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ChatGPT and LLMs

©

How can | help you today?
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Generative Agents

[Abigail] : Hey Klaus, mind if

. QAR | =1 I join you for coffee?
w5 < : . [Klaus] : Not at all, Abigail.
How are you?
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Park, Joon Sung, et al. "Generative agents: Interactive simulacra of
human behavior." Proceedings of the 36th Annual ACM Symposium-on
User Interface Software and Technology. 2023.
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Conversable agent

[ P "{‘] | Multi-Agent Conversations
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Joint chat Hierarchical chat

Agent Customization Flexible Conversation Patterns

Wu, Qingyun, et al. "Autogen: Enabling next-gen llm applications via multi-agent
conversation framework." arXiv preprint arXiv:2308.08155 (2023).
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LLMs on Devices




LLMs Group

Level Behavior




Network Growth




LLMs Social
Networks

Barabasi-Albert like process:
e at each time step a new node is added
e it links fo m already existing nodes
e the linking probability is not decided o
priori
e a LLM decides which connections to
establish
We exploit GPT3.5-Turbo as LLM
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e You've entered a virtual social network.

e You're tasked with connecting to exactly {m} individuals from the
list below.

e Each individual is accompanied by their current number of

connections.
e Please indicate your choices by replying with their names,

separated by commas and enclosed within square brackets.
X7/v S
keY 1
Plc 17
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Scale-Free
Networks

The resulting networks are similar

to those formed by humans in

social networks
e as the system grows, the

degree probability distribution

shows a power law tail

¢ this indicates a scale-free

topology




In order to better understand the network growth process we can

look at the (cumulative) linking probability.

E & LLM agents show linear preferential attachment!
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Consensus Formation
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The Social Brain Hypothesis

The Social Cortex

1,000

As brain size increases, so does
group size. Human group size as
predicted by Dunbar's model comes

out to about 150.
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3X 4x 5x 66X
Size of neocortex relative to rest of brain

DATA THE SOCIAL BRAIN HYPOTHESIS, DUNDAR 1898




LLMs Opinion
Dynamics

Binary Opinion Dynamics Process
e at each time step we select an agent
on the network
e we provide it the list of its connections

with the opinion they support

e an LLM autonomously decides which
opinion to align to
We exploit several ditfterent LLMs and we
consider a fully connected network.
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e Below you can see the list of all your friends together with the
opinion they support.

e You must reply with the opinion you want to support.

e The opinion must be reported between square brakets.
X7V x
keY x
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Emergence of Consensus

The state of the system is given by the

1.0

_ collective opinion m

EO'S- e we can follow the evolution by
EO'G' looking at the consensus level |m|
20_4 e the most advanced models reach
%0 : consensus in all the runs

S o.

¢ the less advanced models never

reach consensus

] Claude 3 Opus GPT-4 Turbo Llama 3 70b Some LLMs are able to coordinate

I cPT-3.5 Turbo [l Claude 3 Haiku and reach consensus others are not
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Adoption Probability

We can understand the opinion dynamics
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process looking at the adoption probability
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o

e probability P(m) to choose the first

opinion as function of m

o
+

e we observe an universal behavior
P(m)=0.5+0.5 - tanh([3m)
e the only ditfference is in the majority

Adoption probability P(m)
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Collective opinion m
force [3
e 1 HH —e— Claude 2.0 —+— Claude 3 Opus —e— Claude 3.5 Sonnet
Thls IS Illhe same prObablllfy 0f Illhe Claude 3 Haiku Claude 3 Sonnet GPT-3.5 Turbo
Curie-Weiss model! —— GPT-4 GPT-40

—»>— GPT-4 Turbo —e— Llama 3 70B



We compare the majority force with the MMLU benchmark
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e [3is strongly correlated with the language understanding and
cognitive capabilities

e advanced models have a stronger majority following tendency
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MMLU benchmark
Claude 3.5 Sonnet Claude 3 Opus —%— GPT-4 — Claude 2.0 GPT-3.5 Turbo

GPT-40 —%— GPT-4 Turbo Claude 3 Sonnet Claude 3 Haiku —4— Llama 3 70B
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The majority force also depends on the group size
e as the LLM society get larger, the majority torce decreases
e tollowing the majority is harder is larger groups

e this is connected to the prompt getting longer and longer
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Claude 3.5 Sonnet Claude 3 Opus —¥— GPT-4 ¢— Claude 2.0 GPT-3.5 Turbo
GPT-40 —%— GPT-4 Turbo Claude 3 Sonnet Claude 3 Haiku —%— Llama 3 70B



Consensus Time T,
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Phase
Transition

The Curie-Weiss model has a transition

I—I
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101_
point for 3=
¢ since [3 decreases with N we expect a

10° B size induced phase transition

- - - e we look at the average consensus time
10 10 10
Group Size N e GPT-4 Turbo tollows the same scaling

GPT-40 —4+— Llama 3 70B asS the CW model
—f— GPT-4Turbo  —}— Curie-Weiss model ¢ Instead Llama 3 70B and GPT-40 shows

two regimes
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The Social LLM Hypothesis
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LLMs show emergent
collective behaviors similar

to humans

They tend to spontaneously

form scale free networks

Groups of LLMs can reach
consensus and coordinate

on norms or opinions

LLMs show a critical group
size above which consensus
breaks




Thank you for your attention!

 De Marzo, Giordano, Luciano Pietronero, and David Garcia. "Emergence of Scale-Free Networks
In Social Interactions among Large Language Models." arXiv preprint arXiv:2312.06619 (2023).

e Giordano De Marzo, Claudio Castellano and David Garcia. "Language Understanding as a
Constraint on Consensus Size in LLM Societies" arXiv preprint arxiv:2409.02822 (2024).
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Hub-and-Spoke topology

Hub-and-Spoke Broad
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We would expect a random network, but we obtain a more complex structure!
There is a bias!
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Broad topology

We shuttle nodes names at each iteration to remove the bias due to token prior

Broad Random
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This is like the Barabasi-Albert model!
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Opinion Biases

We shuftle opinion names at each iteration to remove the bias due to token prior.

No Shuffling Shuffling
1 S EE 1
S E
R, 0.8 ~ 0.8
2 0.6 2 0.6
E YES-NOis =
2.0.4 toomcuh 204
- o -
9 B YES-NO no shuffling blased 9
-"5 —a - tanh(b-m +c¢) +d E
- 0.2 @ poa-rfj no shuffling ’ - 0.2
g a-tanh(b-m—kc)Jrc{ } g
0 ~ 0
-1 -0.5 0) 0.5 -1 -0.5 0 0.5
magnetization m magnetization m

This doesn’t work for all opinion names!



