
Exercise: Community Detection in the 117th United States Congress
Social Network

Overview of the Dataset

This exercise is based on a social network dataset capturing interactions between members
of the 117th United States Congress from February 9, 2022, to June 9, 2022. The network is
a directed, weighted graph where edge weights represent empirically calculated probabilities
of influence between Congress members. The dataset includes an edge list defining
connections and their weights and a JSON file containing metadata, such as usernames.

Part 1: Data Import and Initial Network Visualization

Objective: Import the dataset, construct the network, and visualize its structure.

1. Importing the Network: Use NetworkX to load the directed, weighted edge list with:

G = nx.read_weighted_edgelist("formatted_congress.edgelist",
create_using=nx.DiGraph(), nodetype=int)
Additionally, load the usernames from the JSON file:
with open("congress_network_data.json", 'r') as f:

data = json.load(f)
usernames = data[0]['usernameList']

1. Visualizing the Network:
○ Use the nx.spring_layout function to arrange nodes for clarity.
○ Visualize the graph with nx.draw, and scale node sizes by their out-strength

(sum of outgoing edge weights) using G.out_edges(node, data=True).
2. Key Functions:

○ nx.spring_layout(G)
○ nx.draw()

3. Enhanced Visualization:
○ Scale edge widths by their weights.
○ Label key nodes (e.g., those with the highest out-strength) using

nx.draw_networkx_labels().

Part 2: Community Detection Using Greedy Modularity Maximization

Objective: Identify communities within the directed network using the greedy modularity
algorithm.

1. Detecting Communities:



○ Use the greedy_modularity_communities function from NetworkX:

from networkx.algorithms.community import
greedy_modularity_communities

communities = list(greedy_modularity_communities(G))

2. Computing Modularity:
○ Evaluate the modularity score of the detected communities using:

modularity_score =
nx.algorithms.community.quality.modularity(G, communities)

○ The modularity function takes the graph and the list of communities as
input and outputs a score measuring the quality of the partition (higher values
indicate better separation of communities).

3. Output Format:
○ The result of the community detection is a list of sets, where each set

contains the nodes in a community.
○ The modularity function returns a single numerical score.

4. Visualizing Communities:
○ Assign a unique color to each community and plot the network using the

node_color parameter in nx.draw().
5. Key Functions:

○ greedy_modularity_communities(G)
○ nx.algorithms.community.quality.modularity(G,

communities)

Part 3: Community Detection Using the Louvain Algorithm

Objective: Identify communities in the undirected version of the network using the Louvain
algorithm.

1. Prepare the Network: Convert the network to an undirected graph, as Louvain
supports only undirected graphs:
G_undirected = G.to_undirected()

2. Using the Louvain Algorithm:
○ Use the community package

import community as community_louvain
partition =

community_louvain.best_partition(G_undirected,
weight="weight")

3. Computing Modularity:



○ Convert the partition dictionary to a list of communities and calculate the
modularity score:
communities = [[] for _ in range(max(partition.values())

+ 1)]
for node, comm in partition.items():

communities[comm].append(node)
modularity_score =

nx.algorithms.community.quality.modularity(G_undirected,
communities)

○ Explain that modularity measures the quality of the partition by evaluating
how well the network is divided into communities.

4. Output Format:
○ The Louvain algorithm's output (partition) is a dictionary where keys are

node IDs and values are community IDs.
○ The modularity function outputs a numerical score.

5. Visualizing Louvain Communities:
○ Map communities to colors and use nx.draw() with the node_color

parameter.
6. Key Functions:

○ G.to_undirected()
○ community_louvain.best_partition(G_undirected,

weight="weight")
○ nx.algorithms.community.quality.modularity(G_undirected,

communities)

Part 4: Stability of the Louvain Algorithm

Objective: Assess the stability of community assignments across multiple runs of the
Louvain algorithm.

1. Run Multiple Trials:
○ Execute the Louvain algorithm several times with different random seeds.
○ Align community labels across runs using a label alignment function.

2. Fluctuation Analysis:
○ For each node, compute the proportion of times it is assigned to different

communities.
○ Higher fluctuation indicates less stability.

3. Results:
○ Create tables showing the top 10 most and least fluctuating nodes, including

their usernames and fluctuation percentages.
4. Key Insight:

○ The Louvain algorithm's randomness can lead to variability in community
assignments.



5. Key Functions:
○ community_louvain.best_partition(G_undirected,

weight="weight", random_state=seed)
○ linear_sum_assignment from scipy.optimize for label alignment.

Summary

This exercise guides you through importing, visualizing, and analyzing the dataset, as well
as detecting communities and evaluating their stability. It introduces relevant NetworkX
functions and external libraries, helping you develop a deeper understanding of network
structure and community detection algorithms.


