Exercise: Analyzing the 117th United States Congress Social Network
Overview of the Dataset

This exercise is based on a social network dataset derived from interactions among
members of the 117th United States Congress, covering February 9, 2022, to June 9, 2022.
The network is a directed, weighted graph where edge weights represent empirically
calculated probabilities of influence (on Twitter) between Congress members. The dataset
comprises an edge list (defining connections and weights) and a JSON file with additional
metadata, such as usernames.

Part 1: Data Import and Initial Network Visualization
Importing the Network

To load the network data into Python, you will use the NetworkX library. Begin by importing
the weighted edge list, which defines the connections and their respective weights, using the
nx.read_weighted_edgelist function. Specify that the network is directed by setting

create_using=nx.DiGraph().
Additionally, import the JSON file containing node metadata:

with open("congress_network_data.json", 'r') as f:
data = json.load(f)
usernames = data[0]['usernamelList']

Initial Visualization

To understand the structure of the network, create a plot. Use nx.spring_layout to
arrange nodes for better clarity.

Key NetworkX functions:

e G.out_edges(node, data=True) to compute out-strength.
e nx.spring_layout(G) to position nodes.
e nx.draw() to visualize the graph.
nx.draw_networkx_labels() to label selected nodes.

Visualization Improvement
Afterward you can enhance the visualization by:

e Setting node sizes proportional to their strength (sum of outgoing edge weights).
e Adjusting edge widths proportional to weights.

e Highlighting the top influential nodes by labeling them.

Part 2: Computing Centrality Measures and Analyzing Relationships
Key Centrality Measures

1. Out-Strength: The total weight of edges outgoing from a node. This is a direct
measure of influence.

2. PageRank: A measure of the relative importance of nodes. Since this is a directed
network, you need to reverse the graph to reflect influence flow correctly. Use
G.reverse() and nx.pagerank() with the reversed graph. Indeed, PageRank
assumes that links pointing to a node indicate its importance. In this network, edge
weights represent influence from one node to another. To compute PageRank
correctly, reverse the graph (G.reverse()), so edges reflect the flow of influence
rather than originating from the influencer.

3. Betweenness Centrality: Quantifies how often a node acts as a bridge along the
shortest path between two other nodes. Use nx.betweenness_centrality().

Creating a Centrality Table

Compile a table of the top nodes for each centrality measure. Use pandas to organize and
export the data:

import pandas as pd
centrality_table = pd.DataFrame({
"Rank": range(1, 11),

"Top Out-Strength Nodes": [...], # Fill using usernames and
out-strength

"Top PageRank Nodes": [...], # Fill using PageRank scores

"Top Betweenness Nodes": [...] # Fill using betweenness
centrality

})

Are there individuals with low strength but high values of the other centrality measures?
Scatter Plots for Relationships

Visualize relationships between centrality measures (out-strength vs PageRank and
out-strength vs betweenness):

e Use matplotlib to create scatter plots.
e Label axes and provide titles to interpret correlations.

Part 3: Advanced Visualization with Centrality-Based Coloring
Color Coding by Centrality
Enhance your network plots by coloring nodes based on:

1. Out-Strength: Normalize strength values to scale between 0 and 1, and use a
colormap (e.g., plt.cm.plasma) to apply colors.

2. PageRank: Normalize PageRank scores similarly and apply a colormap.

3. Betweenness Centrality: Normalize and apply the colormap.

Always use the same colormap and normalization to make it easier to compare the different
centralities.

Key NetworkX functions:

e nx.draw() with node_color parameter for color mapping.
e plt.cm.ScalarMappable to add a color bar.

