
1. About the Dataset 
● FakeNewsNet 

The dataset used here is a subset of FakeNewsNet focused on two news sources: 
○ Politifact 
○ GossipCop 

● Each news piece (fake or real) is associated with a hierarchical propagation 
structure: how tweets (and retweets or replies) spread this news over time on Twitter. 

● You can access the dataset at https://github.com/mdepak/fake-news-propagation/ 
● Privacy and Structure 

To comply with Twitter’s privacy policy, personally identifiable information is 
anonymized, and tweet contents are not shared. Instead, each tweet is identified by: 

○ A random tweet id 
○ A timestamp in epoch format 
○ A random user id 
○ Additional attributes (e.g., bot scores in the retweet networks, sentiment 

scores in the reply-chain networks) 

JSON Format 
Each file is a JSON describing a single “diffusion tree” for one piece of news. The top-level 
JSON object (the root) represents the originating tweet, and it recursively contains children 
representing retweets or replies. 
For example, a node in the JSON might look like: 
{ 
  "id": "random_tweet_id", 
  "time": 1623456789, 
  "children": [ 
    { "id": "child_tweet_id_1", "time": 1623456880, "children": 
[...] }, 
    { "id": "child_tweet_id_2", "time": 1623456940, "children": 
[...] } 
  ] 
} 

● This nested structure can be represented as a directed acyclic graph (DAG), or more 
specifically a tree, where edges point from a tweet to its retweets (or replies). 

● Directory Organization 
In the code, data_dir is the root path to your local copy of the dataset. Subfolders 
are named after the source and label (e.g., politifact_fake, 
politifact_real, gossipcop_fake, gossipcop_real). Each subfolder 
contains multiple JSON files, each file corresponding to one piece of news and its 
diffusion tree. 

 

https://github.com/mdepak/fake-news-propagation/


2. High-Level Code Overview 
The code is organized into several sections (labeled 0–8). These sections follow a workflow: 

1. Plotting a Single Sample Tree (for visualization/demonstration). 
2. Setup (defining data paths, source/label lists). 
3. Helper Functions for building diffusion trees (as NetworkX graphs) and computing: 

○ Depth of the tree 
○ Branching factor 
○ Number of retweets (node counts) 

4. Analysis of all diffusion trees in a given folder to gather distributions of depth, 
retweet counts, and branching factors. 

5. Plotting distributions (e.g., retweet counts) on a log-log scale. 
6. Plotting other distributions (depth, branching factor). 
7. Diffusion Speed Analysis (time-based analysis of how quickly nodes get 

“infected”/reach the news). 
8. Plotting the diffusion speed results on a log-log scale. 

Below is a step-by-step explanation of each part of the code. 

 

3. Detailed Step-by-Step Explanation 

(0) Plotting a Sample Diffusion Tree 
def plot_sample_tree(source, label, data_dir, max_nodes=20): 
    ... 
 

● Purpose: Load one JSON file from the specified folder (e.g., politifact_fake) 
and build a directed graph (DiGraph) in NetworkX to visualize the diffusion structure. 

● Key Steps: 
1. Folder Path: Combines data_dir, the source string, and the label string 

(e.g., "politifact_" + "fake" = "politifact_fake"). 
2. List JSON Files: Looks for any file ending with .json. The code picks the 

first JSON file found. 
3. Build DiGraph: 

■ Defines a nested function add_edges(node) that reads a node’s 
children and adds edges (parent -> child) in the NetworkX 
graph. 

■ Recursively calls add_edges on each child to traverse the entire tree. 
4. Node Limit: If the tree is very large, it sub-samples the first max_nodes 

nodes for clarity. 



5. Plotting: Uses nx.spring_layout to determine node positions, and 
nx.draw_networkx_nodes/nx.draw_networkx_edges to draw a 
directed graph. 

Outcome: A visual representation of one diffusion tree, showing how an original post 
branched out into multiple retweets or replies. 

 

(1) Basic Setup 
data_dir = ""  # Replace with your actual dataset path 
sources = ["politifact_", "gossipcop_"] 
labels = ["fake", "real"] 
plot_sample_tree(sources[0], labels[0], data_dir) 
 

● Here, you set data_dir to wherever your JSON data resides. 
● sources and labels are simple lists specifying the news source and label 

categories to iterate over. 
● Finally, the code calls plot_sample_tree with the first (source, label) 

pair—e.g., politifact_fake—as a quick demonstration. 

 

(2) Helper Functions for Basic Analysis 

compute_tree_depth(graph) 

def compute_tree_depth(graph): 
    """Compute depth (longest path) in a directed acyclic graph.""" 
    if graph.number_of_nodes() == 0: 
        return 0 
    return nx.dag_longest_path_length(graph) 
 

● What it does: Finds the longest path in the DAG. In diffusion terms, this is the 
“depth” of the propagation tree (the number of hops from the root tweet to the furthest 
retweet). 

compute_branching_factor(graph) 

def compute_branching_factor(graph): 
    """ 
    Compute the average out-degree over all nodes that actually have 
children (out_degree > 0). 
    """ 



    internal_nodes = [n for n in graph.nodes() if 
graph.out_degree(n) > 0] 
    if not internal_nodes: 
        return 0.0 
    return sum(graph.out_degree(n) for n in internal_nodes) / 
len(internal_nodes) 
 

● What it does: Calculates how “wide” the tree branches on average. Specifically, it 
takes the average out-degree for any node that has at least one child. 

Interpreting Branching Factor: 

● A branching factor of 1 suggests a “chain-like” spread (each user retweets to exactly 
one other user on average). 

● A branching factor higher than 1 suggests more “viral” spreading behavior (one 
user’s post leads to multiple retweets). 

 

(3) Analyzing All Diffusion Trees in a Folder 
def analyze_diffusion_trees(source, label): 
    ... 
 

● Purpose: Reads all the JSON files in a particular folder (e.g., politifact_fake) 
and builds a diffusion tree for each. Then, it computes: 

1. depth_list: A list of the depth of each tree. 
2. retweet_counts: A list of the total number of nodes in each tree (i.e., how 

many tweets are involved in the diffusion). 
3. branching_factors: A list of the average branching factor in each tree. 

● Key Steps: 
1. Loop through every .json in the source+label directory. 
2. Build a nx.DiGraph by recursively adding edges. 
3. Compute compute_tree_depth(G), len(G.nodes()), and 

compute_branching_factor(G) for each graph. 
4. Return three lists holding these computed values across all files. 

 

(4) Gather Data and Print Results 
analysis_results = {} 
for source in sources: 
    for label in labels: 
        key = f"{source}{label}" 



        depth_list, retweet_counts, branching_factors = 
analyze_diffusion_trees(source, label) 
        analysis_results[key] = (depth_list, retweet_counts, 
branching_factors) 
        print(f"Processed {key} -> #Trees: {len(depth_list)}") 
 

● Goal: For each (source, label) combination: 
○ Run analyze_diffusion_trees. 
○ Store the results in a dictionary analysis_results, indexed by the string 

key (like "politifact_fake"). 
○ Print how many diffusion trees were processed. 

Outcome: A single data structure, analysis_results, now holds the basic metrics 
(depth, retweet count, branching factor) for each tree in each category. 

 

(5) Plot Distribution of Number of Retweets (Tree Size) on Log-Log Scale 

Why log-log plots? 
When dealing with diffusion or popularity distributions, data often follows heavy-tailed or 
power-law-like patterns. Log-log plots help visualize these distributions more clearly. 

log_binning(data, num_bins=10) 

def log_binning(data, num_bins=10): 
    ... 
 

● What it does: 
1. Removes zero values (which are invalid for log). 
2. Creates log-spaced bins between the minimum and maximum of data. 
3. Uses np.histogram to compute the probability density for each bin. 
4. Returns the geometric center of each bin as bin_centers, along with the 

hist (density values). 

plot_log_log_distribution(data_dict, title, xlabel) 

def plot_log_log_distribution(data_dict, title, xlabel): 
    ... 
 

● What it does: 
1. For each key in data_dict (e.g., "politifact_fake"), retrieves the 

associated list of values (e.g., retweet counts). 
2. Applies log_binning to get bin centers and densities. 



3. Plots them on a log-log scale (plt.loglog(...)). 
4. Adds legends, labels, and gridlines. 

Actual Plot Call: 

plot_log_log_distribution( 
    {k: v[1] for k, v in analysis_results.items()},  # v[1] is the 
retweet_counts 
    "Log-Log Distribution of Number of Retweets (Tree Size)", 
    "Number of Retweets" 
) 
 

● v[1] is the list of retweet counts for each tree. 
● You’ll see multiple lines on the plot (one per key), each showing how retweet sizes 

are distributed. 

 

(6) Plot Depth Distribution and Branching Factor Distribution 
Depth Distribution 
plot_line_distribution( 
    {k: v[0] for k, v in analysis_results.items()},  # v[0] = 
depth_list 
    title="Depth Distribution of Tree Depth", 
    xlabel="Tree Depth", 
    log_y=True 
) 

1.  
○ This uses a simple line histogram (with np.histogram) to show how tree 

depths are distributed. 
○ log_y=True sets the y-axis to a log scale. 

Branching Factor Distribution 
plot_log_log_branching_factor_distribution( 
    {k: v[2] for k, v in analysis_results.items()}, 
    title="Branching Factor Distribution (Log-Log)" 
) 

2.  
○ Similar approach but specifically for the branching factor values. 
○ Uses the same log_binning approach and plots them on a log-log scale. 



Outcome: You can observe whether real/fake news tends to have deeper diffusion trees, 
how often it exhibits high branching, etc. 

 

(7) Diffusion Speed Analysis (Log-Log) 

This section introduces time-based analysis. We want to see how quickly a certain piece of 
news “infects” or reaches new accounts over time. 

build_graph_and_times(data) 

def build_graph_and_times(data): 
    """ 
    Build a DiGraph and gather timestamps of each node. 
    Returns: 
      G: DiGraph 
      times: dict { node_id: timestamp } 
      root_time: the earliest timestamp among all nodes (or None if 
invalid) 
    """ 
    ... 
 

● Steps: 
1. Recursively parse the JSON to add edges into a NetworkX DiGraph. 
2. Store each node’s time in a dictionary times[node_id] = node_time. 
3. Determine root_time, which is the minimum (earliest) valid timestamp in 

the tree. 

analyze_diffusion_speed(source, label, num_time_bins=50) 

def analyze_diffusion_speed(source, label, num_time_bins=50): 
    ... 
 

● What it does: 
1. For each JSON file, build the graph and extract timestamps. 
2. Shift all timestamps so that the earliest node is at time t=1 (avoiding zero or 

negative times for log-scale). 
3. Sort the times for that tree and accumulate them in time_diffs. 
4. Collect these across all trees in a given folder. 
5. Use np.logspace to create log-spaced time bins between 1.0 and the 

maximum observed time difference (max_time_diff). 
6. For each tree’s time_diffs, compute how many nodes appear (are 

“infected”) by each time bin. 



7. Aggregate these to get an average curve (avg_curve) showing how on 
average, the news propagation accumulates retweets over (log-scaled) time. 

8. Return the time bins and the average ± standard deviation curve. 

 

(8) Plotting Diffusion Speed 
analysis_speed_results = {} 
for source in sources: 
    for label in labels: 
        key = f"{source}{label}" 
        time_bins, (avg_curve, std_curve) = 
analyze_diffusion_speed(source, label, num_time_bins=50) 
        analysis_speed_results[key] = (time_bins, (avg_curve, 
std_curve)) 
 
plot_diffusion_speeds(analysis_speed_results) 
 

● Storing Results: Similar loop over (source, label) as before, calling 
analyze_diffusion_speed. 

● Plot: 
○ For each dataset, we plot the average diffusion curve (avg_curve) in log-log 

space: 
■ x-axis: Time since earliest node (log scale). 
■ y-axis: Average number of infected nodes (log scale). 

Interpretation: This tells you how quickly a piece of news tends to spread over 
time—whether growth is rapid (steep slope early on) or more gradual. 

 

4. What the Outputs Show You 
1. Sample Diffusion Tree: A direct visualization of a single news item’s propagation 

structure. 
2. Retweet Size Distribution (Log-Log): Shows how many diffusion trees are small vs. 

extremely large. Often you might see a heavy-tailed pattern (fewer very large trees). 
3. Depth Distribution: Tells you whether news typically spreads in many “hops.” A 

larger average depth might indicate longer chains of retweets or replies. 
4. Branching Factor Distribution: Indicates whether retweets often fan out widely or 

remain fairly linear. 
5. Diffusion Speed: Reflects how quickly new accounts adopt the news. 
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