
Network Analysis of Airport Routes

Objective

In this exercise, you will analyze a network of airport routes to understand its structure and
connectivity. You’ll work with networkx to build, visualize, and analyze the network
properties of real-world flight routes between airports.

Data Description

The data consists of two files:

1. airports.csv: Contains information about each airport, including a unique
identifier, name, location (latitude, longitude), and other metadata.

2. routes.csv: Lists the flights between airports. Each row represents a directed flight
route from one airport (source) to another (destination).

Each airport will be represented as a node in the network, and each flight route will be
represented as a directed edge.

Step 0: Data Description and Importing Data

1. Define Column Names: Start by defining the column names for each dataset.

For airports.csv
airport_columns = ["Airport ID", "Name", "City", "Country", "IATA",
"ICAO", "Latitude", "Longitude", "Altitude", "Timezone", "DST", "TZ
Database Timezone", "Type", "Source"]

For routes.csv
route_columns = ["Airline", "Airline ID", "Source Airport", "Source
Airport ID", "Destination Airport", "Destination Airport ID",
"Codeshare", "Stops", "Equipment"]

2. Import the Data: Use pandas to load each dataset with the defined column names.
○ Be sure to specify the correct encoding (utf-8).
○ To ensure consistency, convert the IDs to strings immediately after loading the

data.

import pandas as pd

Load datasets without headers
airports_df = pd.read_csv("airports.csv", names=airport_columns,
encoding="utf-8")
routes_df = pd.read_csv("routes.csv", names=route_columns,
encoding="utf-8")

Convert ID columns to strings
airports_df['Airport ID'] = airports_df['Airport ID'].astype(str)
routes_df['Source airport ID'] = routes_df['Source airport
ID'].astype(str)
routes_df['Destination airport ID'] = routes_df['Destination airport
ID'].astype(str)

Step 1: Create the Network

1. Filter the Data: Keep only the routes where both the source and destination airports
exist in airports.csv.

○ Hint: Use pandas.isin() to filter the data based on IDs.
2. Initialize the Graph: Create a directed graph in networkx using nx.DiGraph().
3. Add Nodes and Edges:

○ For each airport, add a node with attributes such as name, latitude, and
longitude.

○ For each route, add a directed edge from the source airport to the destination
airport.

4. Functions:
○ G.add_node() to add nodes with attributes.
○ G.add_edge() to add directed edges.

Step 2: Filter the Network for Visualization

1. Remove Isolated Nodes: Identify nodes with no incoming or outgoing connections
(degree zero) and remove them from the graph.

○ Hint: Use G.degree() to check the degree of each node and remove
isolated nodes.

2. Create a Subgraph:
○ Filter down to the top 200 airports by degree to make the visualization easier

to interpret.
○ Create a subgraph that includes only these top nodes.

3. Functions:
○ sorted() to rank nodes by degree.
○ G.subgraph() to create a new graph with only the specified nodes.

4. Visualize the Network:
○ Geographical Plot: Use the latitude and longitude of each airport to position

the nodes. Color the top 10 most connected airports differently and add a
legend for clarity.

○ Force-Directed Layout: Use nx.spring_layout() to generate a layout
that spaces nodes based on their connections. Adjust the node size by
degree and highlight the top 10 most connected nodes.

5. Functions:
○ nx.draw_networkx_nodes() and nx.draw_networkx_edges() to

draw the network.
○ nx.spring_layout() to create a force-directed layout.

Step 3: Analyze Network Properties

A) Connectivity Analysis

1. Connected Components:
○ Calculate the number and relative size of both weakly and strongly connected

components to understand network connectivity.
2. Functions:

○ nx.weakly_connected_components() to get weakly connected
components.

○ nx.strongly_connected_components() to get strongly connected
components.

B) Path Lengths and Reachability

1. Path Length Distribution:
○ Calculate the shortest path lengths in the largest strongly connected

component and plot their distribution.
2. Average Path Length and Diameter:

○ Calculate the average shortest path length and the diameter of the largest
strongly connected component.

3. Functions:
○ nx.shortest_path_length() to calculate shortest paths.
○ nx.average_shortest_path_length() to compute the average path

length.
○ nx.diameter() to determine the diameter.

C) Degree Analysis

1. Degree Distributions:
○ Compute the in-degree and out-degree distributions and plot them on a

log-log scale.
2. Functions:

○ G.in_degree() and G.out_degree() to get node in-degrees and
out-degrees.

3. Top Hubs:
○ Identify the top 5 airports by in-degree and out-degree, displaying the airport

names and degree counts.
4. Functions:

○ sorted() with G.in_degree() or G.out_degree() to find top hubs by
degree.

D) Clustering and Assortativity

1. Global Clustering Coefficient:
○ Compute the global clustering coefficient to assess the likelihood that an

airport’s neighbors are also connected.
2. Function:

○ nx.transitivity() to calculate the global clustering coefficient.
3. Assortativity Analysis:

○ In-Degree Assortativity: Calculate the average in-degree of neighbors for
each node to see if highly connected nodes tend to link to other highly
connected nodes.

○ Geographical Assortativity: Compute and plot the correlation between an
airport’s latitude (or longitude) and the average latitude (or longitude) of its
neighbors.

4. Functions:
○ nx.average_neighbor_degree() to calculate the average degree of

neighbors.
○ Use latitude and longitude values from the node attributes for geographical

assortativity.

