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The Rise of
Polarization

Polarization, particularly ideological
polarization
e is a division of individuals' beliefs
along opposing ends of a political or
iIdeological spectrum
e |t captures how groups increasingly
cluster around distinct ideological
positions

The figure illustrates the shift in
ideological distribution of Democrats
and Republicans in the U.S. between 1994
and 2017
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Online Polarization

Latent ideology
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Falkenberg, Max, et al. "Growing polarization around climate change on
social media." Nature Climate Change 12.12 (2022): 1114-1121.

Polarization has increasingly
shifted to online platforms
e social media plays a crucial
role in shaping ideological
divides.
e individuals engage primarily
with like-minded content
e this can lead to the formation
of echo chambers and filter
bubbles that amplify pre-
existing beliefs

The figure illustrates the rise of
online polarization in discussions
surrounding climate change
during COP21 and COP26.



More than One
Dimension

Polarization is a multidimensional
phenomenon
e Individuals and groups often
polarize along different directions
e dimensions can be correlated
o exampled: political ideology
and attitudes toward climate
change.
These dimensions can reinforce each
other, leading to deeper societal
divisions.
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i The Network of
News Outlets

In this study, researchers investigate how echo
N chambers emerge in online news consumption
| N
N / 1/ \ *

e activity of 376 million users engaging with
anglophone news outlets

N e 6-year period (2010-2015)

e they build two bipartite network of users and
o news outlets, based on comments and likes

These networks can be projected to reconstruct
=: the network of news outlets pages
:-1? e users tend to focus on a limited set of pages
0 \4 e community detection algorithms reveal a
g LR

clustered structure



Users Polarization

Users on Facebook tend to confine their interactions within specific news clusters,

reinforcing echo chambers. User activity is highly polarized, with most attention
focused on a single community of pages.
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Schmidt, Ana Lucia, et al. "Anatomy of news consumption on Facebook." Proceedings of the National Academy of Sciences
114.12 (2017): 3035-3039.



Reconstructing Users’ Leaning

In order to study eco chambers we need to reconstruct users’ leaning x. A
possibility is to use the shared or commented content as a measure
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A Cross Platform Study

In the study the authors considered 4 different platforms and reconstructed the
political leaning and connections of users

Facebook

Twitter

Gab

Reddit

Network

co-comment
network

following network

co-comment
network

directed reply
network

Leaning

likes to posts by
pages (Anti-Vax
[+1]/Pro-vax [-1])

links in tweets by
users (news outlet
scores)

links in content by
users (news outlet
scores)

links in content by
users (news outlet
scores)

Cinelli, Matteo, et al. "The echo chamber effect on social media.' Proceedings of the National Academy of Sciences 118.9 (2021):

e2023301118.




Users' Communities

The analysis of community structures § Fin

revedls the presence of homophilic e e

interactions, where users with similar

ideological leanings cluster together
e Facebook and Twitter: Communities 1
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Measuring
Eco Chambers

Eco chambers are quantified by

measuring the average leaning of a

user's neighbors, which shows:

 Facebook and Twitter: Strong

correlation between individual
and neighborhood leanings,
indicating the presence of highly
segregated echo chambers.

e Reddit and Gab: A single,
concentrated cluster. Users on
Reddit lean predominantly left,
while those on Gab lean right







Misinformation
and Disinformation

The rapid spread of information online
has made it easier for false or misleading
content to reach large audiences
e Misinformation: Incorrect or
misleading information shared
without malicious intent.
e Disinformation: Deliberately false or
manipulated information created and
spread with the intent to deceive.

Social media platforms play a crucial role
In amplifying both types.

MIS DIS

INFOR INFOR
MATION MATION

INTENT?

Misinformation

False information that is spread, Information that is deliberately
regardless of an intent to mislead misleading or biased

Concept traces back to the 1500s « Generated by threat groups, nation
» states, counter-intelligence groups,

Peaople spreading it often believe it interest groups

to be true

» Campaigns are fueled by fake news
We can all become distributors and

victims of misinformation Can easily turn into misinformation when

shared by people who believe it to be true

When deliberately weaponized, can turn
into disinformation



The disinformation age

Online prevalence of false information from
foreign or domestic government sources*, 2023
O=never/almost never; 4=extremely often

Foreign 4

High foreign/ High foreign/domestic
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*Based on expert surveys
Source: Digital Society Project in 179 countries

A Global Problem

The spread of misinformation and
disinformation poses significant
challenges worldwide
e A recent example is Romania's
2024 presidential election
e the Constitutional Court annulled
the first round due to allegations of
Russian interference
e Reports indicated that a
coordinated online campaign,
particularly on TikTok, was used to
promote a far-right, pro-Russian
candidate



Information
Ccascades

Information spreading can be studied looking at
rumor cascade on twitter
e they begins when a user posts a claim on
Twitter
e Others propagate the rumor by retweeting it,
creating an unbroken chain of diffusion
e Rumors are quantified by
o depth (number of retweet hops)
o size (total users involved)
o maximum breadth
o structural virality
e 126,000 rumor cascades from 2006 to 2017, fact-
checked by six independent organizations

Vosoughi, Soroush, Deb Roy, and Sinan Aral. "The spread of true and false news online.’

science 359.6380 (2018): 1146-1151.
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True vs False Rumors

All metrics show that false rumors tend to spread further, faster, and with
greater reach compared to true information.
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What Matters is Size

A more recent study showed that by better sampling the two classes so that
the size distributions match, removes most differences
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Juul, J. L, & Ugander, J. (2021). Comparing information diffusion mechanisms by matching on cascade size. Proceedings of the
National Academy of Sciences, 118(46), e2100786118.



Emotional Reaction
to Rumors The emotional responses to true

and false rumors reveal
differences in how users perceive

surprise .

o a and engage with information.
Isgust -
Ei — * False rumors tend to evoke
Anger o greater surprise and disgust,
Sadness| supporting the hypothesis that
Anticipation o’ novelty plays a role in their
. oyl widespread diffusion
rust| .
05 q 15 5 35 e True rumors evoke more
7 User Responses expressions of sadness,

anticipation, joy, and trust



The spread of science news and conspiracy
theories on social media reveals distinct yet
overlapping patterns.
e analysis of 67 public Facebook pages, 32
conspiracy, 35 science
e pboth science and conspiracy posts exhibit
similar temporal sharing patterns, with peaks
at 1-2 hours and ~20 hours
e this indicates a rapid diffusion followed by
sustained engagement.

e science news tends to have a slightly longer
diffusion span

Del Vicario, Michelq, et al. "The spreading of misinformation online.’
Proceedings of the national academy of Sciences 113.3 (2016): 554-559.
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Cascade Size and Lifetime

For science news lifetime peaks in correspondence to a cascade size value of =
200, and higher cascade size values correspond to high lifetime variability. For
conspiracy-related content the lifetime increases with cascade size.
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0.1
Mean Edge Homogeneity

1.0

Edge Homogeneity

information predominantly spreads

within homogeneous clusters,
reinforcing the concept of echo

chambers.
* The maijority of links between users

sharing content are homogeneous
e Information diffusion primarily occurs
within ideologically aligned

communities
* The probability of sharing content

across diverse groups is low






The Death of
Fact-Checking

Fact-checking has long been a critical tool
In combating misinformation
e Recently major platforms such as Meta
and X abandoned traditional fact-
checking
o |In edrly 2025, Meta announced the
discontinuation of its third-party
fact-checking partnerships
o Following Elon Musk’'s acquisition, X
drastically reduced its moderation
efforts

But how effective is fact checking?

o

False Information

Checked by independent fact-checkers

See Why

@ See Photo



Who is Reached
by Debunking

Likes Comments

® Science @ Conspiracy @ Other

Zollo, Fabianag, et al. "Debunking in a world of tribes.’
PloS one 12.7 (2017): e0181821.

The majority of interactions with
debunking posts come from users
already polarized towards science.

* 66.95% of likes and 52.12% of
comments are from scientifically
polarized users.

e Users polarized towards conspiracy
theories contribute only 6.54% of
likes and 3.88% of comments,

e Out of nearly 9.8 million polarized
conspiracy users, only 117,736
iInteracted with debunking posts at
least once,



Sentiment of Comments

Debunking posts comments are generally negative, regardless of users
polarization. This suggests that debunking efforts often face skepticism and
resistance from users across different echo chambers.

All Users Polarized Science Polarized Conspiracy

Nc=381,685 Nc=198,947 c=14,799

Nu=120,269 Ny=51,398 e Nu=6,094

® Positive @ Neutral @ Negative



Is Debunking

o
Effective?
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Probably Not That |
Authors tested the behavior before
M U Ch and after the first interaction with

debunking posts

Likes Comments e Users'liking and commenting

e ' ' rates on conspiracy posts
0.6- ‘\ iIncrease after their initial
At engagement with debunking
content

e Users not exposed to debunking
, . are 1.76 times more likely to stop
0.21 |/ interacting with conspiracy
' | content compared to those who
engage with debunking posts.
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Exposure to
Opposing Views

The effect of opposite perspective on
users’ ideology is non trivial. To investigate
this in a study on Twitter
e Participants, identified as Republicans
or Democrats, were randomly
assigned to follow Twitter bots
e Bots retweeted content from political
figures with opposing ideologies
e Over one month, participants
engagement with the content was
monitored, and their political attitudes
were surveyed before and after
exposure

Treatment

Offered $11 to
follow Twitter
bot that retweets

24 messages from
Republicans liberal accounts each day for

~ A "“"““‘ o
—_—m
o LF L
Control Control
el «ﬁ’ el
— —
™1 (\ |
Treatment Offered $11 to Treatment
mmmmﬁ:“;;i o
ol P |
™1 X1

trol

8

Control

Bail, Christopher A, et al. "Exposure to opposing views
on social media can increase political polarization.”
Proceedings of the National Academy of Sciences
115.37 (2018): 9216-9221.



Elected Officials Presidential Candidates
Lisa Murkowski (R-AK) @lisamurkowski Ben Carson @RealBenCarson
Daon Young (R-AK) @repdonyoung Hillary Clinton @HillaryClinton
Jon Tester (D-MT) @SenatorTester Carly Fiorina @CarlyFiorina
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Collect Twitter handles
of 563 elected officials
and presidential
candidates.

Extract the names of

all Twitter accounts

that these 563 elected
officials and presidential
candidates follow
(n=636,738).

Create directed
network of all elected
officials, presidential
candidates, and
everyone they follow;
dropping non-elected
officials with degree
less than 15 as well as
Twitter accounts from

U.5. government agencie:

for-profit corporations,
and accounts that
originate outside the U.5.
{n=4,176).

Create adjacency
matrix that describes
following patterns of
the 4,176 "opinion
leaders” and conduct
Correspondence
Analysis. Adjust

scores of accounts with
large no. of followers
(see Supp. Materials).

Use first principal
component to create
liberal/conservative
ideology score for
4,176 opinion leaders.

Create bots that
tweet a random
sample of tweets
from the 1-3 (liberal)
and 5-7 (conservative)
quantiles of the
distribution .

How the Bots
Function

Researchers developed automated
Twitter bots capable of retweeting
messages from thousands of
political opinion leaders
e pbots were designed to expose
participants to content from
across the ideological spectrum
e tweets were selected using
network analysis techniques to
identify influential figures.
e Participants were unaware of the
bots' ideological biases



Effect of Treatment

For Republicans, engaging with liberal content resulted in a notable shift toward
more conservative views, demonstrating a strong backfire. On the other hand,
Democrats showed minimal changes after exposure to conservative content,

indicating that such interactions might have limited influence.

Democrats Republicans
Respondents Assigned to Treatment (n=416)- -'ll-— Respondents Assigned to Treatment {n=316)- : -
Minimally Compliant Respondents (n=271)- "'I' Minimally Compliant Respondents {n=181)- e
Partially Compliant Respondents (n=211)- -",‘ Partially Compliant Respondents {n=121)- I ——
Fully Compliant Respondents (n=66)- ——O—f—— Fully Compliant Respondents (n=53)- E ———
40 05 00 05 10 40 05 oio 05 10
More Liberal More Conservative More Liberal More Conservative




Conclusions

Polarization and Online Eco Chambers

Increasing levels of polarization, across multiple dimensions, are observed in
society. This phenomenon is particularly strong on social networks, that are
characterized by an eco chamber structure.

Spreading of (Mis)Information

Misinformation and disinformation are a serious treat to democracy. False news
and rumors tend to spread more rapidly and deeply on online platforms. They
mostly diffuse within eco chambers.

Online Debunking

Online giants recently abandoned fact checkers for different moderation
strategies. Studies show that standard fact-checking posts have little effect
and, if any, they tend to worsen the situation.



Quiz

e Do you know what a filter bubble is?

e What is the difference between filter bubbles and eco chambers?
e Which social network do you think is more polarized?

e Do you think you're enclosed in an eco chamber?

e What are some examples of false rumors that spread rapidly?

e Why is fact checking ineffective in your opinion?



