of interlinks among nodes of different layers. In this case, each node
(i, α) has a different dynamical state and can be either susceptible (indicated with
Siα), infected (indicated with Iiα) or removed (indicated with Riα). In this framework
a susceptible node (i, α) connected to an infected node (j, β) gets the infection with
rate ξ [α,β]

Siα + Ijβ
ξ [α,β]

−−−→ Iiα + Ijβ ; (13.44)

moreover, an infected node (i, α) becomes removed with rate μ, i.e.

Iiα
μ−→ Riα. (13.45)

Theoretical predictions

The analysis of the SIR model on multilayer networks can be performed by mapping the
epidemic spreading to bond percolation on multilayer networks treated in Sec. 12.2.3,
and can be solved exactly as long as the network is locally tree-like. The SIR dynamics on
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multilayer networks reveals very strong effects of the degree correlations on the epidemic
spreading.

By directly extending the results obtained in Sec. 3.4.5 for single layers it can be shown
that the transmissibility T [α,β] indicating the probability that the SIR epidemic spreads
from an infected node in layer β to a susceptible node in layer α during the full duration
of the epidemic, is given by

T [α,β] = λ[α,β]

1 + λ[α,β] , (13.46)

where λ[α,β] = ξ [α,β]/μ. By performing the mapping to bond percolation on multilayer
networks the probability Sα that a generic node (i, α) of layer α is removed at the end of
the SIR epidemics is given by

Sα = 1 −
∑

k

Pα(k)

M∏
γ=1

(
1 − T [γ ,α]S′

γα

)k[α,γ ]

, (13.47)

where S′
α,β satisfy the following set of equations

S′
αβ = xαβ

⎡
⎣1 −

∑
k

k[α,β]〈
k[α,β]

〉Pα(k)

M∏
γ=1

(
1 − T [γ ,α]S′

γα

)k[α,γ ]−δ(γ ,β)

⎤
⎦. (13.48)

Here xαβ is given by Eq. (12.24) and the same conventions used in Sec. 12.2.3 hold.
Finally, the fraction S of nodes affected by the epidemic is given by

S = 1
M

M∑
α=1

Sα. (13.49)

Equations (13.47) and (13.48) are the same equations determining the classical bond
percolation in multilayer networks (see Sec. 12.2.3). Therefore, under the same con-
ditions in which the bond percolation has a giant component, the SIR dynamics give
rise to an epidemic outbreak involving a finite fraction of the nodes of the multilayer
network.

Let us now consider the possible scenario occurring in the case of a multilayer network
formed by two layers, M = 2.

• Only interlayer connectivity. For the case in which only the links within each layer
exist, the epidemic threshold λ[α,α] for each separate layer α is the one of the single
layer taken in isolation [225, 106, 223], i.e.

λ[α,α] =
〈
k[α,α]

〉
〈
(k[α,α])2

〉− 2
〈
k[α,α]

〉 . (13.50)



298 Epidemic Spreading

• Only intralayer connectivity. For the case in which only the interlinks exist, the
epidemic threshold is the one of a bipartite network and reads [223],

λ[1,2] = 1√
κ12κ21 − 1

, (13.51)

(13.52)

where κ12 and κ21 are given by Eq. (12.32).

• Both interlayer and intralayer connectivity. In general, we obtain that the SIR
epidemic threshold satisfies [43]

λ[1,2] =
√
Q√

R12 − √
Q

, (13.53)

as long as

λ[α,α]

1 + λ[α,α] καα ≤ 1. (13.54)

In Eq. (13.53) the quantities Q and R12 are given

Q =
(

1 − λ[1,1]

1 + λ[1,1] κ11

)(
1 − λ[2,2]

1 + λ[2,2] κ22

)
,

R12 =
(

λ[1,1]

1 + λ[1,1]W12K12 + κ12 − λ[1,1]

1 + λ[1,1] κ12κ11

)

×
(

λ[2,2]

1 + λ[2,2]W21K21 + κ21 − λ[2,2]

1 + λ[2,2] κ21κ22

)
, (13.55)

with καβ and Wαβ given by Eq. (12.32) and indicating second moments of interdegrees
and intradegrees and their correlations. The term R12 depends on W12,W21 and
K12,K21 that evaluate the (normalized) correlations between the interlayer degree and
the intralayer degree. As a consequence, the epidemic thresholds given by Eq. (13.53)

are not only strongly dependent on the presence of broad interdegree and intradegree
distributions but they are also significantly affected by the correlations between the
interdegrees and the intradegrees.

In Fig. 13.4 the epidemic threshold η = η(λ) is shown for a multilayer network with
M = 2 layers, where λ indicates the intralayer infectivity λ = λ[1,1] = λ[2,2] and η indicates
the interlayer infectivity η = λ[1,2] = λ[2,1]. The multilayer network considered in this
figure has Poisson interlayer and intralayer degree distribution but tunable correlations
between interlayer and intralayer degrees. This figure provides evidence that positive
correlations between interlayer and intralayer degrees favour the spread of the SIR
epidemics.
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Fig. 13.4 Epidemic threshold for Maximally Correlated (MC), Maximally Anti-correlated (MA) or
Uncorrelated (UC) interdegree and intradegree sequences. The multilayer networks have two layers (i.e.
M = 2) with identical interlayer degree sequences and intralayer degree sequences drawn from a Poisson
distribution with average degree c = 3. The network size is N = 104 nodes. Adapted from Ref. [43].

Numerical results in single multilayer networks

Multiplexity changes significantly the properties of the SIR epidemic spreading. In
particular, we observe the same qualitative phenomenon observed for the SIS dynamics:
mainly that the SIR epidemic can spread also if the single layers cannot sustain the
epidemic when taken in isolation.

To this end, in Ref. [43] the SIR epidemic has been simulated for two different
multilayer networks, with two layers (M = 2) obtaining very good agreement.

In the first case, (see panel (a) Fig. 13.5) the intralayer degree distribution is Poisson
with average degree one, while the interlayer degree distribution is Poisson with average
degree two. The intralayer infectivity λ = λ[1,1] = λ[2,2] is set at a constant value λ = 0.5
and the average size of the epidemic outbreak is measured as a function of the interlayer
infectivity η = λ[1,2] = λ[2,1]. For these parameter values the single layer cannot sustain
the epidemic. Nevertheless, as η increases the multilayer network is affected by global
epidemic outbreaks, i.e. S > 0.

In the second case (see panel (b) Fig. 13.5), the multilayer network includes only
interlinks across the two layers. One layer has a very skewed scale-free interdegree
distribution (power-law distribution with exponent γ = 2.1), the other layer has a Poisson
interdegree distribution with an average smaller than one. Here also it is possible to
observe epidemic outbreaks, i.e. S > 0, as a function of η = λ[1,2] = λ[2,1]. We notice that
this occurs even if the average interdegree of one layer is Poisson with average degree
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Fig. 13.5 Size of the average epidemic outbreak S as function of η = λ[1,2] = λ[2,1]. In panel (a) we show
the case of a multilayer with Poisson intradegree and interdegree distribution with respectively average
degrees one and two. In this case λ = λ[1,1] = λ[2,2] = 0.5. In panel (b) we show the case of a multilayer
network including only interlinks. The interdegree distribution is scale-free with exponent γ = 2.1 for
one layer and Poisson for the other layer. The average interdegree is below one,

〈
k[1,2]

〉 = 〈
k[2,1]

〉 = 0.9.
The number of nodes in both layers is N = 104 for both panel (a) and panel (b). The simulation results
are averaged over 100 runs. Reprinted from Ref. [43] ©SISSA Medialab Srl. Reproduced by permission
of IOP Publishing. All rights reserved.

smaller than one, because the interdegree distribution of the other layer is sufficiently
broad.

In both cases, the simulations of the SIR epidemic spreading match very well the
predictions obtained by solving the corresponding bond percolation problem using the
message-passing technique. Note that S indicates the average size of the epidemic out-
break, therefore events that do not span a finite fraction of the network are disregarded,
as these might correspond to epidemics starting from small connected components of
the multilayer network.

13.3.4 Other results on the SIR model

Among the important literature on the SIR model on multiplex and multilayer networks,
here we cite some highlights which unfortunately, due to space limitations we cannot
cover in more detail. In Ref. [315] (discussed in more detail in Appendix F) the impact
of different immunization strategies is studied in the context of the SIR dynamics on
multiplex networks. In Ref. [69] the SIR epidemic spreading on a multiplex network
is studied as a function of the heterogeneous coupling between the layers. Specifically,
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the Authors consider a duplex network in which only a fraction q of nodes are present
in both layers and determine the epidemic threshold as a function of q. In Ref. [322]
the Authors provide an analytical characterization of the SIR epidemic spreading
on multiplex networks with non-negligable clustering coefficient. In particular, they
consider a multiplex network ensemble in which each node belongs to a given number of
triangles and has a given degree. These networks are known to be locally tree-like at the
level of triangles, therefore it is possible to treat them by a generalization of the generating
function formalism valid for locally tree-like multiplex networks.

13.4 Interplay between awareness and epidemic spreading

The multiplex network scenario where individuals are connected by links of different
types and can communicate via different types of interactions is ideal for exploring
the effect that the awareness of a certain epidemic can have on the spread of the
epidemic itself [305, 140, 139]. Specifically, in social networks we can distinguish
between the network of physical contacts in which the epidemic spreads, and the network
of virtual interactions such as the one provided by online social networks or even the
network of email contacts where information about the disease spreads, changing the
agent’s risk perception and triggering adaptive behaviour affecting epidemic-spreading
predictions. The multiplex networks allow us now to tackle, in a stylized but realistic
scenario, the consequences of the coupled dynamics involving on the one side the
spread of the disease itself and on the other the spreading of the awareness of the
epidemics.

In Ref. [140] a duplex network formed by the physical contact layer and the virtual
contact layer has been considered. On the physical contact layer the disease spreading
takes place and it is modelled by a Susceptible–Infected–Susceptible (SIS) type of
dynamics. On the virtual layer, the spreading of the awareness is taking place and it
is modelled by an Unaware–Aware–Unaware (UAU) type of dynamics (see Fig. 13.6).

In the virtual layer, unaware (U) individuals are not informed about the disease and do
not take preventing measures, while aware (A) individuals do take preventive measures,
reducing their probability of becoming infected. An unaware individual becomes aware
either if it is infected or if a neighbour node is aware and with rate λ informs the
unaware individual. Moreover, the model assumes that the aware individuals will forget
the awareness and become unaware at rate δ.

In the physical layer the individuals will be either susceptible (S) or infected (I).
The diseases will spread with a dynamics of the type SIS. Susceptible individuals can
become infected if they have at least one infected neighbour node. Infected individuals
will become susceptible with constant rate μ. Nevertheless, the transition rate between
the susceptible and the infected state will change for aware or unaware individuals. In
particular, a susceptible unaware individual in contact with an infected individual will
become infected at rate β, while a susceptible aware individual in a similar situation will
become infected only at rate βγ with γ < 1. In other words, the aware individual will
have a reduced probability of being infected by a neighbour node (see Fig. 13.7).
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Fig. 13.6 Sketch of the multiplex network for the study of the simultaneous spreading of an epidemic and
the awareness behaviour.The multiplex network comprises a virtual contact network where the awareness
behaviour spreads according to an Unaware–Aware–Unaware (UAU) dynamics and a physical contact
network where the Susceptible–Infected–Susceptible (SIS) epidemic spreading takes place.Reprinted figure
with permission from [140] ©2013 by the American Physical Society.
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Fig. 13.7 Transition probability trees for the states (a) AI, (b) US and (c) AS, of the UAU-SIS dynamics
in the multiplex per time step. The notation is (AI) Aware–Infected, (AS) Aware–Susceptible, (UI)
Unaware–Infected, (US) Unaware–Susceptible. Reprinted figure with permission from [140] ©2013 by
the American Physical Society.

In Refs [140, 139] the Authors have studied this model using a Microscopic Markov
Chain Approximation (MMCA) which is essentially the individual mean-field approx-
imation in discrete time discussed in Sec. 13.2.4. In this approximation, the dynamics
is described by the temporal evolution of the probabilities pAS

i , pAI
i , pUS

i that node i is
respectively in the aware-susceptible, aware-infected or unaware-susceptible state.

By indicating as ri(t), qA
i (t) and qU

i (t) respectively the probability that a node i is not
informed by its neighbour, the probability that an aware individual is not infected by
any neighbour and the probability that an unaware individual is not infected by any
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neighbour, assuming the absence of dynamical correlations (mean-field assumption)
we have

ri(t) =
∏

j

[
1 − a[1]

ij

(
pAS

j + pAI
j

)
λ
]

,

qA
i (t) =

∏
j

[
1 − a[2]

ij pAI
j βγ

]
,

qU
i (t) =

∏
j

[
1 − a[2]

ij pAI
j β
]

, (13.56)

where a[1] is the adjacency matrix of layer one (virtual layer ) and a[2] is the adjacency
matrix of layer 2 (physical layer).

The resulting transition trees determining the MMCA are shown in Fig. 13.7.
The dynamical equations for the probabilities pAS

i , pAI
i , pUS

i in discrete time are
therefore given by

pUS
i (t + 1) = pAI

i (t)δμ + pUS
i (t)ri(t)qU

i + pAS
i δqU

i (t)

pAS
i (t + 1) = pAI

i (t)(1 − δ)μ + pUS
i

[
1 − ri

(
t
)]

qA
i (t) + pAS

i (t)(1 − δ)qA
i (t)

pAI
i (t + 1) = pAS

i (t)(1 − μ) + pUS
i

{[
1 − ri(t)

] [
1 − qA

i (t)
]

+ ri(t)
[
1 − qU

i (t)
]}

pAS
i (t)

{
δ
[
1 − qU

i (t)
]

+ (1 − δ)
[

1 − qA
i (t)
]]}

. (13.57)

This system of equations characterizes the onset of the disease epidemics. To this end,
it is possible to study the stationary-state solution characterized by having pAS

i (t + 1) =
pAS

i (t) = pAS
i and equivalently pUS

i (t + 1) = pUS
i (t) = pUS

i and pAI
i (t + 1) = pAI

i (t) = pAI
i

close to the epidemic threshold of the SIS dynamics. In particular, we assume that

pAI
i = εi 
 1. (13.58)

In this limit we have also

qA
i = 1 − β

∑
j

a[2]
ij εj ,

qU
i = 1 − βγ

∑
j

a[2]
ij εj . (13.59)

By inserting these expressions and neglecting higher-order terms in ε, the linearized
Eqs (13.57) read

pUS
i = pUS

i ri + pAS
i δ

pAS
i = pUS

i (1 − ri) + pAS
i (1 − δ)

μεi = β
(

pAS
i γ + pUS

i

)∑
j

a[2]
ij εj . (13.60)
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Fig. 13.8 Dependence of the onset of the epidemics βc as a function of λ for different values of the recovery
rates δ and μ for a duplex network composed of a scale-free network of N = 103 nodes and exponent
2.5 in the physical contact layer where SIS dynamics takes place, and the same scale-free network of the
physical layer plus 400 extra random links (non-overlapping with previous) in the virtual layer, where
Aware–Unaware dynamics works.The shaded rectangle shows the free phase (in which all individuals are
Unaware and Healthy) when the layers are uncoupled. The boundaries are defined by the bound of the
structural characteristics of each layer: 1/�(a[1]) and 1/�(a[2]). Reprinted figure with permission from
[140] ©2013 by the American Physical Society.

Since pAI
i 
 1 we have pAS

i + pUS
i � 1, and the epidemic spreading in the physical layer

close to the epidemic threshold is described by the following equations for pAI
i = εi

μ

β
εi =

∑
j

Hijεj , (13.61)

where

Hij =
[
1 − (1 − γ )pA

i

]
a[2]

ij . (13.62)

Therefore, the value of the infection rate β = βc determining the onset of the epidemic
threshold is given by

βc = μ

�(H)
, (13.63)
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where �(H) is the maximal eigenvalue of the matrix H of elements Hij given by
Eq. (13.62).

The phase diagram of this coupled UAU and SIS dynamics on the duplex network
formed by the virtual layer and the physical layer is shown in Fig. 13.8. Here it is
shown that the epidemic threshold βc in the physical layer is independent of the rate
of spreading of the awareness λ for small values of λ. Nevertheless, there is a certain
point in the phase diagram (βc, λ), called by Granell et al. a meta-critical point, where
the dynamics in the awareness of the disease in the virtual layer can contain and delay
the spreading of the disease in the physical layer. This point, depending on the values
of δ, μ can be found in a rectangular region of the phase space (λ, β) bounded by the
points (0, 0), (0, 1/�(a[1]))(1/�(a[2]), 0) indicated in the Fig. 13.8 as a shaded area. Here
�(a[α]) indicates the largest eigenvalue of the matrix a[1].

13.5 Competing epidemic spreading on multiplex
networks

Characterizing multiple viral spreadings within a single population is a theoretical
problem relevant not only for biological pathogens but also for the diffusion of memes
and adoption of behaviour. In the context of single layers, modelling the diffusion of
two competing viruses has been shown to give rise to a very rich phenomenology [167].
Nevertheless, it is often the case that two competing viruses do not propagate on the same
network, but instead take distinct transmission routes, as for example the case of airborne
diseases and blood-borne diseases propagating in the two layers of a duplex network
without interlinks. In Ref. [268] the Authors have addressed this model by formulating
and solving the Markov Chain approach combined with a mean-field approximation,
the SI1SI2S model. This model is a generalization of the SIS model in the presence of
two distinct diseases. An agent can be in fact either susceptible (S) or infected by virus
1 (I1) or virus 2 (I2). If a node is susceptible it can either be infected by virus 1 (with
infection rate β1) or virus 2 (with infection rate β2). A node infected by virus 1 (virus 2)
can be cured and become susceptible with rate μ1 (μ2). If a node is already infected by
virus 1 (virus 2) it cannot be also infected by virus 2 (virus 1). The Authors characterize
the phase diagram of the model comprising four regions of the parameter space (τ1, τ2)
where τ1 = β1/μ1 and τ2 = β2/μ2. The phase diagram shown in Fig. 13.9 comprises
four regions:

- in region N none of the viruses are endemic;

- in region I only virus 1 is endemic;

- in region II only virus 2 is endemic;

- in region III both viruses are endemic.

In Ref. [268] these theoretical predictions are compared with the numerical results,
finding good agreement.
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Fig. 13.9 Phase diagram in the SI1I2S dynamics in a duplex network. Four possible scenarios appear:
extinction region (N) where both viruses die-out, mutual extinction region I, where virus 1 survives and
virus 2 dies out, mutual extinction region II, where only virus 2 survives and virus 1 dies out, and finally
the coexistence region III, where both viruses survive and persist in the population. Reprinted figure with
permission from [268]©2014 by the American Physical Society.

13.6 Epidemic spreading on multi-slice temporal networks

Recently, a novel approach based on the individual mean-field approximation has pro-
vided an analytical computation of the epidemic threshold on temporal networks [296].

This work addresses the challenging question characterizing the epidemics evolving
over timescales that are comparable with the network temporal dynamics.

In fact, the more traditional approaches to studying the epidemic threshold on
complex networks usually consider only the two limiting cases of annealed networks and
quenched networks. An annealed network is a network that evolves on a timescale that
is fast compared with the evolution of the dynamical process. A quenched network is a
network that instead evolves over much longer timescales than the ones of the dynamical
process.

The approach proposed in Ref. [296] allows us instead to characterize the epidemics
in realistic cases where the temporal networks are bursty or have characteristic temporal
trends like the interactions of school children. Specifically, the Authors focus on the
properties of the Susceptible–Infected–Susceptible (SIS) dynamics.

The temporal network is described by a sequence of N × N adjacency matrices
a[t] describing the interactions between the N nodes of the network i = 1, 2, . . . , N
taking place at time t. A susceptible individual can become infected if a neighbour
node is infected and the infection takes place in that case with probability λ (infec-
tion rate). An infected individual can become susceptible with probability μ at any
given time.
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The individual mean-field approximation describes the epidemic-spreading dynamics
in terms of the probability pi,t that node i is infected at time t. Taking a mean-
field approximation, i.e. assuming the absence of dynamical correlations, the equations
determining the spread of the disease are

pit = 1 −
N∑

j=1

(
1 − [M(t − 1)]ijpj(t−1)

)
(13.64)

where the matrices M(t) have elements

[M(t)]ij = (1 − μ)δij + λa[t]
ij . (13.65)

Eq. (13.64) always has the trivial solution pi,t = 0 for every node i and time t. Neverthe-
less, for sufficiently high infection rates this solution becomes unstable. The stability of
the trivial solution can be studied by linearizing Eq. (13.64) close to the solution pit = 0.
Therefore, by taking pit 
 1 we obtain

pit =
N∑

j=1

[
M
(
t − 1

)]
ijpj(t−1). (13.66)

Considering a time-window [0, T] and solving Eqs (13.66) recursively, we get

piT =
N∑

j=1

Pijpj0 (13.67)

where the matrix P is given by the product of the matrices M(t), i.e.

P =
∏
t′<T

M(t′) =
∏
t′<T

[
(1 − μ)I + λa[t′]

]
. (13.68)

By imposing periodic boundary conditions piT = pi0 it is possible to close the equations
obtaining

piT =
N∑

j=1

PijpjT , (13.69)

finding that the epidemic threshold, when the trivial solution becomes unstable, is
determined by the maximal eigenvalue �P of the matrix P. Specifically, it is determined
by the equation

�P = 1. (13.70)
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Interestingly, from this expression it is possible to derive the expression of the
epidemic spreading both in the quenched and in the annealed network approximations.
In the quenched network approximation, the adjacency matrices do not change with
time, i.e.

a[t] = a. (13.71)

Therefore, we have that

P = [(1 − μ) + λa]T (13.72)

and this matrix has maximal eigenvalue �P = 1 when the matrix M = (1 − μ) + λa has
maximal eigenvalue 1. This gives the known quenched results of single-layer networks

λ

μ
= 1

�(a)
(13.73)

where �(a) is the maximal eigenvalue of the adjacency matrix a.
In the annealed approximation it is possible to assume that λ 
 1 and μ 
 1 which

indicates that the dynamics of the epidemic spreading is much slower than the dynamics
of the network. In this approximation it is possible to express P linearly in λ/(1 − μ),
obtaining

Pslow = (1 − μT
) [

1 + λ

1 − μ
â
]

(13.74)

where â =∑t′<t a[t′] is an aggregated, weighted and static representation of the network.
Therefore, by imposing in the annealed approximation that the maximum eigenvalue of
Pslow is one, we get

λ

μ
= T

�(â)
(13.75)

where �(â) is the maximum eigenvalue of the aggregated matrix â.
In Ref. [296] the analytical predictions discussed so far have been validated against

simulations on multi-slice network models on real-world temporal datasets. The analyti-
cal results and the simulation have been found in good agreement in all the studied cases.
The specific value of the epidemic threshold has been shown to change with the number
of slices T of the temporal network, as expected by the theoretical predictions. However,
often a saturation effect is observed for large T when the slices of the temporal network
are aggregated over a longer time-window.



14

Diffusion

14.1 The relevance of diffusion on multilayer networks

Diffusion processes are central in network theory as they guarantee the communication
between nodes of the networks. In the context of multilayer networks a very crucial
question is whether multilayer topology allows for a more efficient network structure,
promoting faster diffusion. For instance, in the context of transportation networks it is
important to extablish whether by increasing the number of layers the diffusion process
speeds up. In this context, it has been shown [133] that not only can increasing the
number of layer be beneficial for the diffusion, but also in some conditions the diffusion
on a multilayer network can be faster than on each of its single layers, a pheonomenon
called super-diffusion. Although this is clearly good news for engineers planning to
design a new transportation infrastructure to speed up the commuting time of the
inhabitants of a city, this result needs to be compared with studies investigating the onset
of congestion states in multilayer networks. Somewhat less intuitively, in this context it
is found that adding new layers in a multilayer network can favour congestion events.
These two results need therefore to be analysed together when, for instance, designing
new transportation infrastructures.

More in general, diffusion on multilayer networks can be characterized by studying
random walks on these structures, which can be designed to optimize navigability on
multilayer networks. This can be achieved by tuning the probability to hop across links
of different layers (with biased random walks) or allowing long jumps in the framework
of the Lévy flight random walk.

While it is generally found that in static multilayer networks the addition of new layers
favours diffusion, in the context of temporal multi-slice networks it is found that the
diffusion is slower than in the aggregated network where the temporal dimension of the
network is disregarded. This phenomenon is due to the fact that the number of time-
respecting paths is typically smaller than the number of paths in the aggregated networks,
and that on temporal networks the random walker can be trapped on nodes that are only
seldom connected with the other nodes of the network.

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001
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14.2 Diffusion on multiplex networks

14.2.1 The general formalism

In order to describe the diffusion within each layer and across different layers of
a multiplex network, it is opportune, as first proposed in Ref. [133], to associate a
dynamical diffusion state x[α]

i (t) with each replica node (i, α) of the multiplex network
with i = 1, 2, . . . , N and α = 1, 2, . . . M and to assume as in Ref. [133] that both intralinks
and interlinks can sustain the diffusion dynamics.

The overall timescale of the diffusion within each layer α (interlayer diffusion) is
determined by the diffusion constant D[α]. Similarly, the diffusion across different layers
(interlayer diffusion) is dictated by the diffusion constants D[α,β] with D[α,β] = D[β,α].
In order to modulate the diffusion across different links of the same layer, a weight w[α]

ij
is associated with each undirected link from the replica node (i, α) to the replica node
(j, α). With this notation, the general diffusion equation in a multiplex network is given
by [133]

dx[α]
i

dt
= D[α]

N∑
j=1

w[α]
ij (x[α]

j − x[α]
i ) +

M∑
β=1

D[α,β](x[β]
i − x[α]

i ), (14.1)

where the first term and the second term on the right-hand side account respectively for
the intralayer and the interlayer diffusion.

The Eq. (14.1) can be written as a general diffusion equation in an (N ·M) dimensional
space, i.e.

dX
dt

= −LX, (14.2)

where L is an (N · M) × (N · M) matrix called the supra-Laplacian matrix and X is an
N · M column vector encoding the dynamical state of each replica node of the multiplex
network. In a multiplex network of M layers the supra-Laplacian matrix L is given by

L =

⎛
⎜⎜⎜⎜⎝

D[1]L[1] 0 . . . 0

0 D[2]L[2] . . . 0
...

...
. . .

...

0 0 . . . D[M]L[M]

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

∑
β �=1 D[1,β]I −D[1,2]I . . . −D[1,M]I

−D[2,1]I
∑

β �=2 D[2,β]I . . . −D[2,M]I
...

...
. . .

...

−D[M,1]I −D[M,2]I . . .
∑

β �=M D[M,β]I

⎞
⎟⎟⎟⎟⎠, (14.3)
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where I indicates the N × N identity matrix and L[α] indicates the Laplacian matrix in
each layer α (whose elements are L[α]

ij = s[α]
i δij − wα

ij , with s[α]
i being the strength of

the replica node (i, α), sαi = ∑
j w[α]

ij . Similarly, the dynamical vector X appearing in
Eq. (14.3) can be written as

X =

⎛
⎜⎜⎜⎜⎜⎝

x[1]

x[2]

...

x[M]

⎞
⎟⎟⎟⎟⎟⎠

(14.4)

where x[α] indicates the N column vector of elements x[α]
i with i = 1, 2 . . . N .

In an undirected multiplex network, where the diffusion constant D[α,β] = D[β,α],
the supra-Laplacian matrix L is symmetric and semi-positive definite. Therefore, its
eigenvalues λn are real and non-negative, i.e. λn ≥ 0 for n = 1, 2, . . . , N · · · M. Here we
assume that the multiplex network, including its interlinks, is connected, i.e. we assume
that from a replica node it is possible to reach any other node by following a combination
of intralinks and interlinks.

Considering the diffusion Eq. (14.2), it is immediate to realize that, like in single
networks, the typical timescale τ of the diffusion in a multiplex network is determined
by the smallest non-zero eigenvalue λ2 also called the algebraic connectivity of the supra-
LaplacianL, as long as there is a significant spectral gap in the supra-Laplacian spectrum.
In this case we have

τ = 1
λ2

. (14.5)

Therefore, we can get physical insights into the diffusion properties of multilayer
networks by studying the dependence of the eigenvalue λ2 as a function of the diffusion
constant for intralayer and interlayer diffusion.

14.2.2 The diffusion regimes

In order to characterize the different diffusion regimes that we can expect in a multiplex
network, let us follow Refs [133, 279] and consider the simple case of a duplex network
(multiplex of M = 2 layers). Additionally, we will assume that the interlayer diffusion
constants are all the same, i.e. D[1,2] = D[2,1] = Dx and that the interlayer diffusion cons-
tants are absorbed by the weights of the single layers. As a consequence of the last
assumption, without loss of generality we can set the interlayer diffusion constant to
one, i.e. D[1] = D[2] = 1.

In these assumptions, we can characterize the diffusion on the duplex network using
Eq. (14.2) with the supra-Laplacian matrix L and the dynamical state vector X given
respectively by
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L =
(

L[1] + DxI −DxI

−DxI L[2] + DxI

)
(14.6)

and by

X =
(

x[1]

x[2]

)
. (14.7)

Let us additionally assume that the duplex network is formed by two connected layers.
In this set-up, diffusion on a multiplex network displays two regimes depending on
the value of the diffusion constant Dx [133] (see Appendix G for a derivation of these
results).

For weak interlayer diffusion constant (Dx � D�
x), λ2 increases linearly with the

interlayer coupling Dx and the typical timescale τ for diffusion scales like

τ = 1
2Dx

. (14.8)

This result implies that in this regime the interlayer diffusion is the limiting value for the
diffusion spreading.

For the strong interlayer diffusion constant (Dx � D�
x), λ2 saturates to a finite value

λ2 = λs
2 where λs is the smallest non-zero eigenvalue of the Laplacian of the aggregated

network given by L[1] + L[2]. The eigenvalue λs of the aggregated Laplacian satisfies

λs

2
≥ λ

[1]
2 + λ

[2]
2

2
≥ min(λ

[1]
2 , λ[2]

2 ), (14.9)

where λ
[α]
2 is the smallest non-zero eigenvalue of the single layer Laplacian L[α].

Therefore, the diffusion on the multiplex network will always be faster than the diffusion
on the slowest layer of the multiplex network. Super diffusion, i.e. the fact that the
timescale of the multiplex network is actually faster than the timescale of diffusion in
every single layer of the multiplex network, is possible but not guaranteed in general. An
upper bound [255] for D�

x can be expressed as

D�
x ≤ 1

4
λs, (14.10)

where λs is the algebraic connectivity λ2 of the Laplacian L[1] + L[2] of the aggregated
network. In Fig. 14.1 the dependence of the eigenvalue λ2 is plotted as a function for Dx
and the two diffusion regimes are clearly visible.

These results can be obtained by performing perturbative expansions in the two limits
Dx � 1 and Dx � 1 (see Appendix G) or by finding the algebraic connectivity λ2 using
the Courant and Fisher theorem by directly solving the minimization problem [255]

λ2(L) = min
v∈V

vTLv. (14.11)
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[1]
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[1]
2 and λ

[2]
2 indicate respectively the Fiedler eigenvalues of the Laplacian of

the first and the second layer.Panel (b) shows the projection of the unit vector on v[1]
2 and v[2]

2 as functions

of Dx. These two projections indicate the sum of all components of v[1]
2 and v[2]

2 respectively. Panel (c)

shows the projection of v[1]
2 on v[2]

2 as a function of Dx.
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Here v is an 2N column vector that can be decomposed to two blocks, i.e.

v =
(

v[1]

v[2]

)
(14.12)

with v[α] associated with the replica nodes in layer α. Further insights on the physical
phenomena occurring when the change of transition is observed have been obtained
in Ref. [255] by characterizing the structure of the Fiedler eigenvector v2 of the supra-
Laplacian matrix, i.e. the eigenvector associated with the eigenvalue λ2.

For weak coupling Dx ≤ D�
x, the eigenvector v2 reveals that the duplex network can

be partitioned into two layers. Indeed, its block components v[1]
2 and v[2]

2 differ only by
an overall change of sign, i.e.

v[1]
2 = −v[2]

2 = − 1√
2N

1, (14.13)

where 1 is the N-dimensional column vector of elements 1i = 1 for all nodes
i = 1, 2, . . . , N .

On the contrary, for strong coupling Dx � D�
x, the block components v[1]

2 and v[2]
2

have the same sign. Thus, in this limit, the strong interlayer coupling does not allow the
partition of the multiplex into two layers (see Fig. 14.1). The transition between the two
regimes at Dx = D�

x is discontinuous.
In Ref. [279], Solé-Ribalta et al. extended these results to the full spectrum of the

supra-Laplacian matrix L, {λ1 = 0, λ2, . . . , λM·N }, and for an arbitrary number M of
layers.

14.3 Random walks on multiplex networks

14.3.1 Walking across the layers

As we navigate a multiplex network, it can be possible to move in different networks. This
is, for example, the situation of multiplex transportation networks across large cities that
include different layers such as metro, bus and regional train networks. In this context,
it is important to characterize the behaviour of random walkers that can jump from one
layer to another one, where the hops of the random walker from one node to another
node in the same layer (the intralayer transitions) can have a different probability from
the transitions between replica nodes in different layers (the interlayer transition). The
path of a random walker exploring a multiplex network composed of N = 7 nodes and
M = 3 layers is illustrated in Fig. 14.2, in which intralayer and interlayer transitions are
shown. This type of random walk was first proposed in Ref. [91].

In this case, the probability piα that the random walker is on the replica node (i, α) at
time t follows
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Fig. 14.2 Path (sequence of arrows) of a random walker navigating a multiplex network composed of
N = 7 nodes and M = 3 layers. In this example, the walker is neither allowed to switch between layer 1
and layer 3 in one time step nor to change node and layer simultaneously.Reprinted figure from Ref. [93].

piα(t + 1) =
∑
j,β

Pjβ,iαpjβ(t) (14.14)

where piα(t) is the probability of finding the walker at time t at the replica node (i, α) and
where Pjβ,iα is the transition probability from the replica node (j, β) to the replica node
(i, α). The transition matrix P is stochastic, i.e. it satisfies

∑
i,α

Pjβ,iα = 1, (14.15)

for every replica node (j, β). We notice that Eq. (14.14) can also be expressed in matrix
form as

p(t) = p(t − 1)P , (14.16)

where p(t) is the N · M row vector of elements piα(t). Given the initial condition p(0)

specifying the probability piα(0) that the random walker at time t = 0 is at the generic
replica node (i, α), the state of the random walk at time t follows

p(t) = p(0)P t. (14.17)

Until now, we have described the diffusion in a general multilayer network considering it
as a larger network formed by N · M distinct replica nodes. Nevertheless, the interest in
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characterizing the behaviour of this random walk relies on the possibility of inferring the
effect that is induced by the fact that the network we are studying is actually a multiplex
network. Therefore, we need to take into account two important points:

(i) First, the transition probabilities Pjβ,iα can and should take into account whether
the transition occurs between replica nodes of the same layer or between replica
nodes of different layers. This will allow us to modulate the interlayer transition
probability with a suitable diffusion parameter. In transportation networks these
parameters indicate the cost of changing the transportation network.

(ii) Secondly, it is important to evaluate the probability πi that the random walk
at time t is on a given node i of the multiplex network. This is given by the
probability that the random walker is on any of the replica nodes (i, α), i.e.

πi(t) =
M∑

α=1

piα(t). (14.18)

As a consequence of (i), care should be given in assigning the values to the transition
probabilities Pjβ,iα, since the different transition probabilities have different mean-
ings for the multiplex network. In particular, for a random walker on the replica
node (i, α)

(a) 
iα,iα is the probability that the walker remains on the replica node (i, α);

(b) 
iα,jα is the probability that the walker hops to the neighbour replica node in
layer α, and specifically the replica node (j, α) (intralayer transition);

(c) 
iα,iβ is the probability that the walker remains at the same node i but hops from
layer α to layer β �= α (interlayer transition);

(d) 
iα,jβ is the probability that the walker jumps to a replica node (j, β) with j �= i
and also β �= α (this last movement is not actually represented in Fig. 14.2).

To be concrete, in the case of a multiplex network, the elements of the supra-transition
matrix can be modulated by the strength of the coupling D[α,β] between distinct layers
α �= β, and the probability q that the random walker does not remain at the same replica
node. Additionally, assuming that the intralayer transition probabilities depend on the
weight {w[α]

ij } of the link between replica nodes (i, α) and (j, α), the generalization of the
classical random walk to a multiplex is obtained by setting


iα,jβ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − q) if α = β, i = j,

qw[α]
ij /σi,α if α = β, i �= j,

qD[α,β]/σi,α if α �= β, i = j,

0 otherwise,

(14.19)
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where σi,α = ∑
j w[α]

ij + ∑
β �=α D[α,β] ensure that P is a stochastic matrix, i.e. it satisfies

Eq. (14.15). This expression can be simplified further by making the typical assumption
q = 1 so that the walker never remains in the same position. Additionally, following the
simplification done for linear diffusion, one can further assume that D[α,β] = Dx ∀α, β
with α �= β.

An important question that was addressed in Ref. [93] is the coverage of the multiplex
network up to time t. In order to characterize this quantity it is necessary to evaluate the
probability χij(t) that the random walker initially at node j is not found at node i up to
time t. This probability is given by

χij(t) =
t∏

τ=1

[
1 − πi(τ )

][
1 − πi(0)

]
. (14.20)

We note here that πi(t) defined in Eq. (14.18) is given by

πi(t) = p(t)ET
i , (14.21)

where ET
i indicates the transpose of the N · M row supra-vector Ei which has all the

elements (i, α) for α = 1, 2, . . . , M equal to one and all the other elements equal to
zero, i.e.

Ei = (ei|ei| . . . |ei) , (14.22)

with ei indicating the i-th canonical N-dimensional vector. By inserting Eq. (14.21) and
the expression for p(t) given by Eq. (14.17) we get

χij(t) = [1 − πi(0)]
t∏

τ=1

[
1 − p(0)Pτ ET

i

]
, (14.23)

where p(0) characterizes the initial condition of the random walk. Without loss of
generality, the initial condition p(0) can be chosen such that the random walker at time
t = 0 is at the replica node (j, 1), i.e.

pi,α(0) = δ(i, j)δ(α, 1), (14.24)

where δ(x, y) indicates the Kronecker delta. Finally, from Eq. (14.23) using the approx-
imation 1 − x � e−x valid for x � 1, we get

χij(t) = [1 − πi(0)] exp

[
−

t∑
τ=1

p(0)Pτ ET

]
. (14.25)

From this expression we can evaluate the coverage of the random walker up to time t. In
fact, since χij(t) indicates the probability that node i has not been visited up to time t, by
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averaging 1 − χij(t) it is possible to obtain the coverage ρ(t) of the random walk up to
time t, i.e.

ρ(t) = 1 − 1
N

∑
i

χij(t). (14.26)

By studying the coverage of the network in the presence of damage (disruption) of nodes,
in Ref. [93] De Domenico et al. have investigated the robustness of the public transport
of London, focusing on three different layers, i.e tube, overground and Docklands Light
Railway. The resulting multiplex network is shown to be more resilient than its single
layers taken in isolation. In fact, the interconnected multiplex network provides sufficient
redundancy to find paths from apparently isolated parts of single layers.

14.3.2 Lévy flight and other searching strategies

The Lévy flights are a special class of random walks in which the random displacements
have a length l following a power-law degree distribution P(l) ∝ l−θ . Lévy flights clearly
generalize random walks that have steps restricted to the nearest neighbours. In fact, for
θ → ∞ the Lévy flights reduce to the standard random walk while for θ = 0 they describe
motion following random jumps of any length. Under very general circumstances,
Lévy flights have been proven to be the most efficient strategy for exploration and
navigation, outperforming the standard random walk (Brownian motion) [302, 174].
Lévy flights are rather common in the foraging of animals [302, 34], in human mobility
[61, 138, 283] and behaviour and in strategies of human mental search [22, 256]. It is
therefore interesting to characterize the properties of Lévy flights in complex networks
[262] and in multilayer networks [145]. Let us first consider the Lévy flight on a single
network. First, we associate with each pair of nodes of the (connected) network i and j
the hopping distance dij . The Lévy flight on a single network has transition probabilities
πij from a node i to a node j determined by the distance dij . Specifically, they will be
given by

πij = d−θ
ij∑

m�=i d−θ
im

. (14.27)

The Lévy flight has been studied in Ref.[262] where it has been shown that the average
time to join any given node of the network from a random initial condition has a minimum
for θ = 0 where the Lévy transition probabilities are independent of the distance between
the nodes and the Lévy flight essentially performs random jumps between the nodes of
the network.

The situation becomes more interesting when the Lévy flight is placed on a multilayer
network [145]. In this case, the Lévy jumps are allowed only between the nodes of the
same layer, while the walker can also remain in its current position or switch to another
layer (see Fig. 14.3). In this case, the transition probabilities 
iα;jβ are taken to be
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3

2
Layer 1 Layer 2 Layer 3

1.-Stay at the node

2.-Jump to other nodes
in the same layer

3.-Switch to its
counterpart node in the
other layer

1

Fig. 14.3 Illustration of the Lévy flight navigation strategy on a multiplex network. Reprinted figure
from Ref. [145].


iα;jβ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
d[α]

ij

)−θ

/σiα if α = β, i �= j

D[α,α]
ii /σiα if α = β, i = j

D[α,β]
ii /σiα if α �= β, i = j

(14.28)

where d[α]
ij is the distance between node i and node j in layer α, and

σi,α =
∑
j �=i

(
d[α]

ij

)−θ +
M∑

β=1

D[α,β]
ii .

When the parameters D[α,β]
ii with α �= β are independent of the node i, i.e. D[α,β]

ii = Dx, the
Authors of Ref. [145] have found that for very small interlayer cost Dx the best strategy to
reach 50% of the nodes in the shortest time is not θ = 0, as for single layers, but a larger
non-zero value of θ . This implies that if the cost of following the interlinks is vanishing,
the random walk can remain localized among the replica nodes if the other Lévy jumps
have a sufficiently small transition probability (such as for the case when θ = 0). Only
when Dx is significantly high are the results on multilayer networks consistent with the
single-layer scenario and the optimal coverage obtained for θ = 0.

14.3.3 Biased random walks

In multiplex networks it is also possible to explore the case in which the interlinks are
absent and the random walk does not move between replica nodes but just hops from
a node to any of its neighbour nodes by following links of different types belonging to
the different layers of the multiplex network. The main research questions of the works
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that address this type of random walk is the optimization of the search strategies and the
coverage of the random walk when the probabilities of hopping across links of different
layers are different. In Ref. [97] a random walker initially on node i has a probability z[α]

of hopping to a neighbour node j connected to node i by a link of layer α. Therefore,
transition probabilities πij from node i to node j are given by

πij =
M∑

α=1

z[α]
a[α]

ij

κ
[α]
i

(14.29)

with κ
[α]
i = max(1,

∑N
r=1 a[α]

ir ) and z[α] normalized, i.e.

M∑
α=1

z[α] = 1. (14.30)

In this type of multiplex random walk the Authors of Ref. [97] have shown that there is
an optimal choice of the probabilities z[α] that minimizes the search time of the random
walk. The specific position of this optimal solution for the probabilities z[α] depends on
the topologies of the layers of the multiplex and on their correlations. In conclusion,
the different coupling strengths between the layers can be optimized to achieve the best
efficiency of the random walk, and this suggests a mechanism to explain the evolutionary
advantage of many natural multilayer networks.

Importantly, very efficient centrality measures for multiplex networks including the
Functional Multiplex PageRank and the MultiRank (discussed in Sec. 9.5) are based on
this biased random walk. In the MultiRank algorithm first the random walk is modified
in the spirit of the PageRank algorithm by introducing a teleportation parameter that
allows random jumps to occur between any pair of nodes. Secondly, the parameters z[α]

of the random walk are interpreted as the influences (centralities) of the layers and the
steady state of the random walk is interpreted as the centrality of the nodes.

In Ref. [31] a biased random walk is studied on multiplex networks where nodes are
connected by different types of links. The biased random walk navigates the multiplex
network by performing a walk that is biased according to the properties of the nodes
indicated by the vector fi with i = 1, 2, . . . N . The biased walk considered in Ref. [31] is
defined on the weighted, aggregated network in which each link has weight νij given by
the multiplicity of the overlap of the link (i, j). Therefore, it has transition probability πij
given by

πij = νij fj∑
m νimfm

. (14.31)

Here it is found that the structural properties of the multiplex networks such as the
number of layers, the link overlap and interlayer degree correlations have significant
impact on the diffusion properties of the random walk.
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14.4 Random walks on multi-slice temporal networks

For multiplex networks it is usually the case that multiplexity favours diffusion, as for
instance it occurs in transportation networks where the addition of new layers allows
a better and faster coverage of the network. When one considers instead multi-slice
networks, the temporal nature of these structures slows down the exploration of a given
random walk as compared to the aggregated network where the temporal nature of the
interaction is disregarded. This effect is due to the fact that actually the random walker
on temporal networks has a reduced number of available possible time-respecting paths.
Time-respecting paths are defined as sequences of nodes Pt = (i1, i2, . . . , in) where
each consecutive node can be reached from the previous one in a temporal sequence
by following links of the temporal network, i.e. if (ir , ir+1) with r = 1, 2, . . . , n − 2 is a
link of time-slice α corresponding to time t = tα, the link (ir+1, ir+2) should be a link of
a time-slice β corresponding to a subsequent time t = tβ > tα. Time-respecting paths
in a multi-slice network are a subset of the paths of the aggregated network. Assume, for
instance, that at time t = 1 the network is formed by the link (2, 3) and at time t = 2
it is formed by the link (1, 2). While the path Paggr = (1, 2, 3) exists in the aggregated
network, this path is not time-respecting because the link (1, 2) is established only after
the link (2, 3). Therefore, it is not possible to send signals in the network between node 1
and node 3. Additionally, in multi-slice networks the random walker can remain trapped
at nodes that are only seldom connected to other nodes of the temporal network.

In Ref. [287] an analysis of the properties of a random walker on real temporal datasets
was performed, analysing the effect of temporal correlations between consecutive
contacts present in the data. Interestingly, in this study it is found that the shortest
time-respecting paths have statistical characteristics which are significantly different
from the fastest time-respecting paths. Indeed, shortest time-respecting paths are not
typically the fastest, as the random walker can remain trapped on some of the nodes for
quite some time.

The model for a temporal network with heterogeneous temporal activity of the nodes
is a very well-defined modelling framework that captures the consequences of having
nodes which are connected in the network more or less frequently. In fact, as discussed
in Sec. 10.5.2 each node i is assigned a temporal activity ai ∈ [0, 1] drawn from the
distribution F(a) and at each time step t it establishes m links with probability ai . In the
framework of this model it is shown [263] that the mean first-passage time indicating
the average time a random walker takes to come back to its origin for the first time is
inversely proportional to the activity of the node. This property of the random walker
on temporal activity-driven networks captures the slowing down of the random walker
observed on real temporal networks.

A very successful way to describe random walks on arbitrary temporal networks relies
on a non-Markovian description of this diffusion process [272, 181]. According to this
non-Markovian random walk the probability of a transition between node i and node j
depends on the past history of the random walk. For instance the most simple example
of non Markovian dynamics assigns a given probability π(�i → ij) to the hop of the
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random walk from node i to node j given the the random walk at the previous step was
hopping between node � and node i.

By extending the treatment of Markovian random walks on temporal networks to non-
Markovian random walks it is possible to observe both a slowing down or a speed up of
the diffusion with respect to its Markovian counterpart [272].

14.5 Traffic and congestion

In transportation networks as well as in technological networks it is essential to monitor
the traffic and to avoid congestion. Traffic and congestion on single networks have been
studied extensively in the literature [299, 142, 113, 95]. Since most transportation and
technological networks are multilayer, it is essential to study the effects of multiplexity
on traffic and congestion transition.

Traffic problems differ from the previously characterized diffusion processes because
the walker does not perform a random exploration of the network but is routed from a
source node to a destination node following a given routing algorithm. The most natural
routing algorithm for traffic problems is the shortest path between the source and the
destination node. On a single network the characterization of the flow passing through
each node (or each link), assuming that each node has equal probability to be a source or
a sink, has prompted network scientists to introduce the betweenness centrality discussed
in Sec. 2.7.6.

In multiplex networks the shortest paths can be distinguished between the paths that
belong to a single network and paths that include links from several network interlinks
connecting replica nodes from different layers (although one might choose to assign a
zero or a non-zero length to interlinks).

In order to characterize how the flow is distributed across the different layers of a
multiplex network in Ref. [217] the Authors introduced the weighted interdependence λ ∈
[0, 1] which is a modification of the interdependence already introduced in Sec. 6.4.1.
The weighted interdependence depends on the traffic and is given by

λ =
∑
i �=j

Tij
ψij

σij
(14.32)

where ψij are the number of shortest paths between node i and node j including links
from different layers, σij is the number of shortest paths between node i and node j and
Tij is the normalized origin–destination matrix determining the fraction of walkers with
source i and destination j. Therefore, the interdependence λ is the fraction of walkers
that use more than one layer.

Other general measures indicating how well the system is operating in normal traffic
conditions (i.e. in the absence of congestion) are the average distance travelled d given by

d =
∑
i �=j

Tijdij (14.33)



Traffic and congestion 323

and the Gini coefficient G. The Gini coefficient G ∈ [0, 1] is a measure used usually in
economics for characterizing the distribution of wealth within a nation. In Ref. [217] it
has been proposed as a good measure to describe the distribution of traffic flow in a
network. When G = 1 all the flow concentrates on a single link, while if all the flow were
spread evenly across all the links G would be zero.

Simulation results on planar multilayer networks [217] show that as the weighted
interdependence increases the average distance travelled decreases, indicating that when
the shortest paths take advantage of the multiplexity of the network the average distance
travelled can be significantly reduced. Nevertheless, for given network topologies it is
possible that as the weighted interdependence increases the Gini coefficient increases,
indicating a higher risk for congestion.

When each node of the network has a finite capacity, i.e. can route only a finite
number of elements at each time, the network can undergo a congestion phase transition.
Congestion occurs when the injection of elements for unit time is above a critical value,
and the nodes start to work at their maximum capacity. In these conditions the elements
are injected into the network at a faster rate than the rate at which they reach the
destination, resulting in a number of elements in transit in the network growing linearly
in time.

Therefore, the order parameter of the congestion is given by [8, 143]

ρ = lim
t→∞

D(t + T) − D(t)
RT

, (14.34)

where D(t) is the number of elements in transit at time t and R is the number of elements
injected at each time. In a non-congested regime with R < Rc the number of elements
in transit is stationary, therefore ρ = 0. On the contrary, in the congested regime with
R ≥ Rc, the elements accumulate in the network and ρ �= 0 measures the normalized
(0 ≥ ρ ≥ 1) increase of elements in transit per unit of time.

In a multiplex network it is possible to observe a cooperative counter-intuitive
phenomenon [280]. Despite the fact that the multiplexity increases the number of paths
in the system, the multiplex network can be more prone to congestion than the single
networks that form its layers. This phenomenon is reminiscent of Braess’s paradox
[259], in which adding an extra link to a single network can reduce the overall network
performance.

The counter-intuitive effect of multiplexity in determining the congestion risk is due
to the non-local nature of the routing algorithm that follows the shortest paths of the
network. In the case in which one layer is more efficient than the other, i.e. has typically
smaller shortest distance between the nodes, the traffic tends to concentrate on a single
layer and, depleting the other layers, increases the risk for congestion [280]. In line with
this work, other papers have characterized the congestion transition on duplex networks
with different degree distributions [323].

In Ref. [292] the effect of degree correlation in determining the congestion threshold
has been investigated. This study shows that in multilayer networks with correlated
degrees using capacity allocation strategies such as attributing to each node a capacity
proportional to its betweenness allows for a higher traffic capacity. We note here that
other routing strategies tailored to multiplex networks have been proposed in Ref. [321].
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Synchronization, Non-linear
Dynamics and Control

15.1 Dynamical systems in multilayer networks

Multilayer network topologies can have an important effect on dynamical systems includ-
ing synchronization dynamics, pattern formation and network control. For example,
in a multiplex network synchronization can occur globally among all the nodes of the
multilayer structures, it can occur within single layers (intra-synchronization) or else
it might occur between replica nodes (inter-synchronization). Additionally, multiplex
networks can allow us to couple different dynamical processes occurring in different
layers. For example, in the brain the neuronal activity is coupled with the flux (diffusion)
of blood in the neuronal cells.

The role of multiplexity on pattern formation can be significant and multiplex
networks can display non-trivial patterns under conditions that are different from the
ones predicted by the analysis of the single layers taken in isolation.

Finally, the control of multilayer networks can be studied in the framework of
structural controllability where there are specific constraints on where the driver nodes
can be placed. For instance, it is possible to assume that in a multiplex network driver
nodes should be corresponding replica nodes belonging to different layers, or instead that
driver nodes can be only replica nodes of a given layer. In most of the cases it is found that
controlling multiplex networks is affected by the built-in correlations between the layers.

Interestingly, it has also been found that purely dynamical systems as multivariate time
series can be investigated by mapping them to multiplex networks, capturing both the
internal correlated dynamics of each single time series and the relations between different
time series.

15.2 Synchronization

15.2.1 Master Stability Function

Synchronization on interacting multilayer networks is of relevance for a number of
applications, ranging from brain research to applications in power-grid engineering,

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001
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international business and communication networks. The Master Stability Function
(MSF) is a major tool for investigating the stability of global synchronization in dynam-
ical systems. As discussed in Sec. 3.6.1, in the context of single networks the Master
Stability Function has been first proposed in Refs [246, 17]. In Ref. [286] Sorrentino
extended this framework to the so-called hypernetworks, characterizing a set of nodes
connected by different types of interaction. Therefore, hypernetworks are effectively
multiplex networks where interlinks are not taken into account. The results obtained
in Ref. [286] concern specifically duplex networks satisfying one of the following three
cases:

(i) the Laplacian matrices associated with the two networks commute;

(ii) one of the two networks is unweighted and fully connected;

(iii) one of the two networks is such that the coupling strength from node i to node j
is a function of j but not of i.

Recently a more general approach using the Master Stability Function to study syn-
chronization in multiplex networks formed by nodes with multiple interactions has been
formulated in Ref. [96]. This approach has since been extended to multiplex networks
where interlinks are explicitly taken into account [293] and to stylized networks of
networks describing ecological foodwebs [58].

In the following three paragraphs we will present in some detail the main results
achieved so far using the Master Stability Function.

15.2.2 Master Stability Function on multiplex networks
without interlinks

In Ref. [96] the Authors study the stability of the fully synchronized state on a multiplex
network in which a given set of nodes interacts through different types of connections.
A typical multiplex network considered in Ref. [96] is shown in Fig. 15.1 where it is
apparent that in this theoretical framework the interlinks are not playing any role. Every
node i of the multiplex network is characterized by a dynamical variable xi ∈ R

d whose
evolution is coupled to the dynamical variables xj ∈ R

d of the nodes j that are connected
to node i in any given layer α. However, the nature of the coupling strongly depends on
the layer in which two nodes are connected.

Given a multiplex network with M layers, the dynamics of the variable xi associated
with node i is assumed to follow

dxi

dt
= f (xi) −

M∑
α=1

σα

N∑
j=1

L[α]
ij H[α](xj

)
. (15.1)

Here f (x) ∈ R
d is a continuous and differentiable function that determines the dynamics

of each node variable in the absence of any coupling with other nodes of the multiplex
network, whereas H[α](x) are layer-specific continuous and differentiable functions
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L(1) L(2)

Fig. 15.1 Schematic representation of a multiplex network formed by two layers M = 2 studied in
Ref. [96]. Every node of the multiplex network can interact with other nodes through multiple types of
interactions here indicated respectively as solid and dashed lines.

determining the functional nature of the interaction in layer α. The parameters σα

modulate the strength of the coupling between connected nodes in any given layer α

and L[α] indicates the Laplacian matrix in layer α with elements

L[α]
ij =

N∑
r=1

w[α]
ir δij − w[α]

ij (15.2)

where w[α]
ij indicates the weight of the interaction between node i and node j in layer α.

We indicate with λ
[α]
i the eigenvalues of the Laplacian L[α] ranked in non-decreasing

order (λ[α]
1 ≤ λ

[α]
2 ≤ λ

[α]
3 ≤ . . . λ

[α]
N ) and with V[α] the corresponding matrix of eigenval-

ues. Since the Laplacians are all zero-sum-row matrices, the system of equations given
by Eq. (15.1) always admits a fully synchronized solution in which all the nodes are in
the same dynamical state, i.e. xi = s ∀i = 1, 2, . . . , N . In order to study the stability of
this solution we linearize the Eqs (15.1) for xi = s + δxi where |δxi| � 1. The resulting
equations for δX = (δx1, δx2, . . . , δxN )T are given by

d (δX)

dt
=

(
I ⊗ Jf (s) −

M∑
α=1

σαL[α] ⊗ JH[α](s)

)
δX (15.3)

where I indicates the identity matrix, ⊗ denotes the Kronecker product and J the
Jacobian operator. This equation can be studied by projecting δX into the basis of
eigenvectors of an arbitrary Laplacian of one of the layers. Let us assume that we choose
layer 1 and let us indicate with ηj for j = 1, 2, . . . , N the vector coefficient of the eigen-
decomposition of δX. The system of Eqs (15.3) reads then
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dηj

dt
=

(
Jf (s) − σ1λ

[1]
j JH1(s)

)
ηj −

M∑
α=2

σα

N∑
n=2

N∑
r=2

λ[α]
r �[α]

rn �
[α]
rj JH[α](s)ηn, (15.4)

where the matrices �[α] indicate

�[α] = V[α]T
V[1], (15.5)

and where we have used the fact that the smallest eigenvalue of each Laplacian is zero.
Additionally, we have assumed that all the networks have a single connected component
so the degeneracy of this eigenvalue is one. This system of equations for the variable
� = (η2, η3, . . . , ηN ) has a dynamics dominated by its largest Lyapunov exponent �, i.e.

� � exp(�t). (15.6)

Therefore, the condition determining the stability of the fully synchronized state

xi = s (15.7)

against small perturbation is

� < 0. (15.8)

Using this theoretical framework for studying a duplex network of Rössler oscillators
of dimension d = 3, the Authors of Ref. [96] have revealed that the multiplex network
can sustain a stable synchronization dynamics not only when both layers in isolation
can sustain a synchronized state but also when only one or when neither of them can
sustain a synchronized state. This finding is a surprising and novel dynamical effect that
multiplexity has on the synchronization properties of coupled networks.

15.2.3 Master Stability Function on multiplex networks
with interlinks

When studying non-linear equations on multiplex networks two different scenarios might
occur: either all corresponding replica nodes have the same dynamical state or every
replica node has a distinct dynamical state. In the first scenario it is not necessary to
associate a particular dynamical role with interlinks, while in the latter interlinks are used
to couple the dynamics across the different layers. In the previous paragraph the Master
Stability Function was applied to a dynamical system on a multiplex network where each
node has the same dynamical state on every layer. In this chapter we will follow Ref. [293]
and treat the case in which every replica node has a distinct dynamics.

Interestingly, in this scenario we might observe three different types of synchroniza-
tion: the complete synchronized state where each replica node is synchronized with
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(a) (b)

Fig. 15.2 Schematic representation of intralayer synchronization (panel (a)) and interlayer synchroniza-
tion in a multiplex network of two layers.

each other replica node of the multiplex network; the intralayer synchronization in
which every replica node is synchronized with every other replica node of the same
layer; and interlayer synchronization where every replica node is synchronized with its
corresponding replica nodes in the other layers (see Fig. 15.2). The stability of each of the
synchronized states mentioned above can be studied using the Master Stability Function.
For instance, in Ref. [293] the Authors have considered a multilayer network of M layers
having replica nodes and a supernetwork with adjacency matrix A. To each replica node
of this multilayer network a d-dimensional dynamical variable x[α]

i has been assigned. In
the absence of interactions the internal dynamics of each replica node is identical and
determined by the set of equations

dx[α]
i

dt
= f (x[α]

i ). (15.9)

Nevertheless, the internal dynamics at each replica node is coupled to its interlayer and
intralayer neighbours according to

dx[α]
i

dt
= f

(
x[α]

i

)
− γ

N∑
j=1

L[α]
ij Hx[α]

j − σ

M∑
β=1

L̂αβ�xβ

i , (15.10)

where γ and σ indicate respectively the coupling strength for nodes within and across
the layers and H and � are d × d matrices describing respectively the inner coupling
functions within and across the layers. Additionally, we have indicated with L[α] the N×N
Laplacian matrix of each layer α with elements

L[α]
ij = k[α]

i δij − a[α]
ij

and with L̂ the M × M super-Laplacian matrix describing the diffusion across layers.
The super-Laplacian of the supernetwork has elements
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L̂αβ =
∑
β

Aαβ δαβ − Aαβ .

The system of equations (15.10) can be equivalently written as a differential equation
for the (N · M · d)-dimensional vector X = (

X[1], X[2], . . . X[M]
)T

with X[α] indicating

the (N · d)-dimensional vector X[α] = (x[α]
1 , x[α]

2 , . . . x[α]
N )T . This equation reads

dX
dt

= F(X) − γLL ⊗ HX − σLI ⊗ �X, (15.11)

where

F(X) =

⎛
⎜⎜⎜⎜⎝

f̂ (X[1])

f̂ (X[2])
...

f̂ (X[M])

⎞
⎟⎟⎟⎟⎠, with f̂

(
X[α]

) =

⎛
⎜⎜⎜⎜⎜⎜⎝

f
(

x[α]
1

)
f
(

x[α]
2

)
...

f
(

x[α]
N

)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (15.12)

and LL stands for the supra-Laplacian of the intralayer connections while LI stands for
the supra-Laplacian of the interlayer connections. The two (N · M) × (N · M) supra-
Laplacians LL and LI are given by

LL =
M⊕

α=1

L[α],

LI = L̂ ⊗ IN , (15.13)

where IN indicates the N × N identity matrix. The stability of synchronous state X =
1M ⊗ 1N ⊗ s, where s satisfies ṡ = f (s) and 1N indicates the N-dimensional vector with
all entries equal to one, is obtained by considering the linearized equations

dξ

dt
=

[
IM×N ⊗ Jf (s) − γLL ⊗ H − σLI ⊗ �

]
ξ . (15.14)

Here J indicates the Jacobian operator and ξ = X − 1M ⊗ 1N ⊗ s. In the specific case
in which LL and LI commute, this system of equations can be projected into the
common diagonalization basis. Therefore, the stability of the synchronous solution
1M ⊗ 1N ⊗ s to small perturbations can be studied by considering the linear system of
equations

dy
dt

= [Jf (s) − aH − b�] y, (15.15)
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with a = γ λ, b = σμ and λ, μ indicating respectively the eigenvalues of LL and LI as
long as λ2 + μ2 �= 0. By imposing that the maximum Lyapunov exponent of this system
of equations is negative we find the stability region (SR) of the fully synchronized state
1M ⊗ 1N ⊗ s, i.e.

SR = {
(a, b)|LLE(a, b) < 0, a ≥ 0, b ≥ 0

}
, (15.16)

where LLE indicates the largest Lyapunov exponent of the system of Eqs (15.15).
For λ �= 0 and μ = 0 the system of Eqs (15.15) describes a system without inter-

layer couplings (b = 0). The largest Lyapunov exponent of this system determines the
stability region SRIntra for intralayer synchronization, i.e.

SRIntra = {
(a, σ)|LLE(a, 0) < 0, σ ≥ 0

}
. (15.17)

Similarly, for μ �= 0 and λ = 0 the system of Eqs (15.15) describes a system without
intralayer couplings (a = 0). The largest Lyapunov exponent of this system determines
the stability region SRInter for interlayer synchronization, i.e.

SRInter = {
(γ , b)|LLE(a, b) < 0, γ ≥ 0

}
. (15.18)

15.2.4 Master Stability Function on simple networks of
networks

The Master Stability Function approach has also been used on a simple model of
networks of networks describing interactions between different ecological patches [58].
The network of networks is formed by M supernodes representing habitat patches of
different spatial locations, each one supporting an ecological system described by the
very same foodweb network including N species. The different patches are connected
by a supernetwork with adjacency matrix A describing their geographical proximity (see
Fig. 15.3). This so-called meta-foodweb is described by a dynamics which includes both
the intralayer foodweb population dynamics and the effects due to the migration of
species from one patch to the other. Let us indicate with X [α]

i the population of species i
on patch α. This population is assumed to change in time according to the differential
equations

dX [α]
i

dt
= fi

(
X[α]

)
+

∑
β

Aαβci

(
X[α], X[β]

)
, (15.19)

with i = 1, 2, . . . , N and α = 1, 2, . . . , M. Here, fi
(
X[α]

)
describes the internal dynamics

of a foodweb in a given patch and ci
(
X[α], Xβ

)
describes the migration flow of species i

from the generic patch β to its connected patch α. In Ref. [58] it is assumed that this
dynamics admits a stationary state in which each species has the same population in each
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Fig. 15.3 Example of meta-foodweb with four species and five patches studied in Ref. [58].

patch
(

i.e.X [α]
i = X


i

)
and the stability of such a solution is investigated using the Master

Stability Function approach.
This study shows that for a given foodweb and migration dynamics the spatial

proximity of patches can modify the stability of the ecosystem. Therefore in this
framework it is found that some foodwebs could be stable in some geographical networks
of patches and unstable in others. This result is even more relevant when considering
realistic foodwebs that induce a complex set of contraints on the spectral properties of
the supernetwork between the ecological patches.

15.2.5 Discontinuous synchronization transitions

The synchronization transition in a system of Kuramoto oscillators had been considered
to be continuous until the recent discovery of a new mechanism that has been shown to
trigger a discontinuous, ‘explosive’ synchronization transition by assigning to the nodes
of the network an internal frequency dependent on the node degree [136].

In Ref. [313] an alternative mechanism for triggering a discontinuous ‘explosive’
synchronization has been proposed and applied both to single and multilayer networks.
This approach relies exclusively on an adaptive mechanism in which a fraction f of the
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nodes have a coupling constant proportional to their local order parameter. On a single
layer this novel type of synchronization process is described by the following modified
Kuramoto equations

dθi

dt
= ωi + λσi

N∑
j=1

aij sin
(
θj − θi

)
, (15.20)

where aij indicates the adjacency matrix of the network and σi are given with probability
1 − f by σi = 1 and with probability f by σi = r̂i where r̂i is the normalized local order
parameter given by

r̂ieψ̂i = 1
ki

N∑
j=1

aijeiθj . (15.21)

This adaptive mechanism yields a discontinuous synchronization transition already in a
single layer for large enough values of the parameter f . In Ref. [313] this framework has
been extended to duplex networks in which the dynamics on each replica node follows
a generalized Kuramoto dynamics in which the coupling constant depends on the local
order parameter of the corresponding replica node in the other layer. The dynamical
system of equations reads

dθ
[α]
i

dt
= ω

[α]
i + λσ

[α]
i

N∑
j=1

a[α]
ij sin(θ

[α]
j − θ

[α]
i ), (15.22)

with α = 1, 2. In this case the local order parameters for the synchronization read

r̂[α]
i eψ̂

[α]
i = 1

k[α]
i

N∑
j=1

a[α]
ij eiθ [α]

j , (15.23)

and most crucially the coupling parameters σ
[1]
i and σ

[2]
i of any node i that implement

the adaptive dynamics are chosen to be given by

σ
[1]
i = σ

[2]
i = 1

with probability 1 − f and by

σ
[1]
i = r̂[2]

i , σ [2]
i = r̂[1]

i

with probability f . The synchronized state emerging in this dynamical system can be
studied by considering the two global order parameters R1, R2 for the synchronization
in each layer α = 1, 2. These are defined by
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R1ei�1 =
N∑

j=1

eiθ [1]
j ,

R2ei�2 =
N∑

j=1

eiθ [2]
j . (15.24)

In this way it is found that this dynamical system, for sufficiently high values of f , yields
a sudden and simultaneous emergence of the synchronized state in both layers of the
duplex network.

A different mechanism producing discontinuous synchronization transition is pro-
posed in Ref. [231], in which a duplex network whose first layer sustains the dynamics
of coupled oscillators while the second layer supports the dynamics of a biased random
walk is considered. This model is formulated to describe a possible mechanism for onset
of synchronization in the brain where the dynamics at the level of brain regions is also
influenced by the flux of blood. The dynamics on the first layer is a Kuramoto model
whose dynamics reads

dθi

dt
= ωi + λ

N∑
j=1

a[1]
ij sin(θj − θi) (15.25)

where θi is the dynamical variable associated with each node i = 1, 2, . . . , N in layer 1.
The dynamics on the second layer is a diffusion dynamics dictated by the equation

dyi

dt
= 1

τy

N∑
j=1

L̃ijyj (15.26)

where yi is the dynamical variable in layer 2 and the generalized Laplacian describes the
diffusion taking place according to a biased random walk, i.e.

L̃ij = a[2]
ji χ

η

i∑N
r=1 a[2]

jr χ
η
r

− δij . (15.27)

Here the bias of the random walk is indicated with χi and η is a parameter of the
model. The coupling between the two layers is modelled by assuming that the internal
frequencies of the Kuramoto oscillators ωi depend on the dynamical state of the diffusion
process in layer 2 and that the bias χi of the diffusion dynamics depends on the local
synchronization of the node i in layer 1. Therefore, ωi and χi obey two dynamical
equations that couple the dynamics in the two layers. Specifically, we have

dωi

dt
= 1

τω

(
Nyi − ωi

)
, (15.28)
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where τω is the typical timescale of this relaxation process, and

dχi

dt
= 1

τχ

(
sdyn
i − χi

)
, (15.29)

where τχ is the typical timescale of this relaxation process. Here the synchronization
strength sdyn

i measures how much node i is in synchrony with its neighbours and is
given by

sdyn
i = ri cos(ψi − θi) (15.30)

where rieiψi = ∑N
j=1 a[1]

ij eiθj . This model, as a function of the parameter λ that measures
the strength of the coupling between the oscillators and the parameter η modulating the
bias of the random walk, displays a rich phase diagram including a bistable region. The
analysis of this model indicates that a synchronized state emerges discontinuously as a
function of λ. Therefore, the model presented in Ref. [231] reveals that coupling the
synchronization dynamics occurring on one layer to the diffusion dynamics occurring in
the other layer of a duplex network can be an important mechanism for the emergence
of a discontinuous synchronization transition.

15.2.6 Outer synchronization, time delays

The literature on synchronization on multilayer networks is vast and to a large extent
preceding the formalization of multilayer network structures. Here it is not our intention
to give a full account of all the dynamical systems studied so far, but we believe that the
following papers are worth a particular mention. Early results [191, 192] investigate two
coupled networks of dynamical oscillators formed by a master layer and a coupled slave
layer and study their global ‘outer synchronization’ both numerically and analytically.
The Authors find numerical evidence that outer synchronization can be achieved by the
interacting multilayer networks and in the case in which the two coupled networks have
the same adjacency matrix derive the sufficient analytical conditions for synchronization.
Other works introduce time delays in the interlayer couplings of a duplex network [198].
In this paper the Authors show evidence of a breathing regime where two groups of
nodes belonging to the two networks synchronize at different frequencies. By tuning the
coupling strength the phase diagram of the dynamical model is significantly modified.

15.3 Pattern formation

Two works have investigated the properties of pattern formation in multiplex (specifically
duplex) networks. In Ref. [10] each layer sustains a reaction–diffusion dynamics and the
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activator (inhibitor) is allowed to diffuse across layers with a tunable diffusion constant.
On the contrary, in Ref. [176] the situation in which the activator diffuses in one layer
and the inhibitor diffuses in another layer is considered as a function of their different
diffusion constants.

15.3.1 Reaction–diffusion dynamics in each layer

Let us follow Ref. [10] and consider a duplex network in which every layer sustains
a reaction–diffusion dynamics but the two layers are coupled by allowing diffusion
of activator and inhibitor across the layers with a tunable diffusion constant. In this
case, calling u[α]

i /v[α]
i the concentrations of activator/inhibitor at node i in layer α and

indicating with D[α]
u /D[α]

v the diffusion constant of the activator/inhibitor within layer α

and with D[12]
u /D[12]

v the diffusion constant of the activator/inhibitor across the layers,
the dynamical equations of the coupled reaction–diffusion dynamics read

du[α]
i

dt
= f

(
u[α]

i , v[α]
i

)
+ D[α]

u

N∑
j=1

L[α]
ij u[α]

j + D[12]
u

(
u[β]

i − u[α]
i

)
,

dv[α]
i

dt
= g

(
u[α]

i , v[α]
i

)
+ D[α]

v

N∑
j=1

L[α]
ij v[α]

j + D[12]
v

(
v[β]

i − v[α]
i

)
. (15.31)

Here f (u, v) and g(u, v) are non-linear functions that specify respectively the dynamics
of the activator that auto-catalytically enhances its own production and of the inhibitor
that contrasts the activator growth. The matrices L[α] are the Laplacian matrices of layers
α = 1, 2 and we have indicated with β the layer different from α, i.e. β �= α.

In the case D[12]
u = D[12]

v = 0 the layers are decoupled, while for D[12]
u �= 0, D[12]

v �= 0
they are coupled. In Ref. [10] it has been found, using analytical approaches and direct
simulations, that from the multiplex nature of this problem interesting and surprising
results can be found by sufficiently increasing the diffusion constants D[12]

u , D[12]
v . In fact,

it is possible to show that the system can develop self-organized patterns which result
from the positive interference between the layers of the duplex network. By starting from
a dynamic configuration that prevents the onset of self-organized patterns in each layer
when the layers are decoupled, i.e. when D[12]

u = D[12]
v = 0, by sufficiently raising the

values of the diffusion constants across the layers it is possible to observe that the stable
homogeneous solution of the Eq. (15.31) becomes unstable and that Turing patterns
set in. Conversely, the opposite phenomenon can also result from coupling the diffusion
across the layers of the duplex networks, and self-organized patterns present in the
absence of the coupling can fade away when the diffusion constant between the layers
is switched on.
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15.3.2 Activator and inhibitor dynamics layers

In a reaction–diffusion dynamics it can also occur that the activator and the inhibitor
diffuse over different networks. For studying this theoretical scenario, in Ref. [176]
pattern formation is characterized in a duplex network. The first layer of the duplex
network indicates the network on which the activator diffuses, the second layer indicates
the network in which the inhibitor diffuses. The resulting pattern formation is studied as a
function of the network topologies and the diffusion constants of the reactants in the two
layers. By indicating with ui and vi respectively the fraction of activators and inhibitors at
node i, and with Du and Dv their diffusion constant, the dynamical equations determining
the reaction–diffusion dynamics are given by

dui

dt
= f (ui , vi) + Du

N∑
j=1

L[1]
ij uj ,

dvi

dt
= g(ui , vi) + Dv

N∑
j=1

L[2]
ij vj , (15.32)

where L[α] indicates the Laplacian matrices in layer α with α = 1, 2. When L[1] = L[2],
this dynamical problem reduces to the well-known Turing instability which might occur
when the inhibitor diffuses much faster than the activator. In Ref. [176], by studying the
stability of the homogeneous solutions on scale-free duplex networks the Authors have
shown that a different instability mechanism can be at work when the activator and the
inhibitor diffuse on different layers, i.e. L[1] �= L[2], potentially yielding instabilities also
when Du = Dv. Specifically, in Ref. [176] it is shown that the instability can be triggered
by nodes with degree (k[1], k[2]) = (k[u], k[v]), satisfying

k[u] = fugv − fvgu − fuDvk[v]

gvDu − DuDvk[v] , (15.33)

where fu, fv, gu, gv indicates the partial derivatives of the functions f = f (u, v) and g =
g(u, v).

15.4 Multiplex visibility graphs

The multilayer network framework has been shown to be useful for characterizing
multivariate time sequences [180]. Time-series analysis is of relevance in a variety
of disciplines including biomedical fields, finance and climate science [126]. In these
contexts it is the norm rather than the exception that the time series are multivariate.
For instance, in climate the weather can be characterized by different physical quantities
and in finance a financial market is characterized by the time series of different stock
prices. Multivariate time series can be studied using a weighted network derived by the
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correlations among the time series. A more recent approach to studying multivariate time
series combines the so-called visibility graphs defined to characterize univariate time
series with a multiplex network analysis [180]. Given a univariate time series of elements
x(i) with i = 1, 2, . . . , T the visibility graph [179] (specifically the horizontal visibility
graph) is a directed network of N = T nodes having the directed link (i, j) whereas for
each � ∈ (i, j)

x(�) < min(x(i), x(j)). (15.34)

In the context of univariate time series the analysis of the visibility graphs has been shown
to provide relevant insights that cannot be deducted with more traditional methods for
time series analysis. Given M timeseries forming a multivariate time series of elements
x[α](i) with i = 1, 2, . . . , T and α = 1, 2, . . . , M, the multivariate time series analysis
can be recast into the characterization of the structure of a multiplex network having
each layer α given by the visibility graph of the time series x[α]. By performing a
multilayer analysis of the resulting multiplex network, the Authors of Ref. [180] are
able to characterize both the temporal structure of each time series and the correlation
existing among different time series. This approach that does not assume stationarity has
shown to quantify non-trivial properties of chaotic maps and the onset of various types
of synchronization. Finally, this method has been shown to be useful for discriminating
crises from periods of financial stability starting from financial multivariate time series.

15.5 Control of multilayer networks

The controllability of a network is a theoretical problem of relevance in a variety of
contexts ranging from financial markets to the brain. Until now, network controllability
has been characterized mostly on isolated networks (see Sec. 3.7), while few works have
started to tackle the richer problem of controllability of multilayer networks.

Correlated driver nodes

The controllability of a multiplex network can be studied assuming that each layer
sustains a distinct dynamical process. However, typically we expect that in real multiplex
networks it will not in general be possible to choose the driver nodes of the network
in an arbitrary way. Rather, in a number of cases there will be some constraints on
which nodes can be the driver nodes of the network and receive directly the external
signals.

This problem was first addressed in Ref. [208] where network control was considered
over a duplex network where each node is either a driver node in each layer or it is not a
driver node in any layer (see Fig. 15.4).

In this framework it has been assumed that each replica node (i, α) of a duplex network
formed by layers A and B is characterized by a different dynamical variable x[α]

i ∈ R with
α = A, B. The dynamical state of the network at time t is assumed to follow
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Fig. 15.4 Control of a duplex network by correlating the position of driver nodes in different layers.
The dynamics in the two layers is assumed to be independent but it is imposed that driver nodes are
corresponding replica nodes. The controllability of this duplex network can be mapped to a Maximum
Matching Problem in which the unmatched nodes (indicated with a white circle) are the driver nodes of
the duplex network. Here red thick links indicate matched links and black thin links indicate unmatched
links. Reprinted figure from Ref. [208].

dX(t)
dt

= GX + Bu, (15.35)

where X(t) is the 2N-dimensional vector describing the dynamical state of each replica
node,

X =
(

x[A]

x[B]

)
, (15.36)

where x[A]/x[B] is the N-dimensional vector (with elements x[A]
i /x[B]

i ) describing the
dynamical state of nodes in layer A/B.

The matrix G is a 2N × 2N (asymmetric) matrix and K is a 2N × P matrix. They
have the block structure

G =
(

a[A] 0
0 a[B]

)
, B =

(
b[A] 0

0 b[B]

)
, (15.37)

in which a[α] are the N × N directed and weighted matrices describing the directed
weighted interactions within the layers and b[α] are the N × P[α] matrices describing the
coupling between the nodes of each layer α and P[α] ≤ N external signals. The latter are
represented by a vector u(t) of elements uγ and γ = 1, 2 . . . P = P[A] + P[B].

If the driver nodes in the two layers can be chosen arbitrarily, the problem of
controlling the duplex network can be recast into the one of controlling the two layers
considered in isolation. However, if we cannot choose the position of the driver nodes
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independently in the two different layers the controllability of this system presents some
relevant effect due to multiplexity.

Specifically, in Ref. [208] it has been assumed that the driver nodes must be
corresponding replica nodes of the duplex network.

Using the approach of structural controllability, it is possible to show along the lines
of Ref. [197], valid for the controllability of single layers (see Sec. 3.7), that finding the
driver nodes of the duplex network can be mapped into a generalization of the Maximum
Matching Problem. In this algorithm every link is either matched or unmatched and
every node has at most one matched incoming link. The imposed condition on the
possible choice of the driver nodes is reflected in an additional condition that the
Maximum Matching Problem needs to satisfy. Namely, any two replica nodes either both
have one matched incoming link or none of them has any matched incoming link (see
Fig. 15.4). The driver nodes are the replica nodes that have no matched incoming links.
Among the matching configurations that satisfy the above constraints the Maximum
Matching Problem chooses the configuration that minimizes the number of driver
nodes.

This optimization algorithm can be studied using statistical mechanics techniques
such as the cavity method and the Belief Propagation (BP) algorithm. In Ref. [208] it is
shown that the multiplexity of the problem has the following consequences:

(a) Controlling the dynamics of multiplex networks is more costly than controlling
the single layers taken in isolation. In fact, the number of driver replica nodes in
the multiplex network is in general higher than the sum of the number of driver
nodes in the single layers taken in isolation (see Fig. 15.5).

(b) By tuning the degree correlations among different layers the number of driver
nodes can be modulated. In particular, in the duplex network, by coupling the
low-degree nodes in layer A with the low-degree nodes in layer B the number
of driver nodes is minimized, whereas if the low-degree nodes in layer A have
replica nodes with high in- and out-degree in the other layer B the number of
driver nodes is maximized. This result is in line with the results obtained in single
layers [207] indicating that the low-degree nodes (nodes with in- and out-degree
smaller than 3) determine the number of driver nodes in the network.

(c) Multiplexity can contribute to stabilizing the fully controllable configuration. In
fact, on duplex networks the fully controllable configuration can be stable even if
it is not stable in the isolated networks that form the multilayer structure.

Moreover, the controllability of multiplex networks displays unexpected new phe-
nomena. In fact, these multiplex networks can become extremely sensitive to damage
in conjunction with a discontinuous phase transition characterized by a jump in the
number of driver nodes (see Fig. 15.5). This phase transition is, for instance, observed
on duplex networks in which each layer has Poisson degree distribution with the
same average degree c. A careful investigation of the critical behaviour reveals that
this is a hybrid phase transition with a square-root singularity, and therefore in the
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Fig. 15.5 Controllability of a directed multiplex network formed by two Poisson layers (layer A and layer
B) with in and out average degrees equal to c. In panel (a) the fraction nD of driver nodes in a Poisson
duplex network is plotted as a function of the average degree c. The points indicate the average Belief
Propagation (BP) results obtained over five single realizations of the Poisson duplex networks with average
degree c and N = 104, the solid line is the theoretical expectation. The dashed line represents twice the
density of driver nodes for a single Poisson network with the same average degree. In panel (b) the densities
nc, nr and no respectively of critical redundant and ordinary nodes are shown as functions of c for the
same type of duplex networks with N = 103, where each point is the average over 100 different instances.
In both panels the dot-dashed vertical line indicates the phase transition average degree c
 = 3.22 . . . .
Reprinted figure from Ref. [208].

same universality class as the emergence of the mutually connected component in
multiplex networks. In correspondence to this phase transition the network responds
non-trivially to perturbations. This is observed by performing a numerical calculation
of the robustness of the networks [197]. The nodes are classified into three categories:
critical nodes, redundant nodes and ordinary nodes. When a critical node is removed from
the (multiplex) network, controllability is sustained at the cost of increasing the number
of driver nodes. If the number of driver nodes decreases or is unchanged, the removed
nodes are classified as redundant and ordinary respectively. Fig. 15.5B shows that in
Poisson duplex networks displaying the phase transition in the number of driver nodes
[208] the fraction of critical nodes reaches a maximum at the transition, revealing an
increased fragility of the duplex network to random damage with respect to single layers.
While an abrupt change in the number of driver nodes can result from a small change in
the network topology, it is important to stress that the non-monotonic behaviour of these
quantities around the critical average degree value could be interpreted as a precursor to
the discontinuity.
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15.5.1 Role of peripheral nodes

Sometimes it is reasonable to assume that the driver nodes of a multilayer network can
only belong to a given layer. This is the case when it is possible to apply an external
signal only to the nodes of a given ‘accessible’ layer, whereas the node of other layers
cannot receive input signals directly. This scenario has been considered in Ref. [314].
In this paper the Authors have studied a multiplex network with two layers (layer A and
layer B) with interlinks coupling the dynamics of the two layers where only nodes in
layer A can be driver nodes and receive external signals. The linear dynamical process is
determined by the system of equations

dX(t)
dt

= AX + Bu, (15.38)

in which the 2N-dimensional vector X(t) describes the dynamical state of each node,

X =
⎛
⎝ x[A]

x[B]

⎞
⎠, (15.39)

where x[A]/x[B] is the N-dimensional vector describing the dynamical state of nodes in
layer A/B. Here A is the directed and weighted supra-adjacency matrix of the multilayer
network, indicating the full set of interactions within each layer and across layers and B
enforces the constraints that only node layer A can receive external input signals, i.e. B
has the following block structure:

B =
(

b
0

)
, (15.40)

where b is a N × P matrix and P is the number of external signals.
Given a fixed number of driver nodes in layer A in Ref. [314] it has been found that

the fraction nD of controlled nodes can be tuned by placing the interlinks between nodes
in layer A and nodes in layer B according to different coupling strategies.

In particular, in Ref. [314] the Authors rank each node i in layer α according to a
measure of centrality given by riα that is lower for nodes with both low in-degree and
low out-degree. Specifically, riα is given by

riα =
(

k[α]
i,in

)λ (
k[α]

i,out

)1−λ

(15.41)

where λ is a parameter between zero and one. As λ increases, more importance is
attributed to the in-degree in determining the centrality of the nodes.

The different coupling strategies include the PP strategy coupling peripheral nodes in
layer A to peripheral nodes in layer B, the CP strategies coupling central nodes in layer
A to peripheral nodes in layer B and the CC strategy coupling the central nodes in layer
A to central nodes in layer B.
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It is found that the PP strategy optimizes the fraction of controlled nodes nb
for any given number of driver nodes. This result obtained numerically using linear
programming techniques is totally in line with the analytical result obtained for single
networks in Ref. [207] where it is shown that the low in-degree and low out-degree
nodes determine the structural controllability of networks. Therefore, in the context of
multiplex network controllability, low in-degree and low out-degree nodes should be
treated with particular care for optimizing the controllability of networks.

15.5.2 Control of multi-slice temporal networks

Controlling multiplex networks can also be affected by the separation of the typical
timescales at which different layers operate. In order to tackle this relevant question in
Ref. [254] the Authors have considered the controllability of a multi-timescale duplex
network. It is assumed also in this case that the driver nodes can be chosen only from
the replica nodes of a given layer, called the master layer. It is found that if the typical
timescales of the two layers are equal, the number of driver nodes is greater or equal to the
number of nodes in each isolated layer. The number of driver nodes changes if the two
layers have two different timescales for their dynamics. It is found that if the master layer
is also the one supporting a faster dynamics, the number of driver nodes decreases as the
difference of timescales between the two layers increases. For very large differences of the
timescales between the two layers the number of driver nodes reaches a plateau whose
value is determined by the number of driver nodes of the faster layer. Therefore, in this
case controllability is enhanced. On the contrary, if the master layer is the slowest layer,
the number of driver nodes increases as the difference between the layers’ timescales
increases. Therefore the controllability of the multilayer network is reduced.



16

Opinion Dynamics and Game Theory

16.1 Modelling social network dynamics

In the last decade, there has been a surge in interest in modelling social network dynamics
[72, 248], including opinion dynamics, election models and game theory approaches. As
multiplexity is a prominent property of social networks, it is of fundamental importance
to test how the results on social network dynamics obtained in the single network
framework are modified on multilayer networks. In this chapter firstly we will cover the
voter model which is a very stylized model for adoption of behaviour and for opinion
dynamics, with a very interesting phenomenology and of special theoretical interest.
Secondly we will study the dynamics of competing layers in the framework of (a) an
election model in which different layers correspond to competing political parties and
(b) a model in which layers compete for the centrality of their nodes. Finally, we
will briefly discuss the rich field of game theory on multilayer networks, showing
evidence that multiplexity can capture several important mechanisms for explaining the
emergence of the cooperative behaviour in social systems.

16.2 Voter model

16.2.1 Definition and results on single networks

The voter model describes opinion dynamics in a network where nodes do not have
individual convictions and are exclusively influenced by their neighbours. From any
given initial condition the dynamics evolves until a final frozen state is reached, in which
any two neighbour nodes share the same opinion. In a connected network this is a state of
global consensus. The model can be formulated for a number of opinions equal or greater
than two. However, since the model always reaches a final consensus, the two-state voter
model is the most frequently analysed case as it is a simplification that preserves most of
the relevant phenomenology. Let us here discuss briefly the voter model on single layers
[177]. In a two-state voter model each node i can have two opinions indicated by the spin
values si = 1 or si = −1. Starting from a given initial configuration, at each time step we
update the spins and the time clock as follows:

Multilayer Networks. Ginestra Bianconi, Oxford University Press (2018).
© Ginestra Bianconi. DOI: 10.1093/oso/9780198753919.001.0001
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• a random node i is picked with uniform probability;

• the selected node adopts the opinion of a randomly selected neighbour node j, i.e.

si → sj , (16.1)

• the time t is incremented by an interval of time �t = 1/N , i.e.

t → t + �t. (16.2)

The algorithm stops when no neighbour nodes have a different opinion and the
consensus is reached.

The voter model displays a phenomenology that depends on the underlying networks
where it has been defined. The main dynamical properties that are analysed as a function
of the network topology are the time TN to reach consensus in a network of N nodes
and the temporal behaviour of the interfacial density ρ(t) given by the fraction of links
between nodes of different opinions, i.e.

ρ(t) =
∑

i<j aij |si − sj |∑
i<j aij

. (16.3)

On d-dimensional lattices of N nodes we observe a significant dependence of these
quantities on the dimension d, (see Ref. [177] for the derivation of these results)

TN �
⎧⎨
⎩

N2 for d = 1,
N ln N for d = 2,
N for d > 2,

ρ(t) �
⎧⎨
⎩

t−1/2 for d = 1,
(ln t)−1 for d = 2,
O(1) for d > 2.

(16.4)

The two-dimensional voter model has also been analysed in Ref. [104] as an important
non-equilibrium transition solely driven by interface noise. The active interface displays a
temporal evolution called coarsening that is common to a large class of non-equilibrium
models where the phase ordering takes place without surface tension. Therefore, the
coarsening dynamics of the voter model in two dimensions is distinct from the domain
growth in Glauber dynamics for simulating the Ising model (see Fig. 16.1).

The voter model has been extensively studied in complex networks including small-
world networks [301, 73] and scale-free networks [285, 284].

On power-law networks the average time TN to reach global consensus in a network
of N nodes scales like

TN � N
〈k〉〈
k2

〉 . (16.5)

Therefore, on scale-free networks with power-law exponent γ ≤ 3 the voter model
converges faster than on homogeneous networks because

〈
k2

〉 → ∞ as N → ∞.
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Fig. 16.1 Domain growth of the two-dimensional voter mode of system size N = 256 × 256. The figure
displays snapshot of the voter dynamics at times t = 4, 16, 64, 256 starting from an initial bubble of
radius ro = 180 (top panels) or starting with a random initial condition (bottom panels).Reprinted figure
with permission from [104] ©2012 by the American Physical Society.

16.2.2 Voter model on static multilayer networks

The voter model has been extensively used to model opinion dynamics in social networks.
Given that the vast majority of social networks have a multilayer nature, it is then natural
to ask how multiplexity will change the dynamic properties of this dynamical process.

One of the first works [203] on the subject describes a minimal model allowing for a
multilayer network interpretation. Specifically, it characterizes the two-state voter model
on a multilayer network formed by two layers, each one formed by a clique of N nodes
and connected by a number m of interlinks with 0 ≤ m ≤ N2. Initially, each clique
is formed by N/2 nodes in state s = 1 and N/2 nodes in state s = − 1. At each given
time a random link is chosen with uniform probability and a random node at the end of
the link is selected with probability 1/2. Then the selected node copies the state of the
node at the other end of the link. Subsequently, the global time is increased by �t = 1

2N .
The analytical solution of this model predicts that for large density of interlinks, the
mean consensus time grows linearly with the network size, i.e. TN � N , while for low
density of interlinks when m = O(1) the dynamics slows down and TN � N2. Since the
cross-over between the two scaling regimes occurs for a number of interlinks m close to
one, this work concludes that the slowdown of the ordering dynamics is a phenomenon
that is marginal for the two-cliques model since it is observed only for very weakly
connected layers.

If the two-cliques voter model does present only marginal dependence on the
multilayer structure of the network, a recently proposed variation of the voter model
[98] is able to capture the exclusive properties that opinion dynamics can present in a
multiplex network. The social network is taken to be a duplex network where only a
fraction q of replica nodes are connected. The replica nodes in different layers represent
the same individual if the replica nodes are connected while they correspond to different
individuals if they are unconnected. The multiplex two-state voter model proposed in
Ref. [98] assumes that, if connected, two replica nodes always take the same opinion.
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Therefore, if a replica node changes state its connected replica node in the other layer (if
it exists) also changes its state accordingly and adopts the new opinion.

Let us indicate by α = 1, 2 the two layers of the duplex network and by s[α]
i = 1, −1

the opinion of node i in layer α. The multiplex two-state voter model is defined as follows.
Given an initial configuration of the spins, at each time step

• a random layer α is selected;

• one node i of layer α is selected at random and changes its state according to the
single-layer voter dynamics, i.e. it adopts the state of a random neighbour j in layer α,

s[α]
i → s[α]

j ; (16.6)

• if the selected node is present in both layers, also its replica node in the other layer
β �= α is updated,

s[β]
i → s[α]

i ; (16.7)

• the time is incremented by �t = 1/N ,

t → t + �t. (16.8)

The algorithm stops when global consensus is achieved and there is no pair of connected
nodes with different opinions (spin states).

A numerical investigation of the multiplex voter model [98] reveals that this dynamics
has an exclusive multilayer nature and cannot be reduced to a voter dynamics on a single
aggregated network.

16.2.3 Coevolving voter model on multiplex networks

Adaptive multiplex networks have been studied in Ref. [99] from the perspective of the
coevolving voter model, in which each layer evolves according to a voter model while
rewiring its links in order to maximize the number of neighbour nodes with the same
opinion. In single networks the coevolving voter model has been shown [300] to give
rise to a fragmentation transition in which the system is frozen into two disconnected
components, each one formed by nodes sharing the same opinion. This transition occurs
when the probability p of rewiring a link connecting two nodes with opposite opinions is
greater than a critical value p > pc.

In a duplex, the two layers can be allowed to have very different timescales, i.e. very
different probabilities p[α] of rewiring links among nodes of opposite opinion. In this
scenario it is possible to study the interplay between the dynamical state of the nodes
and the topology of the resulting networks as a function of the fraction q of nodes that
are present in both layers. Specifically, the model proposed in Ref. [99] implements the
following adaptive multilayer network dynamics. At each time step:
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(1) a random layer is picked;

(2) the chosen layer is updated using the coevolving voter model node update;

(3) the state of nodes present in both layers is updated in both layers.

Here we assume that the coevolving voter model node update of a given layer α consists
in the following dynamics:

(a) a random node i of the chosen layer α is selected;

(b) its state is compared with the state of a random neighbour j on the same layer α;

(c) if node i and node j are in the same dynamical state nothing happens; otherwise
with probability 1 − p[α] node i copies the state of node j, or else with probability
p[α] it severs the connection with node j.

The extremely asymmetric scenario occurs when one layer (network 1) has p[1] = 1 and
it is therefore a very dynamical network, while the other layer (network 2) has rewiring
probability p[2] = 0, resulting in a layer supporting the voter model dynamics without
rewiring of the links. In this case the first network is also called the dynamic layer while the
second network is called the voter layer. For q = 1 the two layers are fully coupled: in both
layers consensus is reached, therefore the dynamic layer is formed just by one component.
For q = 0 the two layers are fully decoupled; therefore the dynamic layer is fragmented
into two components formed by nodes having opposite opinions. For intermediate values
of q the system undergoes an anomalous transition called shattered fragmentation in which
the dynamic layer is formed by many disconnected components that can be interpreted
as the precursor of the fragmentation transition observed for q = 0.

For less asymmetric scenarios where
(
p[1], p[2]

) �= (1, 0) a rich phase diagram can be
observed, and the system can include both frozen layers, both active layers or one layer
active, one layer frozen.

16.3 Competing networks

Cooperative effects correlating nodes among different layers such as interlink interde-
pendencies have attracted large interest in the context of multilayer network theory.
However, competing interactions can also play a major role in determining the multilayer
network dynamics. In the preceding chapters we have already described models of
competing dynamics as, for instance, antagonistic percolation (Sec. 12.4) or competing
epidemic spreading (Sec. 13.5). Here we discuss a model of competing networks in the
context of election models [149] and a model for competing centralities [2].

16.3.1 Election model

In election models, we can assume that each party represents a layer of social interaction
through which a contagion dynamics can take place. Every individual can have an
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opinion or propensity to vote for a party that changes during the election campaign.
An individual is represented by a node and whereas a node has a propensity to vote for a
party it is considered active on the corresponding social network. The election campaign
can therefore be described [149] as a competition between layers trying to maximize the
number of active nodes at the end of the dynamical evolution of the model (election day).

Specifically, in Ref. [149] the Authors have proposed a model for describing the
election campaign in which there are just two parties (party A and party B) and in which
each individual node has three possible dynamical states at the end of the campaign:
it might be active either on the first or the second layer, representing his vote for the
corresponding party, or might be inactive in both layers, representing his decision not
to vote. Crucially, the nodes’ opinions are affected by the opinions of their neighbours
through an opinion-spreading dynamics. As there is evidence that the chance to change
opinion decreases as the decision moment approaches, the spreading dynamics during
the election campaign is modelled by a simulated annealing algorithm that implies an
uncertainty reduction mechanism as the election day comes closer. Therefore, at the
initial stage of the election campaign the nodes are likely to change their opinions while
as the election campaign proceeds their dynamics is slowed down until it freezes at the
election day.

A different rule applies, however, for a small fraction fA, fB of nodes that represent
committed communities of individuals that vote either for party A or party B and never
change their opinion.

This election model has been studied on duplex networks having layers formed
by Poisson networks with average degree given by zA and zB respectively. The main
result of this model is that in the large-network limit the most-connected network is
more likely to win the election independently of the initial condition of the system (see
Fig. 16.2). However, when the two parties have a comparable density of links small
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Fig. 16.2 Difference between the number of people mA that at the end of the election campaign vote for
party A and the number of people mB that vote for party B as a function of the average degrees zA and zB
of the social networks A and B when there are no committed agents fA = fB = 0. The data is simulated for
two networks for N = 500 nodes and averaged 60 times.The more connected the social network connected
to party A, the larger the difference of votes mA − mB. Reprinted figure from Ref. [149].
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Fig. 16.3 A fraction f of committed agents is shown to be able to reverse the outcome of the election. The
histogram of the difference between the fraction of agents mB/N voting for party B and the fraction of
agents mA/N voting for party A is plotted for a fraction fA of committed agents to party A, (with fA = 0
and fA = 0.1) and average connectivities of the networks zA = 2.5, zB = 4 of the two layers. The
histogram is performed for 1000 realizations of two networks of size N = 1000. In the inset the average
number of agents in network A (mA) and agents in network B ( mB ) is shown as a function of the fraction
of committed agents fA. A small fraction of agents ( fA � 0.1 ) is sufficient to reverse the outcome of the
elections. The data in the inset is simulated for two networks for N = 1000 nodes and averaged ten times.
Reprinted figure from Ref. [149].

perturbations in the system could alter the results. In this context, it has been observed
that a small minority of committed agents can reverse the outcome of the election result
(see Fig. 16.3).

16.3.2 Competing for centrality

Another scenario of a competing dynamics has been considered in Ref. [2] where
it is assumed that two layers of a multilayer network structure with M = 2 compete
for resources. Specifically, the layers compete for having nodes of higher eigenvector
centrality. Here the eigenvector centrality is perceived as a measure of importance of the
nodes in the network, but also as a measure directly related to the properties of linear
dynamical processes occurring on it.

Considering a multilayer network formed by two layers α = 1, 2, each with Nα nodes,
the eigenvector centrality u satisfies

λ1u = Au (16.9)
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where A is the supra-adjacency matrix of the multilayer network, λ1 is its maximum
eigenvalue and the eigenvector centrality u has the following block-diagonal structure

u =
⎛
⎝ u[1]

u[2]

⎞
⎠ , (16.10)

where u[α] is the eigenvector centrality of the nodes in layer α.
In Ref. [2] different coupling strategies between the two layers have been considered

with the goal of optimizing the centrality of a network with respect to the other one.
The centrality of a network α is assumed to be measured by the normalized sum of the
eigenvector centralities, i.e.

C[α] =
∑Nα

i=1 u[α]
i∑2

α=1
∑Nα

i=1 u[α]
i

. (16.11)

The result of this competing dynamics is studied from multilayer networks with identical
layers as a function of the strategy adopted for placing the interlinks. Assuming that the
coupling between the layers includes exclusively undirected interactions, in Ref. [2] it
is shown that the CC strategy coupling central nodes of a layer with central nodes of
the other layer strongly favours the weak network. On the contrary, the PP strategy that
couples peripheral nodes of one layer with peripheral nodes of the other layer enhances
the centrality of the stronger layer.

16.4 Game theory on multilayer networks

16.4.1 Two-player games on single networks

Game theory is a mathematical subject that was first formulated to model social and
economical choices [131] and was then applied to evolutionary dynamics [232] and more
recently to Network Science [248].

One of the major questions in game theory is the emergence of cooperative behaviour
which is found both in human and animal societies. In order to study how cooperating
behaviour can result from game theory, it is possible to consider two player games where
each individual can either adopt strategy C (Cooperate) or D (Defect). Each player
adopts a given strategy to optimize his payoff without knowing the other player’s strategy.
In this framework, game theory assumes that each player will play rationally. The payoff
of the agent is represented by the following matrix �

� =
( C D

C R S
D T P

)
(16.12)
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where

• T temptation to defect is the payoff of a defector when the other player cooperates;

• R reward for mutual cooperation is the payoff of a cooperator when the other player
cooperates;

• P punishment for mutual defection is the payoff of a defector when the other player
also is a defector;

• S sucker’s payoff is the payoff of a cooperator when the other player is a defector.

As a function of the relative values of these parameters we distinguish between the
following four games:

(I) Harmony game with S > P, R > T .
In this case cooperating is always the best strategy, independently of the strategy
of the other player.

(II) Snow drift game with T > R > S > P.
In this case defecting is advantageous only if the opponent is cooperating, and
therefore constitutes a risky strategy. The best strategy is to do the opposite of
the other player.

(III) Stag hung game with R > T > P > S.
In this case cooperating is only advantageous if the other player is also cooper-
ating and therefore constitutes a risky strategy. The best strategy is to adopt the
same strategy as the other player.

(IV) Prisoner’s Dilemma with T > R > P > S.
In this case the rational choice for each player is to defect despite the fact that
both players would gain more if they both cooperated.

In between the games mentioned above special attention has been given to the
Prisoner’s Dilemma which describes the conflict between rational behaviour and the
cooperative behaviour that maximizes the overall gain in the population. Specifically,
large attention has been devoted to the study of the Prisoner’s Dilemma described
generally by the payoff matrix

� =
( C D

C 1 0
D b > 1 1 > ε ≥ 0

)
, (16.13)

where b indicates the temptation to defect.
The outcome of the game when both players are rational is described by the Nash

equilibrium in which each player plays the best strategy given the other player’s strategies.
In the case of the Prisoner’s Dilemma the Nash equilibrium is reached when both
players defect.
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A different approach for studying the two-player games is provided by evolutionary
dynamics [232] in which it is assumed that the system is formed by a population of
players, each one playing a given strategy. By playing repeatedly with the other players
each player accumulates his own individual payoff. Individuals (or their strategies) that
are more successful replicate faster, as their payoff is treated as their fitness.

There are different mechanisms used to study how the population evolves. This
includes processes in which each player imitates the strategies of other successful players.
In the case of the Prisoner’s Dilemma, when the evolutionary dynamics takes place
on a well-mixed population in which every player can play with every other player
the population asymptotically in time is formed exclusively by defectors [155, 273].
However, the evolution of the population can also be studied in structured populations
in which players are playing exclusively with players in their proximity. For instance
players can be placed in a two-dimensional space where their proximity is measured
through their Euclidean distance or they can be placed on a network where typically it is
assumed that players interact exclusively with their neighbouring players at distance one
on the network. When the Prisoner’s Dilemma takes place on structured populations,
the cooperator strategy can be maintained also in the presence of a temptation to defect
b > 1. This mechanism promoting cooperation was coined as network reciprocity [233].
Interestingly, on scale-free networks the cooperator’s strategies can be supported and
enhanced [270, 134].

16.4.2 Two-player games on multiplex networks

Two-player games can be considered over multilayer networks [307]. As multilayer net-
works describe locally structured interactions the general expectation is that multiplexity
will enhance cooperation. However, two-player games can be defined on multilayer
networks in a large variety of ways and the results obtained are often non-trivial. Here
we will provide a discussion of two interesting theoretical frameworks in which the two-
player game takes place on multiplex networks in which interlinks are not explicitly
taken into account. In this setting the evolutionary dynamics describes a population of
players interacting pairwise via multiple layers of interactions while imitating strategies
of successful neighbour nodes.

In Ref. [135] a population of players of the Prisoner’s Dilemma is considered on a
multiplex network and it is additionally assumed that the strategies of the same player in
different layers can be different. Therefore, for each layer α the player i can either coop-
erate siα = 1 or defect siα = 0. Each player collects in each layer α a payoff U [α]

i given by
the sum of the payoffs obtained by playing the Prisoner’s Dilemma with all his neighbours
in layer α. Finally, the overall payoff Ui = ∑M

α=1 U [α]
i is calculated for each player i.

The strategies of each player evolve by a synchronous dynamics. For each player a
layer α is chosen at random and in that layer a neighbour node j is chosen randomly. If
the payoff of node i is bigger than the payoff of node j, i.e. Ui > Uj , nothing happens.
Instead, if Ui ≤ Uj node i in layer α will adopt the strategy of node j in layer α with
probability
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�i→j = Uj(t) − Ui(t)
b max (Si , Sj)

, (16.14)

where Si = ∑M
α=1 k[α]

i .
This model shows that multiplexity can enhance the cooperative behaviour in partic-

ular for high values of the temptation to defect b. Indeed, if one considers the fraction
of cooperators over entire multiplex networks (see Fig. 16.4) one observes that for high
temptation to defect b the number of cooperators increases with the number of layers of
the multiplex network. However, one can also notice that the opposite trend is observed
for low temptation to defect b.

In this model it is of crucial importance for sustaining cooperative behaviour that
players can play different strategies in different layers, as it is shown that if the players
adopt homogeneous strategies among all the layers the population of cooperators
dramatically decreases.

A different theoretical framework is presented in Ref. [306] where players of the
Prisoner’s Dilemma are placed on a duplex network formed by two square lattices which
are only partially coupled, i.e. only a fraction ρ of the nodes of a layer has a corresponding
node in the other layer. This framework allows the Authors to investigate the role of
interlinks in the game theory settings. Every player on a node (i, α) is either a cooperator
siα = 1 or a defector siα = 0. At each time each player acquires a payoff πiα which is
equal to the sum of the payoffs obtained by playing with every neighbour node in the
same layer. The total payoff of the player (i, α), nevertheless, is affected by the presence

0.8

0.6

0.4

0.2

0
1 1.5 2 2.5 3 3.5

b

<
c >

<
c >

1
1
2
3
5
7

10
15

(a)

0.8

0.6

0.4

0.2

0
1 1.2 1.4 1.6 1.8 2

b

1
1
3
5

10
15
20

(b)

Fig. 16.4 Cooperation diagrams of multiplex networks. Average level of cooperation 〈c〉 as a function of
the temptation b to defect for several multiplex networks with different number of layers M (the number
of layers is indicated in the legend). In panel (a) the network layers are ER graphs with 〈k〉 = 3 (sparse
graphs) while in panel (b) we have 〈k〉 = 20. In both cases N = 250 nodes. As can be observed, the
resilience of cooperation increases remarkably as the number of layers M grows. Reprinted by permission
from Macmillan Publishers Ltd: [135] ©2012.



354 Opinion Dynamics and Game Theory

of the interlinks. If node (i, α) is coupled with the corresponding node (i, β) in the other
layer β, its payoff is given by

Uiα = πiα + aπiβ , (16.15)

where a indicates the strength of the coupling between the two layers. If, on the contrary,
node (i, α) is not coupled with the corresponding node in the other layer we have

Uiα = πiα. (16.16)

The strategies of the players evolve by picking a random node (i, α) of the duplex network
and a random neighbour (j, α) of the same layer and making the change siα = sjα with
probability

Wi→j = 1

1 + exp
[
(Uiα − Ujα)/D

] , (16.17)

where D is taken to be D = 0.1.
In this context it is shown that for sufficiently high values of the coupling strength a

there is always an optimal density of interlinks ρ for sustaining the cooperative behaviour.
This surprising result shows that a moderate coupling between the layers can be actually
more beneficial than a complete coupling.

Finally, we have seen two scenarios for the implementation of the two-player game of
multiplex networks. While in both cases it is shown that multiplexity can be beneficial
for sustaining the cooperation behaviour, it is also evident that the results obtained are
far from trivial and that the study of game theory on multilayer networks can be highly
surprising.



Appendix A
The Barabási–Albert model:
the Master Equation

A.1 The master equation

In this appendix we show the derivation of the exact degree distribution of the Barabási–Albert
model defined in Sec. 2.8.4 using the master equation approach [108, 178]. The master equation
is the equation describing the evolution of the average number Nk(t) of nodes that at time t have
degree k. Specifically, it indicates that the average number Nk(t + 1) of nodes of degree k at time
t+1 is equal to the average number Nk(t) of nodes of degree k at time t plus the average number of
nodes that at time t have degree k − 1 and acquire a link, minus the average number of nodes that
at time t have degree k and acquire a link. Therefore, this equation reads for the Barabási–Albert
model,

Nk(t + 1) = Nk(t) + m�(k − 1)Nk−1(t) − m�(k)Nk(t) for k > m,
Nk(t + 1) = Nk(t) − m�(k)Nk(t) + 1 for k = m

(A.1)

where �(k) is given by the probability that a node of degree k acquires a new link, i.e. enforces the
linear preferential attachment

�(k) = k∑
k kNk(t)

. (A.2)

A.2 Derivation of the exact degree distribution

Considering the Eq. (A.2) enforcing the preferential-attachment mechanism, we observe that for
t � 1 we can approximate

�(k) = k∑
k kNk(t)

� k
2mt

. (A.3)

In fact, the sum in the denominator is equal to twice the total number of links, therefore since at
each time we add m links for large times t � 1, we can put

∑
k

kNk(t) � 2mt. (A.4)

Using this approximation valid for t � 1 we can write the Eq. (A.1) as

Nk(t + 1) = Nk(t) + k−1
2t Nk−1(t) − k

2t Nk(t) for k > m,
Nk(t + 1) = Nk(t) − k

2t Nk(t) + 1 for k = m.
(A.5)
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Now we observe that for sufficiently large values of t � 1 we have that the fraction of nodes of
degree k converges to the degree distribution P(k), i.e.

Nk(t) � tP(k) (A.6)

where the total number of nodes in the network is given by N � t. Substituting Eq. (A.6) into the
master equation (A.5), we obtain

(t + 1)P(k) = tP(k) + (k−1)
2 P(k − 1) − k

2 P(k) for k > m
(t + 1)P(k) = tP(k) − k

2 P(k) + 1 for k = m.
(A.7)

Simplifying the equation valid for k > m we obtain

P(k) = k − 1
2 + k

P(k − 1) (A.8)

for k > m. This recursive equation for k > m can be solved in terms of P(m) giving

P(k) =
k∏

j=1+m

[
j − 1
2 + j

]
P(m) = m(m + 1)(m + 2)

k(k + 1)(k + 2)
P(m). (A.9)

Taking Eq. (A.7) as valid for k = m we obtain

P(m) = 2
2 + m

. (A.10)

Therefore, it follows that the degree distribution of the Barabási–Albert model in the limit t � 1
is given by

P(k) = 2m(m + 1)

k(k + 1)(k + 2)
. (A.11)



Appendix B
Entropy and Null Models of Single
Networks

B.1 Maximum-entropy network ensembles

B.1.1 General remaks

In this appendix we provide the details for fully characterizing maximum-entropy network
ensembles by following Refs [39, 40, 6, 46, 7]. As discussed in Sec. 2.8.5 these network ensembles
constitute the least biased network models satisfying a given set of constraints. Therefore, this
framework is widely used to construct null models of networks.

B.1.2 Definitions

Given the set of all the networks G = (V , E) with |V | = N nodes, a network ensemble is specified
when a probability P(G) is given to each network of this set.

The entropy S of an ensemble is the logarithm of the number of typical networks in the ensemble
and is given by

S = −
∑
G

P(G) ln P(G). (B.1)

A maximum-entropy network ensemble satisfying a given set of constraints is the most unbiased
ensemble displaying the desired properties.

B.1.3 Constraints

We distinguish between soft constraints and hard constraints.
The soft constraints are the constraints satisfied on average over the ensemble of networks. The
hard constraints are the constraints satisfied by each network in the ensemble.

Examples of hard constraints are constraints of the type

Fμ(G) = Cμ, (B.2)

where Fμ(G) is a network measure whose value is fixed to be Cμ and each independent constraint
imposed on the network is indicated by μ = 1, 2, . . . , NC. A constraint of this type can fix the
total number of links L or the degree ki of a node i. Indicating with aij the adjacency matrix of the
network we have for these two types of constraint
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F(G) =
∑
i<j

aij = L,

Fi(G) =
N∑

j=1

aij = ki . (B.3)

Soft constraints are constraints that instead fix the average value of a network measure Fμ(G) in
the network ensemble and are therefore of the type

∑
G

P(G)Fμ(G) = Cμ. (B.4)

A constraint of this type can fix the average number of links L of network in the ensemble of the
average degree ki of node i. Therefore, corresponding to these two types of constraint we will have

∑
G

P(G)

⎡
⎣∑

i<j

aij

⎤
⎦ = L,

∑
G

P(G)

⎡
⎣ N∑

j=1

aij

⎤
⎦ = ki . (B.5)

B.2 Canonical and microcanonical network ensembles

B.2.1 Canonical network ensemble

The probability PC(G) in a canonical network ensemble satisfying NC constraints
∑
G

PC(G)Fμ(G) = Cμ (B.6)

with μ = 1, 2 . . . , NC has the exponential form given by

PC(G) = 1
ZC

e−
∑NC

μ=1 λμFμ(G) (B.7)

where ZC is the normalization sum and where the Lagrangian multipliers λμ are fixed by the
constraints in Eq. (B.6).

In order to find PC(G) we maximize the entropy of the ensemble S under the constraints given
by Eq. (B.6) and the condition that PC(G) is normalized. We define a functional F in which we
have introduced the Lagrangian multipliers λμ,

F = −
∑
G

PC(G) ln PC(G) −
∑
μ

λμ

(∑
G

PC(G)Fμ(G) − Cμ

)

− ν

(∑
G

PC(G) − 1

)
. (B.8)
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Differentiating with respect to PC(G) and setting the partial derivative to zero,

∂F
∂PC(G)

= − ln PC(G) − 1 −
∑
μ

λμFμ(G) − ν = 0, (B.9)

we get

PC(G) = e−
∑

μ λμFμ(G)−ν−1. (B.10)

Differentiating F with respect to the Lagrangian multipliers λμ and the Lagrangian multiplier
ν and setting the partial derivatives to zero, we get the constraint defined by Eq. (B.6) and the
normalization condition for PC(G). Imposing the normalization condition we fix the chemical
potential ν and have

PC(G) = 1
ZC

e−
∑

μ λμFμ(G), (B.11)

where

ZC =
∑
G

e−
∑

μ λμFμ(G). (B.12)

Here the Lagrangian multipliers λμ are determined imposing the constraints

∑
G

PC(G)Fμ(G) =
∑
G

1
Z

e−
∑NC

μ=1 λμFμ(G)Fμ(G) = Cμ. (B.13)

B.2.2 Examples of canonical network ensembles

First let us consider the canonical network ensemble in which the average number of links are
fixed. Therefore, the ensemble satisfies only the constraint

∑
G

PC(G)

⎡
⎣∑

i<j

aij

⎤
⎦ = L. (B.14)

The probability PC(G) in this ensemble is given by

PC(G) = 1
ZC

e−λ
∑

i<j aij . (B.15)

Since the sum over all graphs G can be expressed as a sum over all elements of the adjacency
matrix a, the normalization sum ZC is given by

ZC =
∑

a

e−λ
∑

i<j aij =
⎛
⎝ ∑

aij=0,1

e−λaij

⎞
⎠

N(N−1)/2

= (
1 + e−λ

)N(N−1)/2
. (B.16)

The probability of each link is given by

p =
∑

a

aijPC(G) = e−λ

1 + e−λ
. (B.17)
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The quantity p, or equivalently the quantity λ, is fixed by the condition

pN(N − 1)/2 = L. (B.18)

Therefore we have that this is the G(N , p) ensemble, in which the probability PC(G) is given by

PC(G) = pL(1 − p)N(N−1)/2−L . (B.19)

Let us now consider the case in which we fix the average degree sequence {ki}i=1,2,...,N . The
network ensemble satisfies the N soft constraints

∑
G

PC(G)

⎡
⎣ N∑

j=1

aij

⎤
⎦ =

N∑
j=1

pij = ki (B.20)

with i = 1, 2 . . . , N . The probability of a network in the ensemble is given by

PC(G) = 1
ZC

e−
∑N

i=1 λi
∑N

j=1 aij (B.21)

where the normalization constant ZC is given by

ZC =
∑

a

e−
∑N

i=1 λi
∑N

j=1 aij =
∑

a

e−
∑

i<j (λi+λj )aij

=
∏
i<j

(
1 + e−λi−λj

)
. (B.22)

The probability pij of a link between node i and node j is given by

pij =
∑

a

aij

[
1

ZC
e−

∑
r<s(λr+λs)ars

]
= e−λi−λj

1 + e−λi−λj
. (B.23)

The Lagrangian multipliers are fixed by the conditions

N∑
j=1

pij =
N∑

j=1

e−λi−λj

1 + e−λi−λj
= ki . (B.24)

The probability PC(G) takes the form

PC(G) =
∏
i<j

p
aij
ij

(
1 − pij

)1−aij . (B.25)

The entropy takes the form

S = −
∑
i<j

pij ln pij −
∑
i<j

(
1 − pij

)
ln

(
1 − pij

)
. (B.26)

If the maximum degree K of the network is below the structural cutoff, i.e. if

K � √〈k〉N , (B.27)
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we have that in the first approximation

e−λi = ki√〈k〉N � 1, (B.28)

and therefore

pij = kikj

〈k〉N . (B.29)

Therefore, in this limit the network ensemble is a random uncorrelated network with degree
sequence {ki}.

B.2.3 Microcanonical network ensemble

The maximum-entropy network ensemble in which every network with non-zero probability
satisfies the hard constraints

Fμ(G) = Cμ, (B.30)

with μ = 1, 2, . . . , NC assigns to each network G of N nodes the probability PM(G) given by

PM(G) = 1
ZM

NC∏
μ=1

δ
(
Fμ(G), Cμ

)
, (B.31)

where δ(x, y) is the Kronecker delta and ZM indicates the total number of networks satisfying the
hard constraints defined in Eq. (B.30). In fact, the most unbiased ensemble satisfying the hard
constraints defined above is the ensemble that attributes the same non-zero probability to each
network satisfying the constraints and zero probability to all the other networks.

The entropy � of the microcanonical ensemble is given by

� = ln ZM . (B.32)

The relation between � and the entropy S of the conjugated canonical ensemble given by

S = −
∑
G

PC(G) ln PC(G) (B.33)

is simply given by

� = S − � (B.34)

where � is given by the absolute value of the logarithm of the probability that networks of the
canonical ensembles satisfy the hard constraints, i.e.

� = − ln

[∑
G

PC(G)δ
(
Fμ(G), Cμ

)]
. (B.35)

In order to derive this result let us first show that since the probability PC(G) is given by Eq.
(B.7) the entropy S of the canonical ensemble is given by [7]
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S =
∑
G

PC(G)

[∑
μ

λμFμ(G) + ln ZC

]

=
∑
μ

λμCμ + ln ZC. (B.36)

If we start from the definition of � given by Eq. (B.35) we have

e−� =
∑
G

PC(G)δ
(
Fμ(G), Cμ

)

=
∑
G

1
ZC

e−
∑

μ λμFμ(G)
δ
(
Fμ(G), Cμ

)

= 1
ZC

e−
∑

μ λμCμ
∑
G

δ
(
Fμ(G), Cμ

)

= e−S+� . (B.37)

Therefore we get

� = S − �. (B.38)

When the number of imposed constraints is growing linearly with the number of nodes, it is
found that � is extensive and cannot be neglected in the large network limit, proving the non-
equivalence of the canonical and microcanonical network ensemble. In the case in which the
imposed constraints are linear it is possible to calculate � [46, 7]. In the case in which the
constraints fix the degree sequence of the network � is given by Eq. (2.96) as long as the network
is uncorrelated.



Appendix C
Growing Multiplex Networks:
the Master Equation

C.1 Master equation

In this appendix we follow Ref. [228] and we will discuss the general formalism to derive the
exact joint degree distribution of growing multiplex networks with linear generalized preferential
attachment defined in Sec. 10.2.2. Furthermore, we will provide detail for the explicit derivation
of the joint degree distribution of the growing duplex network model with c1,1 = c2,2 = 1, i.e.
Eq. (10.9).

To derive the exact degree distribution of growing multiplex network models we will extend the
master equation approach defined in Appendix A to the multiplex network scenario. For simplicity,
we will consider a duplex network with M = 2 layers. We start from a small connected network and
at each time we add a node which brings, at the same time, m new links in layer 1 and m new links
in layer 2. We assume that at each time the expected number of new links in layer one attached to
a node i of degree k[1]

i in layer 1 and degree k[2]
i in layer 2 is given by m�[1](k[1]

i , k[2]
i ). Similarly,

the expected number of new links in layer 2 attached to a node i is given by m�[2](k[1]
i , k[2]

i ). By
assuming that the probability of attaching a new link to a node i either in layer 1 or in layer 2 is

small, i.e. �[1](k[1]
i , k[2]

i )) � 1 and �[2]
(

k[1]
i , k[2]

i

)
� 1, we can neglect the probability that a single

node i acquires a link in both layers in the same time step. In these conditions the master equation
of the average number of nodes Nk,q(t) that at time t have degrees k[1] = k and k[2] = q is given by

Nk,q(t + 1) = Nk,q(t) + m�[1](k − 1, q)Nk−1,q(t)[1 − δ(k, m)]

+ m�[2](k, q − 1)Nk,q−1(t)[1 − δ(q, m)]

− m
[
�[1](k, q) + �[2](k, q)

]
Nk,q(t) + δ(k, m)δ(q, m) (C.1)

for k ≥ m and q ≥ m, where δ(x, y) indicates the Kronecker delta. By considering the model with
linear generalized preferential attachment defined in Eq. (10.1) it is straightforward to derive the
expression of �[α](k, q) given by

�[1](k, q) = c1,1k + c1,2q

N [1]

�[2](k, q) = c2,1k + c2,2q

N [2]
, (C.2)

where cα,β ∈ [0, 1] with c1,1 + c1,2 = c2,1 + c2,2 = 1 and N [1],N [2] are normalization constants
equal to the double of the number of links in each layer.
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C.2 Derivation of the exact degree distribution

C.2.1 General case

Since at each time we add exactly m links to each layer, we have thatN [1],N [2] can be approximated
for large times t � 1 by

N [α] � 2mt, for α = 1, 2. (C.3)

Therefore, by putting

�[1](k, q) = c1,1k + c1,2q
2mt

= Ak,q

mt
,

�[2](k, q) = c2,1k + c2,2q
2mt

= Bk,q

mt
. (C.4)

The master equation reads

Nk,q(t + 1) = Nk,q(t) + Ak−1,q

t
Nk−1,q(t)[1 − δ(k, m)] + Bk,q−1

t
Nk,q−1(t)[1 − δ(q, m)]

−
[

Ak,q

t
+ Bk,q

t

]
Nk,q(t) + δ(k, m)δ(q, m), (C.5)

for k ≥ m and q ≥ m. Assuming that Nk,q = tP(k, q) is valid in the large time limit t � 1, we can
solve for the combined degree distribution P(k, q) indicating the probability that a node has at the
same time degree k in layer 1 and degree q in layer 2. We get that the joint degree distribution is
determined by the recursive equations

P(m, q) =
⎛
⎝ q∏

j=m+1

Bm,j−1

1 + Am,j + Bm,j

⎞
⎠ P(m, m),

P(k, q) =
q∑

r=m

⎛
⎝ q∏

j=r+1

Bk,j−1

1 + Ak,j + Bk,j

⎞
⎠ Ak−1,r

1 + Ak,r + Bk,r
P(k − 1, r). (C.6)

C.2.2 Case c1,1 = c2,2 = 1

Let us now consider the linear generalized preferential attachment, in which c1,1 = c2,2 = 1 and
c1,2 = c2,1 = 0. In this case we have

Ak,q = k
2

,

Bk,q = q
2

. (C.7)

The recursive Eqs (C.6) read

P(m, q) = �(q)�(3 + 2m)

�(m)�(3 + q + m)
P(m, m),

P(k, q) =
q∑

r=m

(
�(q)�(3 + r + k)

�(r)�(3 + q + k)

)
k − 1

2 + k + q
P(k − 1, r) (C.8)
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where P(m, m) is fixed by the normalization condition
∑∞

k=m
∑∞

q=m P(k, q) = 1. Using the relation

q∑
r=m

�(k + r − 2m)

�(r − m + 1)�(k − m)
= �(k + q − 2m + 1)

�(k − m + 1)�(q − m + 1)
(C.9)

it can be proved recursively that the joint degree distribution P(k, q) is given by

P(k, q) = 2�(2 + 2m)

�(m)�(m)

�(k + q − 2m + 1)

�(k + q + 3)

�(q)
�(q − m + 1)

�(k)

�(k − m + 1)
. (C.10)

Summing over the degree in layer two we can find the degree distribution P(k) in layer one, i.e.
P(k) = ∑∞

q=m P(k, q) obtaining the known result for a single layer,

P(k) = 2m(1 + m)

k(k + 1)(k + 2)
. (C.11)

Finally, the conditional average 〈k|q〉 = 〈
k[1]|k[2]

〉
quantifying the degree correlations among the

two different networks is given by

〈k|q〉 =
∑∞

k=m kP(k, q)∑∞
k=m P(k, q)

= m
1 + m

(q + 2). (C.12)

Similar expressions are obtained for P(q) and 〈q|k〉 by summing Eq. (C.10) over k.





Appendix D
Percolation of interdependent networks

D.1 General remarks

In this Appendix we follow Ref. [76] and we derive the equations determining the fraction of nodes
in the MCGC in a generic multiplex network with link overlap when the probability that each
node is damaged is given by f = 1 − p. Additionally, we predict the behaviour of this percolation
transition on multiplex network ensembles with given multidegree distribution P({k �m}). Therefore,
this Appendix complements the discussion presented in Sec. 11.4.

D.2 The message-passing algorithm

We consider a multiplex network with M layers and adjacency matrix a[α] in each layer α =
1, 2, . . . , M which is locally tree-like. Initially, we assume that we know the set of nodes that are
initially damaged. The configuration of the initial damage is indicated by the variables {si} where
si = 0 (si = 1) if node i is (is not) damaged. The message-passing algorithm for given initial
damage configuration (see Sec. 11.4) determines whether node i belongs (σi = 1) or does not
belong (σi = 0) to the Mutually Connected Giant Component (MCGC), as long as the multiplex
network is locally tree-like. The algorithm requires the determination of the set of messages

�ni→j =
(

n[1]
i→j , n[2]

i→j , . . . , n[α]
i→j , . . . , n[M]

i→j

)
(D.1)

going from node i to node j connected at least in one layer. Each message n[α]
i→j indicates whether(

n[α]
i→j = 1

)
or not

(
n[α]

i→j = 0
)

node i connects node j to the MCGC through links in layer α. The

messages �ni→j and the indicator function σi are determined by the message-passing algorithm
defined by the Eqs (11.32), (11.33) and (11.34).

For the further derivation it is useful to consider an alternative formulation of the message-
passing algorithm for a given configuration of the initial disorder. This alternative formulation will
allow us to perform easily the average over random initial damage configurations. To this end, we

introduce the variable σ
�m,�n

i→j which indicates whether
(
σ

�m,�n
i→j = 1

)
or not

(
σ

�m,�n
i→j = 0

)
node i sends

to node j the messages

�ni→j = �n
given that node i and node j are linked by a multilink

�m = �mij =
(

a[1]
ij , a[2]

ij , . . . , a[α]
ij , . . . , a[M]

ij

)
. (D.2)
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According to Eqs (11.32) and (11.33) a node i, in order to send a message �n �= �0, should be
connected to the MCGC by nodes different from node j in all the layers where n[α] = 1 and in
all the layers where m[α] = 0. In fact, the first requirement is necessary for having n[α] = 1 and
the second requirement is necessary for having vi→j = M as requested by Eq. (11.32) because
m[α] = a[α]

ij = 0. Additionally, in every layer α in which m[α] = a[α]
ij = 1 and n[α] = 0, node i must

not receive any positive messages from neighbouring nodes different from node j. Therefore, we
have for �n �= �0

σ
�m,�n

i→j = si

M∏
α=1

⎧⎪⎨
⎪⎩

(
m[α]

)n[α]

⎡
⎣1 −

∏
�∈N(i)\j

(
1 − n[α]

�→i

)⎤
⎦

n[α]m[α]+(
1−m[α])

×
⎡
⎣ ∏

�∈N(i)\j

(
1 − n[α]

�→i

)⎤
⎦

(
1−n[α])m[α] ⎫⎪⎬

⎪⎭, (D.3)

while for �n = �0 we have

σ
�m,�0

i→j = 1 −
∑
�n�=�0

σ
�m,�n

i→j . (D.4)

Note that out of the messages σ
�m,�n

i→j with different value of �n only one (corresponding to �n = �ni→j)
has value one and all the others are zero, therefore

�ni→j = argmax�nσ
�m,�n

i→j . (D.5)

Let us now further modify Eq. (D.3) by using the identity valid for q[α] taking values q[α] = 0, 1

M∏
α=1

(1 − zα)q[α] =
∏

α|q[α]>0

(1 − zα) =
∑

�r|r[α]=0 if q[α]=0

(−1)
∑M

α=1 r[α]
(zα)r[α]

, (D.6)

where the sum in the last term is over all the vectors

�r =
(

r[1], r[2], . . . , r[α], . . . , r[M]
)

(D.7)

of elements r[α] = 0, 1 for q[α] = 1 and r[α] = 0 for q[α] = 0. Using this relation in Eq. (D.3) we
obtain

σ
�m,�n

i→j = si

∑
�r|r[α]=0 if (1−n[α])m[α]=1

{[
M∏

α=1

(
m[α]

)n[α]
]

× (−1)
∑M

α=1 r[α] ∏
�∈N(i)\j

M∏
α=1

(
1 − n[α]

�→i

)r[α]+m[α](1−n[α])
⎫⎬
⎭. (D.8)

Since between all the messages σ
�m,�n

i→j sent between node i to node j only one message is equal to
one, we have
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σ
�m,�n

i→j = si

∑
�r|r[α]=0 if (1−n[α])m[α]=1

{[
M∏

α=1

(
m[α]

)n[α]
]

× (−1)
∑M

α=1 r[α] ∏
�∈N(i)\j

⎛
⎜⎝1 −

∑
�n′| ∑

α(n′)[α][r[α]+(1−n[α])m[α]]>0

σ
�m�i �n′

�→i

⎞
⎟⎠

⎫⎪⎬
⎪⎭. (D.9)

Let us now assume that the initial configuration of the damage {si} is drawn from probability P({si})
given by

P({si}) =
N∏

i=1

psi (1 − p)1−si . (D.10)

By averaging the messages σ
�m,�n

i→j over the distribution P({si}) we can formulate a different message-
passing algorithm able to predict the probability σ̂i that a random node belongs to the MCGC for

a random realization of the initial disorder. In this case the generic message σ̂
�mij ,�n

i→j indicates the

probability that node i connects node j to the MCGC in the layers α where n[α] = 1. These

messages σ̂
�mij ,�n

i→j are given by the average of the messages σ
�m,�n

i→j over the random realization of the
initial disorder. Therefore, they satisfy the following recursive equations:

σ̂
�m,�n

i→j = p
∑

�r|r[α]=0 if (1−n[α])m[α]=1

{[
M∏

α=1

(
m[α]

)n[α]
]

(−1)
∑

α r[α]

×
∏

�∈N(i)\j

⎛
⎜⎝1 −

∑
�n′| ∑

α(n′)[α][r[α]+(1−n[α])m[α]]>0

σ̂
�m�i �n′

�→i

⎞
⎟⎠

⎫⎪⎬
⎪⎭. (D.11)

Similarly, the probability σ̂i that node i is in the MCGC is the average of the indicator function σi
over the distribution P({si}), and satisfies

σ̂i = p
∑

�r
(−1)

∑
α r[α]

⎡
⎢⎣ ∏

�∈N(i)

⎛
⎜⎝1 −

∑
�n′| ∑

α(n′)[α]r[α]>0

σ̂
�m�i �n′

�→i

⎞
⎟⎠

⎤
⎥⎦. (D.12)

Further averaging these equations over the ensemble of multiplex networks with multidegree

distribution P({k �m}) gets that the probability S �m,�n indicating the average of the messages σ̂
�mij ,�n

i→j over
the network ensemble is given by

S �m,�n = p
∑
{k �m}

k �m〈
k �m〉 P (

{k �m}
) ∑
�r|r[α]=0 if m[α](1−n[α])=1

{
(−1)

∑M
α=1 r[α]

×
∏
�m′ �= �m

⎛
⎝1 −

∑
�n′| ∑

α n[α]′[r[α]+m[α](1−n[α])]>0

S �m′,�n′

⎞
⎠

k �m′

×
⎛
⎝1 −

∑
�n′| ∑

α n[α]′[r[α]+m[α](1−n[α])]>0

S �m′,�n′

⎞
⎠

k �m−1
⎫⎪⎬
⎪⎭, (D.13)
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as long as �m �= �0. Similarly, the probability S that a random node is in the MCGC is given by

S = p
∑
{k �m}

P
(
{k �m}

) ∑
�r

⎧⎪⎨
⎪⎩(−1)

∑M
α=1 r[α] ∏

�m

⎛
⎝1 −

∑
�n| ∑

α n[α]r[α]>0

S �m,�n

⎞
⎠

k �m ⎫⎪⎬
⎪⎭. (D.14)

For networks with an uncorrelated multidegree distribution P({k �m}) given by Eq. (10.53) we get

S �m,�n = p
∑

�r|rα=0 if m[α](1−n[α])=1

⎧⎨
⎩(−1)

∑M
α=1 r[α]

G1
�m

⎛
⎝1 −

∑
�n′| ∑

α n[α]′[r[α]+m[α](1−n[α])]>0

S �m′,�n′

⎞
⎠

×
∏
�m′ �= �m

G0
�m′

⎛
⎝1 −

∑
�n′| ∑

α n[α]′[r[α]+m[α](1−n[α])]>0

S �m′,�n′

⎞
⎠

⎫⎬
⎭ (D.15)

with �m �= �0 and

S = p
∑
{k �m}

∑
�r

(−1)
∑M

α=1 r[α] ∏
�m

G0
�m

⎛
⎝1 −

∑
�n| ∑

α n[α]r[α]>0

S �m,�n

⎞
⎠. (D.16)

Here the generating function G �m
0 (z) and G �m

1 (z) are given by

G �m
0 (z) =

∑
k

P �m(k)zk,

G �m
1 (z) =

∑
k

k〈
k �m〉 P �m(k)zk−1. (D.17)

D.3 Percolation of duplex network

In this section we apply the formalism presented in the previous paragraph to study the percolation
of an interdependent duplex network with given multidegree distribution. We consider here a
duplex network with Poisson multidegree distribution and

〈
k(1,0)

〉 = 〈
k(0,1)

〉 = c1 with
〈
k(1,1)

〉 = c2.
In this case, the dynamical variables that we have to consider are

S = S �m, �m = x/p (D.18)

with �m �= �0 and

S�1,(1,0)
= S�1,(0,1)

= x2,1/p. (D.19)

The equations for x and x2,1 read
(

F1(x)

F2(x)

)
= F(x) = 0,
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where the functions F1(x) and F2(x) are given by

F1(x) = x−
(

1−2e−ĉ1x−ĉ2(x+x2,1)+e−2ĉ1x−ĉ2(x+2x2,1)
)

,

F2(x) = u−
(

e−ĉ1x−ĉ2(x+x2,1)−e−2ĉ1x−ĉ2(x+2x2,1)
)

, (D.20)

the vector x is given by

x =
(

x
x2,1

)

and ĉ1 = c1p and ĉ2 = c2p.
The points of discontinuous and hybrid phase transition can be found by imposing the set of

equations

F(x�) = 0

det J|x=x� = 0, (D.21)

where J is the Jacobian matrix of F(x).
The critical point of continuous phase transition can be found by imposing

det J|x=0 = 0. (D.22)

This equation can be expressed explicitly as

1 − 2ĉ2 + ĉ2
2 = 0 (D.23)

and has a unique real solution for ĉ2 = 1. The resulting phase diagram is shown in Fig. 11.11).
In this case the only duplex network displaying a continuous transition is the one with complete
overlap, i.e. having c1 = 0, for which we observe the emergence of the MCGC at pc2 = 1.





Appendix E
Directed Percolation of Interdependent
Networks

E.1 General remarks

In this Appendix we provide the derivation of the equations determining the Directed Mutually
Connected Giant Component (DMCGC) introduced in Sec. 12.3 for a multiplex network with
link overlap when the probability that each node is damaged is given by f = 1−p. Additionally, we
discuss the directed percolation transition in multiplex network ensembles with given multidegree
distribution P

({k �m}). In this Appendix we follow mainly Ref. [77].

E.2 The message-passing algorithm

Assuming that the multiplex network under consideration is locally tree-like and that the initial
configuration of the damage of the nodes {si} is known, it is possible, using the message-passing
algorithm determined by Eqs (12.40) and (12.41) to predict which nodes belong and which nodes
do not belong to the DMCGC.

By using the Eq. (D.6) in the message-passing equations Eq. (12.41) we can express the
message σi→j sent from node i to node j as

σi→j = si

∑
�r

(−1)
∑

α r[α]
M∏

α=1

∏
�∈Nα(i)\j

(
1 − σ�→i

)r[α]
, (E.1)

where Nα(i) indicates the set of nodes that are neighbours of node i in layer α. Note that Eq. (E.1)

the sum is performed over all vectors

�r =
(

r[1], r[2], . . . , r[α], . . . , r[M]
)

(E.2)

with elements r[α] = 0, 1. Since a node � is a neighbour of node i in layer α if and only if m[α]
�i = 1,

we have

σi→j = si

∑
�r

(−1)
∑

α r[α] ∏
� �=j

(
1 − σ�→i

)∑M
α=1 r[α]m[α]

�i . (E.3)

By following similar steps it can be shown that the indicator function σi given by Eq. (12.40) can
be also expressed as

σi = si

∑
�r

(−1)
∑

α r[α]
N∏

�=1

(1 − σ�→i)
∑M

α=1 r[α]m[α]
�i . (E.4)
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Therefore, when the initial configuration of the damage {si} is drawn for the distribution

P ({si}) =
N∏

i=1

psi (1 − p)1−si , (E.5)

the messages σ̂i→j indicating the average of σi→j and the probabilities σ̂i that node i belongs to the
DMCGC derived by averaging σi over the distribution P({si}) satisfy the following set of recursive
equations:

σ̂i→j = p
∑

�r
(−1)

∑
α r[α] ∏

� �=j

(
1 − σ̂�→i

)∑M
α=1 r[α]m[α]

�i ,

σ̂i = p
∑

�r
(−1)

∑
α r[α]

N∏
�=1

(
1 − σ̂�→j

)∑M
α=1 r[α]m[α]

�i . (E.6)

Finally, we can consider a random multiplex network with given multidegree distribution
P({k �m}). In this random multiplex network the probability S′

�m that by following a multilink �m we
reach a node in the DMCGC can be found by averaging the messages σ̂i→j over all multilinks
�mij = �m and the probability S that a random node is in the DMCGC can be found by averaging
σ̂i . Therefore these quantities satisfy

S �m = p
∑
{k �m′ }

k �m〈
k �m〉P (

{k �m′ }
) ∑

�r
(−1)

∑M
α=1 r[α] ∏

�m′| ∑α m[α]′r[α]>0

(1 − S �m)k �m′−δ( �m, �m′)
,

S = p
∑
{k �m′ }

P
(
{k �m′ }

) ∑
�r

(−1)
∑M

α=1 r[α] ∏
�m′| ∑α m[α]′r[α]>0

(1 − S �m′)k �m′
. (E.7)

For uncorrelated multidegrees of the nodes, when the distribution P
({k �m}) follows Eq. (10.53),

these equations read

S �m = p
∑
{k �m′ }

∑
�r

(−1)
∑M

α=1 rα
[
G1

�m (1 − S �m)
]f ( �m,�r) ∏

�m′| ∑α m[α]′r[α]>0& �m′ �= �m
G0

�m′ (1 − S �m′) ,

S = p
∑
{k �m′ }

∑
�r

(−1)
∑M

α=1 r[α] ∏
�m| ∑α m[α]′r[α]>0

G0
�m′ (1 − S �m′) (E.8)

where f ( �m, �r) = 1 if
∑

α r[α]m[α] > 0 and otherwise f ( �m, �r) = 0 and the generating function G �m
0 (z)

and G �m
1 (z) are given by

G �m
0 (z) =

∑
k

P �m(k)zk,

G �m
1 (z) =

∑
k

k〈
k �m〉P �m(k)zk−1. (E.9)

Note that this algorithm and therefore Eqs (E.8) reduce to the equations found in Sec. 11.3 in the
absence of link overlap, i.e. where the only non-trivial multilinks are the ones with

∑M
α=1 m[α] = 1.
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E.3 Directed percolation of duplex network

We consider now the case of a duplex M = 2 in which the multidegree distributions are Poisson
with

〈
k(1,1)

〉 = c2, and
〈
k(0,1)

〉 = 〈k(1,0)〉 = c1. Due to the properties of the Poisson distribution, we
have S = S �m, for every �m �= �0, where S satisfies the equation

S = p
[
1 − 2e−(c1+c2)S + e−(2c1+c2)S

]
. (E.10)

By setting x = S/p, and ĉ1 = c1p, ĉ2 = c2p we can study the solutions of the equivalent equation

f (x) = x −
[
1 − 2e−(ĉ1+ĉ2)x + e−(2ĉ1+ĉ2)x

]
= 0 (E.11)

in the
(
ĉ1, ĉ2

)
parameter plane. The critical line of discontinuous and hybrid phase transition is

found by solving the system of equations

f (xc) = 0,

df (x)

dx

∣∣∣∣
x=xc

= 0. (E.12)

The critical line of continuous second-order phase transition is found by solving the equation

df (x)

dx

∣∣∣∣
x=0

= 0. (E.13)

We note that there is a tricritical point for c2p = 1, c2/c1 = √
2 characterized by satisfying

df (x)

dx

∣∣∣∣
x=0

= d2f (x)

dx2

∣∣∣∣
x=0

= 0. (E.14)

This point separates the line of discontinuous hybrid phase transitions and the line of continuous
second-order phase transitions in the plane (c1p, c2p) (see Fig. 12.4).





Appendix F
Immunization Strategies on Multiplex
Networks

F.1 General remarks

In this Appendix we describe how the SIR model on multiplex networks discussed in Sec. 13.3.2
is modified when the effect of immunization strategies is taken into account.

Here we follow Ref. [315] and we characterize the effect of immunization strategies in
the framework of the SIR epidemic spreading on multiplex networks with multiplex degree
distribution P(k). We therefore assume as in Sec. 13.3.2 that each node has the same dynamical
state across layers and that each node has a given probability to be immunized, i.e. we consider a
so-called node-based immunization.

F.2 Node-based immunization

In the node-based immunization strategy, each node i of the multiplex network is immunized with
probability φ (ki) where ki indicates the multiplex degree of node i. The node-based immunization
can be random if the immunization probability is independent of the multiplex degree, i.e.
φ(k) = φR; alternatively, the node-based immunization can be targeted when φ(k) is a non-
constant function of the multiplex degree k.

When this immunization strategy is adopted, the SIR equations in a multiplex network without
degree correlation can be written by mapping the epidemic spreading to bond percolation,
generalizing the framework discussed in Sec. 13.3.2. In this case the equations for the fraction
S of removed nodes at the end of the epidemics in a multiplex network without link overlap can
be obtained to be

S = 1 −
∑

k

P(k)(1 − φ(k))

M∏
α=1

(
1 − T [α]S′

α

)k[α]

, (F.1)

where T [α] is the transmissibility of the infection in layer α and where S′
α satisfies

S′
α = 1 −

∑
k

k[α]〈
k[α]

〉P(k)(1 − φ(k))

N∏
β=1

(
1 − T [β]S′

β

)k[β]−δ(α,β)

. (F.2)

By indicating with �, the maximum eigenvalue, the Jacobian matrix of Eq. (F.2), we can predict
that an epidemic will affect a finite fraction of the networks if and only if

� > 1. (F.3)
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By performing similar analytic steps discussed in the absence of the immunization, for a duplex
network the condition for having an epidemic reads

� = 1
2

[
T [1]κ1 + T [2]κ2 +

√(
T [1]κ1 − T [2]κ2

)2 + 4T [1]T [2]K1K2

]
> 1, (F.4)

where now the parameters κα ,Kα take into account the immunization protocols and are given by

κα =
〈
k[α]

(
k[α] − 1

)
(1 − φ (k))

〉
〈k[α]〉 ,

Kα =
〈
k[1]k[2] (1 − φ (k))

〉
〈k[α]〉 . (F.5)



Appendix G
Spectrum of the Supra-Laplacian

G.1 Diffusion equations

In this Appendix we follow Ref. [133] and we discuss in detail the different regimes of the diffusion
process in multiplex networks described in Sec. 14.2. The diffusion equation in a multiplex network
of M layer and N nodes is given by

dX
dt

= −LX, (G.1)

where L is the supra-Laplacian matrix and N · M-dimensional vector X indicates the dynamical
state of the replica nodes. For simplicity, here we focus on the diffusion properties of duplex
network with M = 2 layers. The supra-Laplacian of a duplex networks is a 2N × 2N matrix
of block structure given by

L =
(

L[1] + DxI −DxI

−DxI L[2] + DxI

)
, (G.2)

where L[1] and L[2] are respectively the Laplacian matrices in layer 1 and in layer 2 and Dx is the
interlayer diffusion constant. The dynamical state of the nodes can be written by distinguishing two
blocks indicating respectively the dynamical state of the replica node in layer 1 and the dynamical
state of the nodes in layer 2, i.e.

X =
(

x[1]

x[2]

)
. (G.3)

Let us indicate with 0 = λ1 ≤ λ2 ≤ λ3 · · · ≤ λN the N eigenvalues of the supra-Laplacian.
The typical timescale τ for relaxation of the diffusion process is given by the inverse of the

smallest eigenvalue of the supra-Laplacian that is different from zero, i.e.

τ = 1
λ2

, (G.4)

as long as there is a finite spectral gap in the supra-Laplacian spectrum. This result is a direct
extension of the result obtained for single layers in Sec. 3.5.1. Let us discuss in the subsequent
paragraphs the two distinct diffusion regime in the assumption that both layer 1 and layer 2 are
formed by connected networks.

G.2 Small interlayer diffusion constant Dx

Let us first show that for small interlayer diffusion constant (Dx � D�
x) the typical timescale for

relaxation is given by
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τ = 1
2Dx

. (G.5)

In order to explore this regime, let us consider the limiting case Dx = 0. In this case the supra-
Laplacian has a block diagonal structure formed by the two Laplacians L[1], L[2] of the two layers.
The zero eigenvalue of this matrix is twofold degenerate and we have λ1 = λ2 = 0. Since L[1]1 = 0
L[2]1 = 0, where 1 indicates the N-dimensional column vector of ones, it is possible to choose
the two eigenvectors of the kernel of the supra-Laplacian corresponding to the eigenvalues
λ1 = λ2 = 0 as

v1 =
(

1
1

)
. v2 =

(
1

−1

)
. (G.6)

When a small intralayer diffusion constant Dx � D�
x is introduced, the two eigenvectors v1 and v2

remain eigenvectors of the supra-Laplacian but the degeneracy of the zero eigenvalue is lifted. In
fact, it is easy to show that Lv1 = 0, i.e. the eigenvector v1 corresponds to the eigenvalue λ1 = 0.
Instead, v2 corresponds to the eigenvalue

λ2 = 2Dx.

In fact, we have

Lv1 =
(

L[1] + DxI −DxI
−DxI L[2] + DxI

) (
1

−1

)
= 2Dx

(
1

−1

)
. (G.7)

As long as Dx is small enough this eigenvalue is the smallest non-zero eigenvalue of the supra-
Laplacian and determines the typical relaxation time of the diffusion process according to Eq.
(G.5). Therefore, for small diffusion constant Dx � D�

x the typical timescale τ for diffusion is
given by

τ = 1
2Dx

. (G.8)

This result implies that in this regime the interlayer diffusion is the limiting value for the diffusion
spreading.

G.3 Large interlayer diffusion constant Dx

For large interlayer diffusion constant
(
Dx � D�

x
)
, λ2 saturates to a finite value

λ2 = λs

2

where λs is the smallest non-zero eigenvalue of the Laplacian of the aggregated network given by
L[1] + L[2]. This result can be easily obtained using perturbation theory using an expansion in
ε = 1/Dx. In fact, the supra-Laplacian L can be written as

L = Dx

[(
I −I

−I I

)
+ ε

(
L[1] 0

0 L[2]

)]
= DxL̂. (G.9)
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For ε = 0 the eigenvalues L̂ are 0 and 2, both N fold degenerate. The eigenvector corresponding to
the eigenvalues 0 and 2 are respectively given by the vectors (u|u) and (u| − u), i.e. vectors having
identical or opposite values in the i-th element and the (N + i)-th element. For a non-zero ε � 1,
it is possible to find the eigenvalues λi and the eigenvectors vi of the Laplacian L̂ by performing
an expansion in ε. Let us put

λi = λ
(0)
i + ελ

(1)
i + O

(
ε2

)

vi = v(0)
i + εv(1)

i + O
(
ε2

)
(G.10)

where λ
(0)
i and v(0)

i are the eigenvalues and the eigenvectors of L̂ for ε = 0. Let us consider the

eigenvalues λ
(0)
i = 0 and the corresponding eigenvectors v(0)

i = (u|u); the expansion in ε reads

λi = 0 + ελ̃

v =
(

u
u

)
+ ε

(
ũ1

ũ2

)
(G.11)

where the vector (ũ1|ũ2) is assumed to be orthogonal to (u|u). By plugging these expressions into
the eigenvalue equation, it can be obtained that

L[1]u + ũ1 − ũ2 = λ̃u,

L[2]u + ũ2 − ũ1 = λ̃u. (G.12)

Summing and subtracting these two equations, this system of equation can be rewritten as
(

L[1] + L[2]
)

u = 2λ̃u,(
L[1] − L[2]

)
u = 2(ũ1 − ũ2). (G.13)

From the first equation it emerges that u is an eigenvector of the aggregated Laplacian L[1] + L[2]

with eigenvalue λs = 2λ̃. From the second equation, considering the fact that (ũ1|ũ2) must be
perpendicular to (u|u) and therefore ũ2 = −ũ1 = −ũ, it is possible to obtain an expression for ũ
as a function of u, i.e. (

L[1] − L[2]
)

u = 4ũ. (G.14)

Therefore, we have

λ̃ = λs

2

v =
(

u + εũ
u − εũ

)
(G.15)

where λs and u are respectively the eigenvalue and the corresponding eigenvector of the aggregated
Laplacian L[1] + L[2] and ũ is given by Eq. (G.14). The eigenvalue λs of the aggregated Laplacian
satisfies

λs

2
≥ λ

[1]
2 + λ

[2]
2

2
≥ min

(
λ

[1]
2 , λ[2]

2

)
, (G.16)
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where λ
[α]
2 is the smallest non-zero eigenvalue of the single layer Laplacian L[α]. Therefore the

diffusion on the multiplex network will always be faster than the diffusion on the slowest layer of
the multiplex network. Super-diffusion, i.e. the fact that the timescale of the multiplex network
is actually faster than the timescale of diffusion in every single layer of the multiplex network, is
possible but not guaranteed in general.
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