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Recap

Processes on Complex Networks

Many processes take place on a network, in
particular spreading processes

Epidemic Spreading

We introduced he most common epidemic
models the SI, the SIS and the SIR model
Epidemic Spreading on Networks

The network topology plays an important
role in determining the size of an epidemics
Complex Contagion

Behaviors spreads following complex
contagion processes, where a single
exposition is not enough for getting infected
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What is a Null Model?

We analyzing real networks we compute their
e clustering coefficient
e diameter
e presence of communities

We need to understand if these properties
e can be explained by a random process
e are instead deriving from are more
sophisticated mechanism

A null model is a term of comparison for
networks. It generates networks that preserve
some properties of the original one, while
performing a randomization of its structure




Empirical network

Step 3

Probability

Estimate network feature x

Null distribution

Null networks

Network feature
p= Pr[xp > x}
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Generate null distribution
of network features

Using Null Models

Using a null model involves 3 steps
1.Analyze the readl network
o estimate the feature of
Interest
2.Generate the null networks
o decide the type of
randomization
o generate several null
networks
3.Compute the distribution of the
feature in the null networks
o determine if what measured
In the real case is significant



Erdos—Rényi Model

We already encountered an example of N ] A

random graph, the Erdés—Rényi Model D S Vs S

 the ER model generates networks
with a specified average degree

* |links are formed completely at -
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Recap on
Random Graphs

We already used the ErdGs—Rényi
model as a null model to study real
networks
* ER graphs are characterized by the
Small-World property like real
networks
o differently from real networks have
an exponential degree distribution
e the clustering in ER graphs is much
smaller than in real networks
Out of the 3 most important properties,
the ER null model can only explain one



Configuration Model

Performing a full randomization of the links
like in the ER model is too much

* it destroys all the network structure

* we need something more constrained

The idea is to perform a randomization, but
leaving the degree fixed

e we compute the degree-sequence in the
real network

e we generadte networks with the same
sequence

This is null model is called Configuration
Model and preserves the degree distribution

Degree Preserving
Randomization
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Rewiring Algorithms

The most intuitive way to understand the

"2 0 0 © configuration model is in term of a

LA rewiring process

e we start with N disconnected nodes
.90 06 ® O e each of them has k; unmatched links,
- P where k; is their degree in the real
network

92 0 00 (0-0-0-9©° e we create null networks matching all

| links from all nodes

oo 0 ©

This generates all possible configurations
while preserving the degrees



Full vs Degree Preserving
Randomization

We can see a comparison between T . EaAE T.w
the two null models we introduced . o o - . ;__.__,.Sz
e ER model > \

o full randomization of the links o—or o O oo

e Configuration model
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Full vs Degree Preserving

Randomization

We can see a comparison between
the two null models we introduced
e ER model
o full randomization of the links
e Configuration model
o degree preserving
randomization

In the protein interaction network
e the configuration model better
reproduces the distribution of
distance in the networks
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Ensembles in
Physics

Let us consider the air contained in

our room
* its macro state is described by few Same
parameters pressure,
* pressure, volume and temperature  yolume and
At the microscopic level however temperature

e different particles configurations
have the same P, V, T

An ensemble is the set of all
microscopic configurations with the
same macroscopic properties
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Network Ensembles

The concept of ensemble can be applied
also to networks

| An ensemble of networks is the set of all
possible networks sharing the same

Same
macro property

> average

deqgree .
9 For instance

A * the ER model generates an ensemble
of networks all characterized by the
same average degree

e the configuration model an ensemble
of networks all characterized by the
same degree sequence




Soft vs Hard Constraints

When performing a randomization we
always set some constraints. There are
two possible approaches -
e Hard Constraints (Microcanonical) ' 3
Each network in the ensemble
satisfies the constraints exactly
e Soft Constraints (Canonical) N BN RN
The constraints are satisfied on
average. Each network in the oot e *
ensemble slightly deviates from
the real one

Real network
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Canonlcal ensemble

Local Rewiring Algorithm Shannon Enfropy maximisation + Likelihood maximisation
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Canonical Ensemble

In a canonical ensemble of networks
e networks satisfying the constraints
exactly are assigned the largest
probability
e networks that do not satisfy the
constraints have a small but non
zero probability

Original Network

The constraint we measures from real
networks could be

e inexact due to errors

e the result of a stochastic process

It makes sense to allow fluctuations!



What is Entropy?

Entropy is
 a medadsure of information content
* 0 measure of how surprising a
sequence is

Larger entropy corresponds to
* a more random segquence
* A sequence that is harder to compress
* |less predictable sequences

In this sense entropy is also a measure of
order. A high entropy sequence will appear
random, while a low entropy one
deterministic

high entropy

medium entropy

low entropy




Shannon Entropy

Given a long sequence we can compute the probabilities
p(i) by which the M symbols are generated. The Shannon
entropy S of the sequence is defined in terms of these
probabilities as

S =— me log p(7)

The maximal entropy is obtained when all M symbols are
equally likely

* Snax=-log(1/M)

* |n our case S=0.46 and S».x=0.48

Entropy can be generalized to continuous distributions

5—— / p(z) log p(z)dz

p(1)=3/7
p(2)=2/7

p(3)=2/7



Entropy Maximization

Entropy is maximal when the probability distribution is uniform
e maximal entropy corresponds to the least informative probability
e in a null model we want to constraint something (e.g. the degree sequence) while
leaving the rest of the features maximally random

The key ided in deriving a canonical ensemble of networks consists in maximizing the
entropy of the probability distribution of networks P(G)
e the ensemble is defined by P(G), the probability of generating a given graph G
e if we maximize the Shannon entropy of P(G) we get a uniform distribution
o In this case all graphs would be equally likely
e to implement the constraints we perform a constrained entropy maximization
o we maximize entropy
o at the same time we require the probability P(G) to satisfy some constraints
o for instance we may require the average degree to be a given value



Canonical Network Ensemble

Let’s write the math behind this idea. The Shannon entropy is
S=- > P(G)ln P(G)
Ge(@g

We consider M constraints xi(G) that we want the graphs to satisfy on average
e for instance we could have x;(G)=average degree and x,(G)=clustering
These are mathematically defined as

E P(G)x(G) ={x;)

To maximize the entropy subject to these constraint we use the Lagrange multiplier
formula. Introducing the Lagrange multipliers 8; we get

’ [s + a(1 - % P(G)) + 2 6i(<xf> — % P(G)XI-(G)H =0

d P(G)




Canonical Network Ensemble

Solving this equation leads to the following expression for the graph probability
o~ H(G)

P(G) =
Here H(G) is called graph Hamiltonian and Z is a normalization constant
H(G) = 2, 6x,(G) z=2,eH0

i G
The M Lagrange multipliers are obtained solving the M constraints equations

2 P(G)x(G) ={x;

Here is where the real networks enters. We use it to compute the M real values of the
graph properties xi(G) and we use these values to solve the equations for the
Lagrange multipliers



Erdos—Rényi Model

First we consider as constraint the total number of links m in the network

Z P(G)m(G) =
G
The Hamiltonian and the probability are
o—H(G) a—0m(G) a—0m(G)
H(G) = 0m(G) P(G) = 7 S e m(@) - (1 _I_e_(;})%N(N—l)

To compute 6 we use the constraint equation
1 m

P(G)m(G) = ; —0m(G) , — ith —
; ( )m( ) 4L (1+€2N Ze 1—|—69 pow p %N(N— 1)

Using this we can see that the proboblllty P(G) is nothing but the ER network

1 —1)—=m
P(G) = p™ (1 — p)2NIN=1)=m(G)
! ™~
Prob. for m(G) Prob. for the rest of

random links to exist the links not to exist



Configuration Model

To get the canonical configuration model we have to fix the degree sequence, so we
will have N constraints, one for each node

Z P(G)k@-(G) = k;

Performing the same procedure as before we can obtain the linking probability, that
gives the probability for a link between two nodes i and | to exist

e_(ei_l'gj)
p‘ij — —(0:1-0.
1 4+ e (0i+0;)
Also in this case we can compute the N Lagrange multipliers using the constraint

;

Once we have the multipliers, we can use p; to sample each link independently




Comparison of Ensembles

Microcanonical

Canonical

Constraints

Satisfied exactly

Satisfied on average

Algorithm

Link swapping

Entropy maximization

Drawbacks

Slow
Potentially biased

Soft constraints

Advantages

Hard constraints

Robust to noise







Randomizing Real Networks

One of the main applications of null models is to validate network properties
e on the left we report the Zachary Karate Club network
e on the left we show one of its possible randomized versions
e this has been obtained using the configuration model

The community structure is a statistically significant feature!
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https.//sites.santafe.edu/~aaronc/slides/Clauset 2019 CSSS_Networks 3.pdf



https://sites.santafe.edu/~aaronc/slides/Clauset_2019_CSSS_Networks_3.pdf

Diameter of Zachary Karate Club

Differently the distribution of the distance and the diameter are very well

reproduced by the null model
e the distribution of the distance in the null model vs real network is almost the

same
e the distribution of the diameter in the null networks is peaked on the real value

—o— Karate club :
— configuration model |

Pr(diameter)

0.2}

_4 L 1 1 1 1 1 P 1 |
L 2 3 4 5 6 7 % 3 4 5 6 7 8 9
geodesic distance, d diameter
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Centrality in Zachary Karate Club

Same story for the harmonic centrality (similar to closeness centrality)
e there are very small deviations with respect to the null model
e it is almost completely explained by the degree sequence
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Clustering in Real Networks

Using the configuration model we can study the clustering of real networks
e redl networks have higher clustering, but much is explained by the null model
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Network
Reconstruction

A very important application of null
models, in particular of maximum entropy
based ones, is hetwork reconstruction
e often only partial information about a
network is available
e for instance we may know all degrees,
but not how the links are distributed

The problem is like finding the best curve
fitting a set of points
e we want to find the best fit network
* however instead of a network we get an
ensemble of networks




Undirected Binary Networks

In the case of binary undirected networks we can reconstruct the network
structure only knowing the degree sequence. This allows to get null networks
that very well approximate the real ones
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Squartini, T,, Garlaschelli, D. (2017). Network Reconstruction. In: Maximum-Entropy Networks. SpringerBriefs in
Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-69438-2_4



Weighted
Networks

A similar approach can be tried
also for weighted networks
* in this case we constrain the
seguence of the strengths
instead of the degrees
e we obtain a variant of the
configuration model

However in this case the null
networks fail to capture the
main properties of the real
networks
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Enhanced
Configuration
Model

Things improve considerably if
we instead use the Enhanced

Configuration Model
e we fix both the degree and

the strength sequence
* we keep also structural
information from the degree

In this way the null networks are
very good fits to the real ones
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Balance sheets: s* = {A’ L'}

Banlkk Networks

Network reconstruction is crucial is the analysis
of bank networks
e banks only provide limited information
e they do not state their exposition to other
Etropy mesimitstion withconstzaints 5,6 banks
) £ P (o) £P( ¥ o for instance bank A may have stock or
bonds of bank B
o if bank B goes bankrupt, this could cause
a sudden failure of A also
e more sophisticated versions of the
maximum entropy recipe dre used

2 2 1
) =P(N)=P(

Reconstructed network

These techniques allow to understand the risk
of cascade failures in the bank network







Bipartite Networks

Many networks involve nodes of different
categories
e for instance we may have a network of
countries and products
e links connect countries to the products
they export

Such a network is called bipartite
e it is composed of two “layers” of nodes
e there are no connections among
nodes in the same layer

Bipartite networks require specific tools
e how do we detect communities?
e what about centrality measures?




Biadjacency Matrix

A bipartite network is described
by its biadjacency matrix M
it is an CxP matrix
o C is the number of nodes in
the first layer (countries)
o P si the numer of nodes in the
second layer (products)
it works similarly to the
adjacency matrix
o M¢p=1if node c is connected
to node p
o Mep=0 otherwise
we can easily generalize it to a
weighted biadjacency matrix by
allowing values different from 0/1
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Examples of
Bipartite Networks

Bipartite networks are ubiquitous.
Notable examples include
e mutualistic networks
o plants-pollinators
* purchases networks
o customers-items
e online platforms
o users-content

Often bipartite networks contain
e actors or active nodes (e.g. users)
e passive nodes (e.g. content)



Bipartite Networks Projection

Bipartite networks can be projected to obtain a

e connections between nodes imply a
similarity of some sort

)
/ \
The most simple approach to network w;
projections is based on cooccurrences ~‘
e nodes in layer 1 that are linked to the same
nodes in layer 2 will be similar
e we can then define the adjacency matrix A
of the projected networks as

&
(14 W, >0 -

0 otherwise

monopartite network » ‘
* this network contains only nodes of one type —1 !
/ |

A

\

Wi = Z My M;), — A;j =
p



Projection Validation

When performing bipartite networks WS4
projection null models are crucial AR
e the best approach consists in using —welsw
the Bipartite Configuration Model (
(BICM) L P - oy
e it fixes the degree of nodes in both Levure |lweverd| I IEL
layers N A e
The idea is to compute the weighted ¥
projection matrix W in the real and in |

an ensemble of degree preserved r <
randomized networks B
e only links with a value Wj; larger
than what obtained in the null
models are set to |

On the country layer
18AD| 1onpoud ayl up




Naive Projection

Gran-Validation
BiCM
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Naive vs Validated
Projection

We consider the case of countries and products
e we project the bipartite network to get the
network of countries
* in the naive projection we previously
introduced almost all countries are
connected
e this is due to spurious cooccurrences
o two countries that export many products
will have many cooccurrences just by
chance
* instead the BICM validated projection returns
a much more meaningful structure



The Country Network

The BICM validated projection returns a country network with a well defined
structure and a low density of links. This is because only statistically significant
connections are retained
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Saracco, Fabio, et al. “Inferring monopartite projections of bipartite networks. an entropy-based
approach.” New Journal of Physics 19.5 (2017): 053022.
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Detecting Communities

The network presents a clear network structure with communities
corresponding for instance to tropical countries or advanced economics
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The Product
Network

The same procedure can be
applied also to products
e this time we look the other
way dround
e given two products, we see
how many common countries
export them
e we then validate the
projection with the BiCM

Also in this case we obtain a
network of product with a well
defined community structure




Movielens Dataset

Movielens is a dataset of movies rating
e it can be seen as a bipartite network
© we have users on one layer
o movies on the other layer

e we can get a biadjacency matrix by
binarizing the ratings
o My=1if userirated movie | 3 out
of 5 or more

Starting from the bipartite network we
can then perform network projection

e for instance we can get the network
of movies

e we observe also in this case a clear
community structure




Conclusions

Null Models for Networks

Null models are crucial to validate the properties of networks. Examples include
the ER graph and the configuration model (fixed degree sequence)

Network Ensembles

An ensemble is the set of all possible graphs with a given macroscopic
property. We showed how to get a (canonical) ensemble of networks given
some constraints that we want to satisfy on average

Applications of Null Models

Null model can be used for validating communities or other properties, but also
to reconstruct networks from partial information. This is very relevant in finance.
Bipartite Networks Projection

Null models, such as the BiCM, allow to obtain statistically validated projection
of bipartite networks, performing much better than naive approaches



